
USING C-KERMIT

Communications Software

for

UNIX, Windows 95, Windows NT, OS/2, VMS, VOS,
AOS/VS, Commodore Amiga, Atari ST, and OS-9

DRAFT, 3 March 2001

Frank da Cruz and Christine M. Gianone

Copyright 1996,2001 by Frank da Cruz and Christine M. Gianone.

All rights reserved.

i

Foreword 2016

This PDF is the unfinished manuscript of the 3rd Edition of Using C-Kermit. It was being
written in tandem with the preparation of C-Kermit 8.0, and therefore would have updated
the Second Edition with new materal for C-Kermit 7.0 and 8.0. The contract was signed
with Digital Press and work was well underway, but then Digital Press disappeared (along
with Digital Equipment Corporation itself) and the new edition was never finished. Thus
the content tends to hover between C-Kermit 6.0 and C-Kermit 8.0; Some chapters are up-
dated, others not. Most of the new material is in the early chapters: Preface, Intro, Run-
ning, Dialing, Modems, Terminal Connection, Troubleshooting, External Protocols, Net-
works. All rest is unchanged from the 1996 Second Edition.

Nevertheless, I think it’s an improvement. Like all Kermit books, it was written using the
markup language of the Scribe Documentation Preparation System, which was far more
powerful, flexible, customizable, and extensible than anything I know of that came later.
This online version was produced by running the 2001 draft through the last surviving in-
stance of Scribe on a Columbia University computer shortly before it was to be turned off
and retired. Luckily, this was the same computer where the 2001 work was done, so al-
most everything worked just as before.

The result is an online PDF version of the manual with a few things missing (the Table of
Contents and all of the artwork) and a few things wrong (mainly in the character-set tables
at the end).

ii Foreword 2016

Will there ever be a new, comprehensive, up-to-date version of this book? I doubt it. Not
only would it be a lot of work to organize all the material, but Scribe will be gone (the
source for this book is about 64,000 lines of Scribe code). Furthermore, the demand for
Kermit software has slacked off a bit since the turn of the century. And perhaps most to
the point, the result would be at least 1000 pages long, maybe 2000, compared to "only"
622 for the second edition.

In the 15 years since this draft was worked on, there have been significant new develop-
ments in C-Kermit, lots of other things happened, but in the end the Kermit Project was
canceled by Columbia University in 2011 and everybody laid off. Since then all Kermit
software has been rebranded as Open Source and a new Kermit Project website has
opened at:

http://www.kermitproject.org/

The C-Kermit page is here:

http://www.kermitproject.org/ckermit.html

And documentation for new features of C-Kermit 7.0, 8.0, and 9.0 can be found here:

http://www.kermitproject.org/ckermit70.html

http://www.kermitproject.org/ckermit80.html

http://www.kermitproject.org/ckermit80.html

Kermit 95 is Open Source too, but nobody has yet been able to build a version of it that
has all necessary features (such as an SSH client):

http://www.kermitproject.org/k95sourcecode.html

There are no more Kermit mailing lists or newsgroup, no more newsletters, and no more
tech support hot-line, but emails are still answered (by me) on a best-effort basis.

This document will not be updated unless Scribe makes a miraculous comeback.

Frank da Cruz
Bronx NY, February 2016

fdc@kermitproject.org
fdc@columbia.edu

iii

Preface

This book describes C-Kermit, the world’s most portable communications software
program, available for for UNIX computer systems (hundreds of different ones); Digital
Equipment Corporation (now Compaq) (Open)VMS; PCs with Windows 95/98/ME/NT/
2000 or OS/2; Data General AOS/VS, Stratus VOS, the Commodore Amiga, and com-
puters with the QNX and OS-9 realtime operating systems. The UNIX version of
C-Kermit runs on all known implementations of UNIX, old and new, on computers rang-
ing from PCs to large mainframes and supercomputers.

C-Kermit software offers you online terminal sessions, file transfer and management, and
automation of communications tasks over the full range of communication methods in-
cluding direct and dialed serial connections and (in most versions) TCP/IP other networks
too. C-Kermit’s command language operates consistently across all of C-Kermit’s plat-
forms and over all types of connections. It allows routine, complex, or time-consuming
communications and data-transfer tasks to be executed for you automatically.

C-Kermit transfers text and binary files faithfully and efficiently with any other kind of
computer. The Kermit file transfer protocol takes care of synchronization, error detection
and correction, file format and character set conversion, and myriad details you should
never have to worry about. It was designed to work in even the most hostile communica-
tion environments, where other protocols fail, and at the same time to take full advantage
of modern high-bandwidth network connections. C-Kermit embodies the premiere and
definitive rendition of the Kermit file-transfer protocol. In some cases other protocols
such as FTP and ZMODEM are available too.

iv Preface

The Kermit file transfer protocol was originally designed in 1981 by Frank da Cruz and
Bill Catchings at Columbia University, which has been ‘‘Kermit headquarters’’ ever since,
and extended over the years by the authors and others — principally Joe Doupnik of Utah
State University and John Chandler of the Harvard / Smithsonian Astronomical Obser-
vatory, and more recently Jeffrey Altman of the Kermit Project — to meet the evolving
needs of the people who depend on it. Because the Kermit protocol is well
documented [21], easy to implement, robust, extensible, and adaptable to almost any style
of communication and any computer architecture, it has long since taken its place as a
worldwide de facto standard for reliable data transfer.

Acknowledgments

C-Kermit was written by Frank da Cruz of Columbia University with contributions from
hundreds of other developers and testers, all of whom have our deepest thanks, with our
sincere apologies to anyone else we might have overlooked (U = University, locations are
in the USA unless otherwise indicated, and note that affiliations or locations might have
changed since the contribution was made):

Chris Adie (Edinburgh U, Scotland); Robert Adsett (U of Waterloo, Canada); Larry Afrin
(Clemson U); Jeffrey Altman (Columbia U); Greg Andrews (Telebit Corp, Sun); Barry
Archer (U of Missouri); Bengt Andersson (ABC-Klubben, Sweden); Robert Andersson
(International Systems A/S, Oslo, Norway); Chris Armstrong (Brookhaven National Lab-
oratory); William Bader (Software Consulting Services, Nazareth, PA); Fuat Baran
(Columbia U); Stan Barber (Rice U); Jim Barbour (U of Colorado); Donn Baumgartner
(Dell Computer Corp); Nelson Beebe (U of Utah); Jeff Bernstein; Karl Berry (UMB);
Mark Berryman (SAIC); Dean W Bettinger (SUNY); John Bigg (HP); Gary Bilkus; Peter
Binderup (Denmark); David Bolen (Advanced Networks and Services, Inc.); Volker Bor-
chert; Jonathan Boswell; Marc Boucher (U of Montreal, Canada); Tim Boyer; Mark
Brader (SoftQuad Inc., Toronto); Charles Brooks (EDN); Bob Brown; Mike Brown (Pur-
due U); Rodney Brown (COCAM, Australia); Frederick Bruckman; Jack Bryans (Califor-
nia State U at Long Beach); Mark Buda (DEC); A. Butrimenko (ICSTI, Moscow); Fer-
nando Cabral (Padrão IX, Brasília, Brazil); Björn Carlsson (Stockholm U Computer
Centre QZ, Sweden); Bill Catchings (formerly of Columbia U); Bob Cattani (formerly of
Columbia U); Davide Cervone (Rochester U, NY); Seth Chaiklin (Denmark); John
Chandler (Harvard U/Smithsonian Astronomical Observatory, Cambridge, MA); Bernard
Chen (UCLA); Andrew A Chernov (RELCOM Team, Moscow); John L Chmielewski
(AT&T, Lisle, IL); Howard Chu (U of Michigan); Bill Coalson (McDonnell Douglas);
Kenneth Cochran; Bertie Coopersmith (London, England); Jared Crapo; Chet Creider (U
of Western Ontario, Canada); Alan Crosswell (Columbia U); Jeff Damens (formerly of
Columbia U); Mark Davies (Bath U, England); Bill Delaney; Igor Sobrado Delgado,
Sin-itirou Dezawa (Fujifilm, Japan); Clarence Dold (Pope Valley & Napa, CA); Joe R.

Acknowledgments v

Doupnik (Utah State U); Frank Dreano (US Navy); John Dunlap (U of Washington); Alex
Dupuy (SMART.COM), Jean Dutertre (DEC France and Club Kermit); David Dyck (John
Fluke Mfg Co.); Stefaan Eeckels (Statistical Office of the European Community, CEC,
Luxembourg); Paul Eggert (Twin Sun, Inc.); Bernie Eiben (DEC); Peter Eichhorn (assyst,
Gesellschaft für Automatisierung, Software und Systeme mbH, Kirchheim bei München,
Germany); Kristoffer Eriksson (Peridot Konsult AB, Örebro, Sweden); John Evans (IRS,
Kansas City); Glenn Everhart (DEC); Vincent Fatica (Syracuse U); Charlie Finan (Cray
Research, Darien, CT); Herm Fischer (Encino, CA); Carl Fongheiser (CWRU); Mike
Freeman (Bonneville Power Authority); Patrick French; Carl Friedberg, Carl Friend; Mar-
cello Frutig (Catholic U, São Pãulo, Brazil); Hirofumi Fujii (Japan National Laboratory
for High Energy Physics, Tokyo); Chuck Fuller (Westinghouse); Andy Fyfe (Caltech);
Christine M. Gianone (Columbia U); Andrew Gabriel; Gabe Garza; Boyd Gerber; David
Gerber; Joseph (Yossi) Gil (Technion, Haifa, Israel); George Gilmer; John Gilmore (UC
Berkeley); Madhusudan Giyyarpuram (HP France); Rainer Glaschick (Siemens AG,
Paderborn); William H. Glass; Hunter Goatley (Process Software); Malka Gold (Colum-
bia U); German Goldszmidt (IBM); Chuck Goodheart (NASA); Alistair Gorman (New
Zealand); Juri Gonastaev (ICSTI, Moscow); Richard Gration (Australian Defence Force
Academy); Chris Green (Essex U, England); Alan Grieg (Dundee Tech, Scotland);
Volkmar Grote (Hamburg, Germany); Valdemar Gunnarson (Iceland); Yekta Gursel
(MIT); Jim Guyton (Rand Corp); Vesa Gynther (Finland); Michael Haertel; DJ Hagberg;
Marion Hakanson (ORST); John Hamilston (Iowa State U); Steen Hammerum (U of
Købnhavn, Denmark); Simon Hania (Netherlands); Kevin Handy; Darryl Hankerson
(Auburn University); Stan Hanks (Rice U); Andy Harper; Ken Harrenstein (SRI); Eugenia
Harris (Data General); David Harrison (Kingston Warren Corporation); Lucas Hart
(Oregon State University); James Harvey (Indiana/Purdue U); Rob Healey; Chuck
Hedrick (Rutgers U); Ron Heiby (Motorola Computer Group); Steve Hemminger
(Tektronix); Christian Hemsing (Rheinisch-Westfälisch Technische Hochschule, Aachen,
Germany); Randolph Herber; Andrew Herbert (Monash U, Australia); Mike Hickey (ITI);
Dan Hildebrand (QNX Software Systems Inc., Ontario); R.E. Hill; Sven Holström; Bill
Homer (Cray Research); Ray Hunter (The ex-Wollongong Group); Randy Huntziger (US
National Library of Medicine); Larry Jacobs (Transarc); Michal Jaegermann; Xander Jan-
sen (SURFnet, Utrecht, Netherlands); Graham Jenkins (TABCORP, Melbourne,
Australia); Steve Jenkins (Lancaster U, England); Bo Johansson (Sweden); Dave Johnson
(Gradient Technologies); Mark Johnson (Apple Computer); Jyke Jokinen (Tampere U of
Technology, Finland); Dick Jones, Eric Jones (AT&T); J.E. Jones (Microware); Luke
Jones (AT&T); Peter Jones (U of Quebec, Montreal, Canada); Phil Julian (SAS Institute);
Peter Kabal (U of Quebec); Mic Kaczmarczik (U of Texas at Austin); Sergey Kartashoff
(Institute of Precise Mechanics & Computer Equipment, Moscow); Howie Kaye (Colum-
bia U); Martin Kealey (Auckland, New Zealand); Rob Kedoin (Linotype Co., Hauppauge,
NY); Phil Keegstra; Mark Kennedy (IBM); Terry Kennedy (St Peter’s College, Jersey
City, NJ); Robert D Keys; Carlo Kid (Technical U of Delft, Netherlands); Tim Kientzle;
Ted Kilgore (Auburn U); Paul Kimoto (Cornell U); Douglas Kingston; Lawrence Kirby

vi Preface

(Wiltshire, England); Nick Kisseberth; Susan Kleinman (Debian); John Klensin (United
Nations University); Kurt Klingbeil (Province of Alberta); Tom Kloos (Sequent Computer
Systems); Jim Knoble (Red Hat); Jim Knutson (U of Texas at Austin); John T. Kohl
(BSDI); Igor Kovalenko (QNX); Dave Kramer (Sprint International); Scott Kramer (SRI
International); John Kraynack (US Postal Service); David Kricker (Encore Computer);
Thomas Krueger (U of Wisconsin at Milwaukee); Bo Kullmar (Central Bank of Sweden,
Kista, and ABC-Klubben, Stockholm); R. Brad Kummer (AT&T Bell Labs, Atlanta, GA);
John Kunze (UC Berkeley); David Lane (Stratus Computer Inc); Russell Lang (Monash
U, Australia); Bob Larson (USC); Adam Laurie; Bert Laverman (Groningen U, Nether-
lands); Steve Layton; David Lawyer (UC Irvine); David LeVine (National Semiconductor
Corp.); Ken Levitt (Informed Computer Solutions); Daniel S. Lewart (UIUC); S.O. Lidie
(Lehigh U); Jeff Liebermann; Tor Lillqvist (Helsinki U, Finland); Robert Lipe (Arnet
Corp); Benny Löfgren (DIAB, Sweden); Dean Long; Mike Long (Analog Devices); Eric
Lonvick; Kevin Lowey (U of Saskatchewan, Canada); Andy Lowry (Columbia U); James
Lummel (Caprica Telecomputing Resources); Bernard Lyons (Claris); David MacKenzie
(Environmental Defense Fund, U of Maryland); John Mackin (U of Sidney, Australia);
Martin Maclaren (Bath U, England); Chris Maio (formerly of Columbia U); Montserrat
Mané (HP France); Fulvio Marino (Olivetti, Ivrea, Italy); Arthur Marsh (DIRCSA,
Australia); Gregorie Martin; Peter Mauzey (AT&T); Tye McQueen (Utah State U); Ted
Medin (NOSC); Ajay Mehta (DEC); Melissa Metz (Columbia U); Hellmuth Michaelis
(Hanseatischer Computerservice GmbH, Hamburg, Germany); Leslie Mikesell (American
Farm Bureau); Dragan Milicic (U of Utah); Gary Mills (U of Manitoba, Canada); Martin
Minow (DEC); Pawan Misra (Bellcore); Ken Mizialko (IBM, Manassas, VA); Christian
Mondrup; Ray Moody (Purdue U); Bruce J. Moore (Allen-Bradley Co); Daniel Morato;
Steve Morley (Convex); Peter Mossel (Columbia U); Tony Movshon (NYU); Lou Muc-
cioli (Swanson Analysis Systems); Dan Murphy; Neal P. Murphy (Harsof Systems,
Wonder Lake, IL); Gary Mussar (Bell Northern Research); John Nall (Florida State U);
Jack Nelson (U of Pittsburgh); Thuc Dat Nguyen (www.smalltickle.com); Toby Nixon
(Microsoft); Jim Noble (PRC, Inc.); Ian O’Brien (Bath U, England); John Owens; Herb
Peyerl (NetBSD); Mitchell Pilot; Michael Pins (Iowa Computer Aided Engineering Net-
work); André Pirard (U of Liège, Belgium); Paul Placeway (Ohio State U); Piet Plomp
(Groningen U, Netherlands); Ken Poulton (HP Labs); Manfred Prange (Oakland U);
Christopher Pratt (APV Baker, UK); Frank Prindle (NADC); Tony Querubin (U of
Hawaii); Phil Race (ICL, Manchester, England); Jean-Pierre Radley; Steve Rance; Anton
Rang; Ruth Raphaeli (Columbia U); Scott Ribe; Stephen Riehm; Alan Robiette (Oxford
U, England); Michel Robitaille (U of Montreal, Canada); Huw Rogers (Schweizerische
Kreditanstalt, Zürich); Nigel Roles (Cadence Symbionics Group, Cambridge, England);
Kai Uwe Rommel (Technische Universität München, Germany); Judith Rosenhouse
(Technion, Haifa, Israel); Larry Rosenman (Garland, TX); Jay Rouman (U of Michigan);
Jack Rouse (SAS Institute); Stew Rubenstein (Harvard U); David Sanderson; Cory Sane
(Medical U of SC); John Santos (EGH); Bill Schilit (Columbia U); Ulli Schlüter (RWTH
Aachen, Germany); Michael Schmidt (U of Paderborn, Germany); Michael Schmitz; Eric

Acknowledgments vii

Schnoebelen (Convex); Benn Schreiber (DEC); Dan Schullman (DEC); John Schultz
(3M); Steven Schultz (GTE Government Systems Corp); APPP Scorer (Leeds Polytech-
nic, England); Gordon Scott (Micro Focus, Newbury, England); Jay Sekora (Princeton U);
Gisbert W. Selke (Wissenschaftliches Institut der Ortskrankenkassen, Bonn, Germany);
Bob Shair; Richard Shuford; David Singer (IBM Almaden Research Labs); David
Sizeland (U of London Medical School, England); Friðrik Skulason (Iceland); Rick Slad-
key; Dave Slate; Bradley Smith (UCLA); Fred Smith (Computrition); Richard Smith (Cal-
ifornia State U); Michael Sokolov; Jim Spath; Ryan Stanisfer (UNT); Bertil Stenström
(Stockholm U Computer Centre QZ, Sweden); James Sturdevant (CAP GEMINI AMERICA,
Minneapolis, MN, and Medtronic, Inc., Fridley, MN); Margarita Suarez (Columbia U);
Jerry Sutton; Peter Svanberg (Kungl. Tekniska Högskolan, Sweden); James Swenson
(Accu-Weather, Inc., State College, PA); Chris Sylvain (U of Maryland); Peter Szell;
Andy Tanenbaum (Vrije U, Amsterdam, Netherlands); Tim Theisen (U of Wisconsin);
Glen Thobe; Lee Tibbert (DEC); Markku Toijala (Helsinki U of Technology, Finland);
Teemu Torma (Helsinki U of Technology, Finland); Linus Torvalds (Transmeta Corp);
Rick Troxel (US National Institutes of Health); Ted T’so (VA Linux); Warren Tucker
(Tridom Corp, Mountain Park, GA); Dave Tweten (NASA); G. Uddeborg (Sweden); Wal-
ter Underwood (Ford Aerospace); Pieter Van Der Linden (Centre Mondial, Paris, France);
Ge van Geldorp (Netherlands); Fred van Kempen (MINIX User Group, Voorhout, Nether-
lands); Johan van Wingen (Leiden, Netherlands); Wayne Van Pelt (General Electric Cor-
porate Research and Development); Mark Vasoll (Oklahoma State U); Don Vickers
(DECUS); Konstantin Vinogradov (ICSTI, Moscow); Paul Vixie (DEC); Patrick Volkerd-
ing (Slackware); Bernie Volz (Process Software); Eduard Vopicka (Prague School of
Economics, Czech Republic); Martin Vorländer; Dimitri Vulis (D&M Consulting
Services, NYC); Peter Wächtler; Roger Wallace (Raytheon); Stephen Walton (California
State U at Northridge); Jamie Watson (Adasoft, Switzerland); Rick Watson (U of Texas);
Ken Weaverling; John Weekley; Scott Weikart (Association for Progressive Communica-
tions); Robert Weiner (Programming Plus, New York City); Lauren Weinstein (Vortex
Technology); Martin Whitaker; Jim Whitby; Clark Wierda (Illuminati Online, Austin
TX); David Wexelblat (AT&T Bell Labs); Bill Whitney (DEC); Joachim Wiesel (U of
Karlsruhe, Germany); Lon Willett (U of Utah); Michael Williams (UCLA); Nate Williams
(U of Montana); Matt Willman; David Wilson; Joellen Windsor (U of Arizona); Patrick
Wolfe (Kuck & Associates, Inc.); Gregg Wonderly (Oklahoma State U); Farrell Woods
(Concurrent); David Woolley (London, England); Jack Woolley (SCT Corp); Frank
Wortner; Jörg Wunsch (FreeBSD); Ken Yap (U of Rochester, NY); John Zeeff (Ann Ar-
bor, MI); Martin Zinser (Gesellschaft für Schwerionenforschung GSI, Darmstadt).

This third edtion of Using C-Kermit supersedes the 2nd edition of 1997 (which was cur-
rent with version 6.0) and incorporates all the new features of versions 7.0 and 7.1 as of
Spring 2001, which include among many others: security, built-in FTP and HTTP clients,
the Internet Kermit Service, automatic text/binary file-transfer mode switching, recursive
directory-tree transfers, Unicode, and other improvements in every area, especially the
command language and script programming.

viii Preface

Big thanks to the ‘‘Kermites,’’ who do such an great job of technical and customer support
while running our day-to-day production operations so smoothly: Max Evarts and the
generations who came before, especially Bob Tschudi, Peter Howard, Lucy Lee, Ken Suh
Andy Newcomb, and Andrew Chee.

A special note of appreciation to Jeffrey Altman, for some years a (prodigious) volunteer
contributor to the Kermit Project, and a full-time Kermit Project developer since 1995, for
massive contributions to C-Kermit versions 6.0 and later — and not just code, but energy,
enthusiasm, and great ideas too.

Thanks to everyone who helped in the production of this book: Pam Chester... at Digital
Press / Butterworth Heinemann / Reed Elsevier; to the former team of the original Digital
Press, wherever they are now, who produced the first edition of this book as well as our
other Kermit books; to Marjan Baće and Lee Fitzpatrick of Manning Software, the
publisher of Kermit 95, for which this book serves as technical reference; and to Guy
Steele of Sun Microsystems for permission to reproduce his Telnet Song and to Deborah
Cotton of the ACM for the right to do so.

And finally, thanks to our management and colleagues at Columbia University for their
encouragement and support, especially Vaçe Kundakçı, Deputy Vice President for
Academic Information Systems, and Elaine Sloan, Vice President for Information Ser-
vices and University Librarian; to Bruce Gilchrist and Howard Eskin, directors of our or-
ganization during the early days of Kermit; to Alan Crosswell, Melissa Metz, and
Colubmia’s Academic Systems Group for taking such good care of our well-known serv-
er, kermit.columbia.edu, and for help in many other forms; and to Lee Lidofsky, a
Great Teacher, for a timely push in a good direction, a long time ago.

Frank da Cruz and Christine M. Gianone
The Kermit Project, Columbia University

New York City, April 2001
fdc@columbia.edu, cmg@columbia.edu

C-Kermit is a large program with many features, designed to be used on a wide variety of
hardware and software platforms. If your computer does not have enough memory or
does not offer certain capabilities, some of the features described in this book might not be
available. C-Kermit’s SHOW FEATURES command lists the features that are included and
those that are missing. See the appendix particular to your operating system, such as Ap-
pendix III for UNIX, or the relevant supplementary manual or file. Registered copies of
Kermit 95 always have a full set of features.

Documentation for any changes made after this document was written can be found on the
Kermit Project website.

1

Chapter 1

Introduction

An ever-increasing amount of communication is electronic and digital: computers talking
to computers — directly, over the telephone system, through networks. When you want
two computers to communicate, it is usually for one of two reasons: to interact directly
with another computer or to transfer data between the two computers. Kermit software
gives you both these capabilities, and a lot more too.

C-Kermit is a communications software program written in the C language. It is available
for many different kinds of computers and operating systems, including literally hundreds
of UNIX varieties (HP-UX, AIX, Solaris, IRIX, SCO, Linux, ...), Digital Equipment
Corporation (now Compaq) (Open)VMS, Stratus VOS, Data General AOS/VS, and
others. C-Kermit is also the basis for Macintosh Kermit (unfortunately now defunct) and
for Kermit 95 (which is very much alive) for Microsoft Windows 95/98/ME/NT/XP/2000
and IBM OS/2. On all these platforms, C-Kermit’s services include:

• Connection establishment. This means making dialup modem connections or network
connections, including TCP/IP Telnet or FTP, X.25, LAT, NETBIOS, or other types
of networks, depending on the platform. For dialup connections, C-Kermit supports a
wide range of modems and an extremely sophisticated yet easy-to-use dialing direc-
tory. C-Kermit accepts incoming connections from other computers too.

• Security. An increasingly important part of network connections is secure authentica-
tion and encryption of sessions, and now UNIX C-Kermit and Kermit 95, when ap-
propriately configured (e.g. when the underlying OS supports it; when USA export
laws allow), support widely used security methods including Kerberos IV and V, SRP,
and SSL/TLS.

2 Introduction / Chapter 1

• Terminal sessions. An interactive terminal connection can be made to another com-
puter via modem or network. Kermit 95 emulates specific types of terminals, with lots
of extras such as scrollback, key mapping, printer control, colors, and mouse shortcuts.
On other platforms such as UNIX and VMS, emulation is supplied (as it must be) by
your terminal window or console driver.

• File transfer. C-Kermit transfers text and binary files from your computer to the other
one, or vice versa, free of errors, using the most advanced and high-performance im-
plementation of Columbia University’s Kermit file transfer protocol available
anywhere. TCP/IP-capable versions of C-Kermit also include built-in FTP and HTTP
clients. Other file-transfer protocols, such as ZMODEM, are available in some cases;
they are built in to Kermit 95 and can be used as external protocols in UNIX.

• Paging. C-Kermit can call beepers and numeric pagers and can also send text mes-
sages to alphanumeric pagers using TAP/IXO protocol.

• Client / server. Kermit’s client/server configuration allows uniform and convenient ac-
cess from your desktop computer to the wide variety of other computers and services
for which Kermit servers are available, in which you may initiate all sorts of file trans-
fer and management functions from your client software without having interact
directly with the remote Kermit program. And now C-Kermit can also be accessed as
an Internet service, just like an FTP or Telnet server, from any Telnet client that sup-
ports Kermit protocol.

• International character-set conversion. Kermit stands alone among communications
protocols and software in its ability to reconcile the differences among incompatible
character sets used to represent text in many languages. C-Kermit 7.0 adds support for
Unicode, the Universal Character Set, the new standard character set for the Internet.

• Automation. C-Kermit’s command language is also a script programming language
that is both powerful and easy to learn and use, as well as portable across hundreds of
platforms and diverse communication methods. Use it to automate all your routine
communication tasks, ranging from paging, to simple data exchange, to complex file
transfer and management operations, to network monitoring and reporting, to financial
transaction processing.

All of C-Kermit’s features are configurable and customizable, giving you unparalleled de-
gree of control over your connections.

This book is the technical reference manual for C-Kermit in its many incarnations. It con-
centrates on what all the versions have in common: the communications functions, the
command language, file transfer, the character-set conversion features, and the scripting
language. The specifics of each version are covered either in a separate publication such
as the Kermit 95 manual, in an appendix to this book, or in an online file.

Why Kermit? 3

Why Kermit?

In the present age of graphical user interfaces, Web browsers, and near-universal Internet
access, what use is a text-mode communications program like C-Kermit? Let’s clear up
two misconceptions right away. First, C-Kermit is not just a serial communications
program any more; it is also both a network client and a network server. And second, its
text-mode user interface is an advantage, not a drawback, because it’s consistent across all
platforms and it allows you to automatate tedious, complicated, routine, repetitive, and/or
labor-intensive procedures, something you usually can’t do with point-and-click software.

The world of computing and data communications is still surprisingly heterogeneous. To
this day there remains a vast diversity of computers large and small, as well as devices
that most of us might not think of as computers — laboratory equipment, cash registers,
bar-code scanners, postal sorters, milling machines, you name it — that do not fit the
Internet-connected, multimedia, Web-browsing model, yet still need to exchange data
with other computers. Minis and mainframes still exist despite all attempts to kill them
off, not to mention countless discontinued ‘‘legacy’’ systems ranging from CP/M
microcomputers to Soviet-era supercomputers, still in good service, that would be power-
less to communicate without Kermit.

Kermit conforms to well-established open standards. It does not lock you into a particular
brand of hardware or operating system, or a particular or proprietary communication
method. It doesn’t limit your choices; it lets you do what you want. Learn it once, use it
everywhere.

• Kermit software is universal. Kermit programs have been written for hundreds of dif-
ferent kinds of computers. Kermit software is available for just about any computer
and operating system you can think of (we used to list them in earlier editions of this
book, but such lists take many pages and nowadays it’s just as easy to visit the Kermit
Project website if you want see lists).

• Kermit software communicates not only over dialup connections, but also over direct
serial connections, local area networks, and wide area networks, so you can use the
same software for practically any kind of connection.

• Kermit software is flexible. It is adaptable to the styles and formats of the many com-
puter manufacturers and communication service providers.

• Kermit software is easy to use. The commands are ordinary words. Help is built-in.
Menus of keywords and filenames are available upon demand. Some Kermit
programs, such as Kermit 95, also have a graphical user interface to supplement the
text interface described in this book.

4 Introduction / Chapter 1

• Kermit software is powerful. Macros can be defined that combine multiple commands
into a single command. Procedures can be automated using the script programming
language, which is composed of ordinary Kermit commands.

• Kermit scripts are portable. The same scripting language is usable on hundreds of dif-
ferent platforms.

• Kermit file transfer is robust. It works in hostile or restrictive communication en-
vironments where other protocols and software fail.

• Kermit file transfer — perhaps contrary to popular belief — can be fast: as fast or
faster than any other protocol.

• Kermit file transfer is international. It can transfer text in many languages and charac-
ter sets without scrambling the special characters.

• Kermit software is accessible. Because it offers a text-mode user interface, it is com-
patible with speech, Braille, and other enabling devices.

In UNIX, C-Kermit can replace cu, tip, minicom, uucp, ftp, telnet, ktelnet, rlogin, ls, cp,
mv, rm, mkdir, rmdir, grep, iconv, recode, find, expect, wget, sendpage, wc, bc, and
maybe even your shell and/or Perl, with all their different interfaces and quirks, and still
offer you lots of unique features of its own.

Figure 1-1 Remote and Local Computers

How Kermit Works 5

Figure 1-2 Connecting the Local and Remote Computers

How Kermit Works

Picture two computers, like the ones in Figure 1-1. You are using one of them directly: it
is a PC or workstation on your desk, or it is a timesharing system connected to a terminal
(or terminal emulator) on your desk. Let’s call this the local computer. You want to con-
nect your local computer to a more distant, remote computer or service and transfer data.

IMPORTANT: Remember the terms local and remote. They are used through-
out this book. The local computer is the one you are making the connection
from. The remote computer is the one you are making the connection to.

Let’s say you are connecting the two computers by modem (if they are both on the Inter-
net, the procedure is much simpler, as you’ll see in Chapter 3). First you must know the
name of the device on your local computer that the modem is connected to, the transmis-
sion speed to use, and the telephone number to call, as shown in Figure 1-2. We start the
local Kermit program simply by typing the word kermit.

IMPORTANT: In the figures, and in all examples used in this book, the text
you type is underlined. When you are typing commands to your comuter or to a
Kermit program, you must terminate them by pressing the Return or Enter key
at the point where the underlining ends (unless otherwise indicated).

6 Introduction / Chapter 1

Figure 1-3 Logging in to the Remote Computer

When the local Kermit’s prompt appears, tell it the modem type and the communication
device name and speed, and then tell it to dial the other computer’s phone number. When
the other computer answers the phone, give your local Kermit the CONNECT command, if
necessary1 and now you are talking to the remote computer just as if you were using it
directly. Log in as shown in Figure 1-3 and carry on a dialog to conduct your business.
Eventually you might decide that you want to move a file from one computer to the other.

To transfer a file, both computers must be running Kermit programs. Your local computer
already is. Simply type ‘‘kermit’’ on the remote computer to start the remote Kermit
program.2 Now you must tell each Kermit program what to do: one of them must be told
to send a file of a certain name and the other must be told to receive the file. The basic
rule is:

1. Tell the remote computer what to do first (SEND or RECEIVE), then:

2. Get back to the local computer and tell it the opposite (RECEIVE or SEND), as shown in
Figure 1-4.

1If you give the DIAL command at the C-Kermit prompt and the call is answered successfully, C-Kermit
CONNECTs automatically, so in this case no CONNECT command is needed.

2If there is no Kermit software on the remote computer, other file transfer methods are available,
described in Chapters 14 and 15.

How Kermit Works 7

Figure 1-4 Transferring a File

How do you get back to the local computer? Recent versions of C-Kermit and K-95 pop
into file-transfer mode automatically when you start a file transfer on by giving a SEND or
GET command to the remote Kermit. But we’re getting ahead of ourselves, and anyway
since not all Kermit programs have the ‘‘autodownload’’ feature you should also be
familiar with the general procedure.

When you CONNECT to the remote computer, C-Kermit is behaving like a terminal. It
sends the characters you type straight to the remote computer, without paying any atten-
tion to them itself, and sends all incoming characters to your screen (Kermit 95 adds to
this process the interpretation of escape sequences to actually format your screen).

One keyboard character, called Kermit’s escape character, is special during a CONNECT

session. C-Kermit notices when you type its escape character (a control character such as
Ctrl-Backslash or Ctrl-Rightbracket) and interprets the next character that you type as a
command; for example, the letter C to Come back to the prompt (Table 8-1 on Page 174
gives a complete list). This two-character sequence is shown in the figure as Ctrl-\c,
and entering it is referred to as ‘‘escaping back.’’ (In the Windows and OS/2 versions, you
can also use Alt-key combinations or the mouse for this.)

Here is an example of the basic procedure, in which you are transferring the file
oofa.txt from the remote computer to the local one, Your local computer is a UNIX
workstation with C-Kermit and the remote computer is running VMS, also with C-Kermit:

8 Introduction / Chapter 1

1. Start Kermit on your local computer:

$ kermit
C-Kermit 7.1.199, 29 Apr 2001, Linux
Type ? or HELP for help
C-Kermit>

2. Tell it the modem type and the name and speed of the communication device:

C-Kermit>set modem type usrobotics
C-Kermit>set line /dev/ttyS1
C-Kermit>set speed 57600

3. Have it dial the telephone number of the remote computer:

C-Kermit>dial 7654321

4. Enter terminal mode (if necessary; normally DIAL does this automatically):

C-Kermit>connect

5. Log in to the remote computer and start Kermit there:

Welcome to the Remote Computer
Username: myusername
Password:
$
$ kermit
C-Kermit 7.1.199, 29 Apr 2001, OpenVMS VAX
Type ? or HELP for help
C-Kermit>

6. Tell the remote Kermit program to send the file:

C-Kermit>send oofa.txt
Return to your local Kermit and give a RECEIVE command.

KERMIT READY TO SEND...

7. If the file transfer doesn’t start automatically, enter the key sequence to escape back
from terminal mode to your local Kermit program and tell it to receive the file:

Ctrl-\c
C-Kermit>receive

Now the two Kermit programs begin talking to each other by sending structured messages
called packets, which contain not only data from your files, but also control information,
such as ‘‘here is the file name,’’ ‘‘here is the first piece of data from the file,’’ ‘‘here is the
second piece,’’ ‘‘that was the last piece,’’ ‘‘please send the second piece again,’’ and so on.
Each packet is specially encoded to ensure its safe passage through sensitive communica-
tion devices. All packets include error checking and sequencing information to prevent
your data from being lost, duplicated, or damaged.

How Kermit Works 9

This is the basic scenario for connection and file transfer, a common — but by no means
the only — application for C-Kermit. There are many variations: you can send files in the
other direction (by exchanging the SEND and RECEIVE commands), you can transfer a
group of files in a single operation, you can operate the remote Kermit as a fully
protocol-driven file server, and you can automate the process to any desired degree using
C-Kermit’s script programming language. The details of the Kermit file transfer protocol
are given in a separate book [21, Chapters 8–12].

Since its modest origins in the 1980s, C-Kermit has grown into a large, complex, and
powerful program. A bit of effort is required to learn it, but the effort pays off again and
again because, unlike simpler packages, C-Kermit can do practically anything you want it
do, on practically any platform, and whatever you can make it do by hand, you can
automate.

Each of its commands is there to fill a need expressed by a real user in a real situation
where nothing else would do. Every facet of C-Kermit’s operation can be customized ac-
cording to your needs and preferences, and yet its "out-of-the-box" defaults are reasonable
enough that you don’t have to fuss with customizaton until later, if at all.

If you find yourself wishing that Kermit could do such-and-such, it probably can. Our job
is to show you how.

Don’t forget that you can get help when you need it. Just visit the Kermit Project website:

http://www.columbia.edu/kermit/

and follow the Technical Support link.

10

11

Chapter 2

Running C-Kermit

As we enter the Third Millenium (CE), computing is well past its infancy. Text-mode
programs such as C-Kermit are increasingly uncommon, to the extent that some people
might require an explanation of the very notion of text prompts and commands. The best
way to put it is this: text is eternal. Graphical interfaces go in and out of style so fast that
software packages that use them are disposable commodities. Not so long ago, the only
interface between humans and software was plain text. This was not because humans in
those days were primitive, but because it made software easy to write and maintain, easy
to explain, robust, durable, portable, compact, flexible, relatively immune to changing
fashions. and — perhaps most important — powerful. The power comes from being able
to use the command language not only interactively, but also to create automated un-
attended procedures. While it’s easy to get started with graphical point-and-click
software, the graphical interface offers little advantage to experienced users or to those in
need of automation. But Kermit’s user interface, as you’ll see, combines ease of learning
with ease of automation.

This book describes C-Kermit version 7.1.199. If you have an earlier release, you should
get the current one from the Kermit Project, since we don’t recommend or support old
releases. If you have a later one, you can find release notes and documentation at the Ker-
mit Project website, http://www.columbia.edu/kermit/.

Since Kermit 95 (K95 for short) has the same command language as C-Kermit, this book
also describes the non-Windows- and non-OS/2-specific aspects of Kermit 95. The
platform-specific aspects of Kermit 95 are covered in the separate Kermit 95 manual.

12 Running C-Kermit / Chapter 2

Starting C-Kermit

Remember, in the examples used throughout this book, the characters that you
type are underlined. The characters that are not underlined are prompts or mes-
sages from the computer.

Also remember that when we say C-Kermit or just Kermit, we are referring to
the Kermit program that is the subject of this book, which is called C-Kermit in
UNIX, VMS, VOS, and AOS/VS, and Kermit 95 in Windows and OS/2.

In Windows or OS/2, start Kermit 95 from the Start menu, desktop shortcut, or from the
K95 Dialer. C-Kermit in UNIX, VMS, etc, must be started from a shell (command, DCL)
prompt in a text window or at the console terminal, or from a terminal or emulator that is
logged in to the system. If the Kermit program is correctly installed on your computer,
you should be able to start it simply by typing its name at the system (shell, DCL, CLI, ...)
prompt, which is shown as a dollar sign in this example, but might be some other charac-
ter or text:

$ kermit

In response, you should see a herald and a prompt looking something like this:3

C-Kermit 7.1.199, 29 Apr 2001, Linux
Copyright (C) 1985, 2001,
Trustees of Columbia University in the City of New York.

Type ? or HELP for help.
(/home/olga) C-Kermit>

What do the herald and prompt tell us? ‘‘C-Kermit’’ (or Kermit 95) is the name of the
program. 7.1.199 is the version number: the major release number is 7, the minor release,
or level, is 1, the edit number is 199, and the program release date is 29 Apr 2001.
‘‘Linux’’ is the operating system that this copy of Kermit was built for. (The version num-
bering system for Kermit 95 is different.)

The Copyright notice tells you that Columbia University owns the rights to this software.
The conditions for use and for redistribution are listed by the LICENSE command.

3If you see an error message such as ‘‘not found’’, ‘‘permission denied’’, or ‘‘unrecognized command
verb’’, the program has not been installed or wasn’t installed correctly. Or maybe it was installed with
some other name, perhaps ‘‘ckermit’’ or ‘‘wermit.’’ If you see a ‘‘Usage’’ message, beginning something
like:

Usage: kermit [-x arg [-x arg]...[-yyy]...]

then you have either a very, very old version of C-Kermit, or else your version of C-Kermit has been
installed without an interactive command parser.

Exiting from C-Kermit 13

The prompt, (/home/olga) C-Kermit>, means that C-Kermit is ready for a command;
the first part of the prompt shows C-Kermit’s current directory; the second part,
C-Kermit> points to where your command will be entered (the Kermit 95 prompt shows
the current disk and directory in square brackets and says K-95 rather than C-Kermit).
The line above the prompt, Type ? or HELP for help, means just what it says. If you
type a question mark at the prompt, you get a list (or menu) of commands available at that
point. These are Kermit’s ‘‘top-level’’ commands. If you type the word help, you get a
brief introduction to C-Kermit with pointers to additional information.

C-Kermit, Kermit 95, and MS-DOS Kermit share a consistent and friendly command-and-
prompt command style based on that of the once-popular and highly influential
DECSYSTEM-20. A Kermit command is like an English sentence, usually consisting of
a verb followed by objects or adverbs. When Kermit’s prompt appears, you can type a
command. (You can also have Kermit execute commands from files or from macro
definitions, but we’ll get to that later.) Commands are entered using ordinary letters,
digits, and punctuation, plus the special characters that are summarized in Table 2-1 on
page 23. A command is executed only after you press the Return or Enter key. When the
command has finished executing, the prompt appears again and you can type another com-
mand, and so on:

(/home/olga)C-Kermit>echo Hello
Hello
(/home/olga)C-Kermit>check character-sets
Available
(/home/olga)C-Kermit>

If you don’t like C-Kermit’s prompt, you can change it to suit your tastes, for example:

C-Kermit>set prompt Linux-Kermit>
Linux-Kermit>

to remind you that you are using Kermit on Linux. Later when you start to use Kermit to
talk to two computers at once, this can help you keep track of which one you’re talking to.

Exiting from C-Kermit

When you are finished using C-Kermit, type the command EXIT or QUIT (the two are the
same) and then press the Return or Enter key to return to the system or shell prompt:

C-Kermit>exit
$

(Of course the system prompt can vary with your operating system and other factors.)
When C-Kermit exits, it closes any files it might have had open, restores your command
terminal to normal, and generally cleans up after itself. See page 491 for a complete
description of the EXIT command.

14 Running C-Kermit / Chapter 2

Entering Interactive Commands

Kermit’s interactive command language is easy for users of all levels. For novices, it is
intuitive and nonthreatening. Commands are normal English words rather than cryptic
codes. Help is available when you need it but is not forced on you when you don’t want
it. Later, when you become familiar with Kermit’s commands, you can enter them more
quickly in abbreviated form.

A command consists of one word or else multiple words separated by spaces, like a sen-
tence. The words are called fields. In a Kermit command, a field can be a keyword, a file
name, a number, or some other quantity. A keyword is a word chosen from a particular
list; all words on that list are valid, other words are not.

Commands begin with a keyword, normally an English verb like SEND, RECEIVE, or SET.
Keywords can be entered in uppercase or lowercase, or any combination. We show com-
mand keywords within running text in (small capitals) UPPERCASE for clarity (for ex-
ample, the SEND command) but in lowercase in examples:

C-Kermit>send oofa.txt

because that is how people normally type them.

Getting Help within a Command
A question mark (?), typed at any point in a command, produces a message explaining
what is possible or expected at that point. Depending on the context, the message can be a
brief explanatory phrase, a menu of valid keywords, or a list of files.

If you type a question mark at the prompt, you’ll see a list of all C-Kermit’s top-level
commands. If you type a letter s at the prompt and then question mark, Kermit lists the
commands that start with s:

C-Kermit>s? Command, one of the following:
save server sleep status switch
screen set sort stop
script sexpression space succeed
search shift spawn support
send show statistics suspend
C-Kermit>s

After the menu or help message is displayed, you can continue the command from where
you left off. The s is still there, and now you can type a letter e and another question mark
to see which commands start with se:

C-Kermit>se?
Command, one of the following:
search send server set sexpression

C-Kermit>set

Entering Interactive Commands 15

You can continue this process to the next field of the command by typing a space and then
another question mark:

C-Kermit>set ? Parameter, one of the following:
alarm editor modem sleep
ask-timer escape-character network speed
attributes exit output stop-bits
background file options streaming
...
C-Kermit>set

This tells you that Kermit wants you to type another keyword, a parameter to be SET, and
then Kermit lists all the possibilities for you, such as SET FILE. Let’s see how far we can
go with the SET FILE command.

C-Kermit>set file ? File parameter, one of the following:
binary-patterns destination output type
bytesize download-directory patterns ucs
character-set end-of-line protection
collision incomplete scan
default names text-patterns
C-Kermit>set file type ? type of file, one of the following:
binary text
C-Kermit>set file type binary ?
Press the Return or Enter key to confirm the command
C-Kermit>set file type binary <CR>

At the end of the command, you can press the Return, Carriage Return, or the Enter key
(shown above, for emphasis, as <CR>) to confirm that you want this command to be ex-
ecuted, or you can use Ctrl-U or Ctrl-C to cancel it (explained below), or you can edit it.

When a command fails, for example because a keyword was misspelled, an error message
is usually printed:

C-Kermit>set file type biiiinary
?No keywords match - biiiinary
C-Kermit>

In addition, a ‘‘status variable’’ is set that can be queried in various ways, including by the
STATUS command:

C-Kermit>set file type biiiinary
?No keywords match - biiiinary
C-Kermit>status
FAILURE
C-Kermit>set file type binary
C-Kermit>status
SUCCESS
C-Kermit>

(The status variable is a key ingredient in C-Kermit’s scripting language, which is covered
in Chapters 17 through 19.)

16 Running C-Kermit / Chapter 2

We seem to have prepared C-Kermit for transferring binary files. Let’s look at the com-
mand that actually sends the file, which is SEND followed by the filename. See how ques-
tion mark can also produce an alphabetized filename list:

C-Kermit>send ./? File(s) to send, one of the following:
ckcasc.h ckcmai.c ckcxla.h ckuscr.c ckuus4.c ckuusx.c makefile
ckcdeb.h ckcnet.c ckucmd.c ckusig.c ckuus5.c ckuusy.c oofa.bin
ckcfn2.c ckcnet.h ckucmd.h ckustr.c ckuus6.c ckuver.h oofa.doc
ckcfn3.c ckcpro.w ckucon.c ckutio.c ckuus7.c ckuxla.c oofa.hlp
ckcfns.c ckcsig.h ckudia.c ckuus2.c ckuusr.c ckuxla.h oofa.txt
ckcker.h ckcsym.h ckufio.c ckuus3.c ckuusr.h ckwart.c
C-Kermit>send

(The use of "./" in this context is explained a bit later in this chapter, but if you can’t
wait, try the example with and without the "./".) If you type the question mark after one
or more characters of the filename, Kermit lists the matching files:

C-Kermit>send ./oo? File(s) to send, one of the following:
oofa.bin oofa.doc oofa.hlp oofa.txt

C-Kermit>send oofa.txt
Return to your local Kermit and give a RECEIVE command.

KERMIT READY TO SEND...

(But we’re not ready to transfer files quite yet. In case you followed this example and
now you are staring at the READY TO SEND message with a seemingly dead keyboard, hold
down the Ctrl key and press the C key three times in a row to get back to the Kermit
prompt.)

If your command doesn’t make sense or it contains spelling or grammatical errors, Kermit
gives you a brief error message and a new prompt:

C-Kermit>sned ?No keywords match: sned
C-Kermit>

No harm is done by spelling errors in keywords (unless your error results in another valid
keyword). An invalid command is not executed, and it has no side effects. But watch out
for typographical errors in filenames or numbers, where Kermit usually has no way to tell
the difference between what you typed and what you meant to type.

If you enter a command that is partially correct, Kermit prints an error message and then
reprompts you with the correct part of the command:

C-Kermit>set block head
?No keywords match - head
C-Kermit>set block

At this point, you can type a question mark to see which keywords are legal, or you can
cancel or edit the command (explained shortly).

Entering Interactive Commands 17

Abbreviating Keywords
You don’t always have to spell keywords out in full; you can abbreviate them as much as
you want, as long as the result isn’t ambiguous within its field. For example, the shortest
way to enter the SET FILE TYPE BINARY command would be:

C-Kermit>set fi ty b

If you abbreviate a keyword too much, Kermit complains that your command is
‘‘?Ambiguous.’’ No harm is done, and the command is not executed:

C-Kermit>se ?Ambiguous - se
C-Kermit>se? Command, one of the following:
search send server set sexpression
C-Kermit>

Some command keywords are used so frequently that they have special one-letter ab-
breviations, even though more than one command begins with that letter. These include C

for CONNECT, S for SEND, R for RECEIVE, and H for HELP. For example, the command:

C-Kermit>s oofa.txt

sends the file oofa.txt, even though SEND is not the only command that begins with s.
Note, however, that filenames cannot be abbreviated.

Any abbreviation that is valid in a regular command is also valid in a HELP command; for
example:

C-Kermit>h s

prints the help text for the SEND command.

Correcting Mistakes in Commands
If you make typographical errors or change your mind about a command before you enter
it, you can alter or cancel it using the following special characters:

DEL (The Delete, Rubout, or Backspace key, or Ctrl-H) Deletes the rightmost character
from the command.

^W (Ctrl-W) Erases the rightmost word from the command.

^U (Ctrl-U) Erases the entire command.

^R (Ctrl-R) Redisplays the current command.

The notation ^X or Ctrl-X means press the key marked X while holding down the key
marked Ctrl or Control. X can be any letter A–Z, and also certain punctuation characters
such as underscore (_), backslash (\), circumflex (^), or right bracket (]).4 The Ctrl key

4See Table VII-1 on page 593 for a listing of all the control characters.

18 Running C-Kermit / Chapter 2

is used like the Shift key. Characters entered while holding down the Ctrl key are called
control characters. You can type the editing characters DEL and ^W repeatedly to delete
all the way back to the prompt. Certain control characters, including Tab, Return (Enter),
Delete (Backspace), and Escape, have their own keys and are entered without using the
Ctrl key.

C-Kermit tries to keep your command line looking right: deleted characters, words, and
lines ‘‘disappear’’ but the prompt stays where it was. But there are ways for the command
line to become jumbled (for example, if someone sends you a message while you’re in the
middle of typing a command). That’s what Ctrl-R is for; it redisplays the prompt and the
current command, properly formatted:

C-Kermit>set fi
<BEEP>From olaf: What do you want on your pizza?
le type^R
C-Kermit>set file type

Kermit does not support any form of command editing that is not described above: arrow
keys, editing keys, or the mouse, because those methods are not portable.

Keyword and Filename Completion
C-Kermit has a special reinforcement mechanism to help you make sure you have not ab-
breviated a keyword too much, or that the abbreviation you have used really stands for
what you think it does, or to finish typing a filename for you.

This mechanism is called completion, and you invoke it by pressing the Esc (Escape) or
Tab key, or Ctrl-I, whichever is more convenient for you. If the keyword or filename
characters you have typed so far are sufficient, Kermit fills in the rest of the characters for
you and positions you for the next field of the command:

C-Kermit>sen<ESC>d oofa.t<ESC>xt

If not, Kermit beeps and waits for you to supply more characters:

C-Kermit>se<ESC><BEEP>n<ESC>d oofa.<ESC><BEEP>t<ESC>xt

In these examples, <ESC> signifies the Escape (Esc) key, and <BEEP> shows where you
would hear a beep. If you are deaf, you can still tell when a beep occurs: whenever you
press <ESC> or Tab and the cursor does not move. Some versions of Kermit, such as
MS-DOS Kermit and Kermit 95, also offer a ‘‘visual bell’’, which flashes the screen in-
stead of making a sound.

When you use the completion feature in a filename, C-Kermit completes as much of the
name as it can, and if more characters are required from you after that, C-Kermit beeps
and waits for you to supply them. For example, suppose you have two files, oofa.txt
and oofa.new, and they are the only two files whose names start with the letter o. If

Entering Interactive Commands 19

you type an o and then an Esc or Tab, Kermit supplies the characters ‘‘ofa.’’, beeps, and
then waits for you to finish the filename:

C-Kermit>send o<ESC>ofa.<BEEP>t<ESC>xt

The completion feature also can be used to fill in default values for fields that have them.
If you press the Esc or Tab key at the beginning of a field, before typing any other charac-
ters, and that field has a default value, Kermit fills it in:

C-Kermit>set block-check <ESC> 3

Here Kermit supplies the default block-check value, namely 3. If there is no default value
for a field, Kermit beeps:

C-Kermit>send <ESC><BEEP>

When the final field of a command has a default value, you can enter the command with-
out specifying a value:

C-Kermit>set block-check

This sets the block-check parameter to its default value of 3.

Including Special Characters in Commands
Characters like question mark and Ctrl-U have special meanings within C-Kermit com-
mands. What if you need to include them as part of the command itself without triggering
their usual functions (help and erase)? You can enter such a character into a C-Kermit
command literally by preceding it with the backslash character (\), for example:

\?

enters a question mark. To enter a backslash literally, type two of them:

\\

Certain characters, however, such as Ctrl-C or Ctrl-Z (depending on your computer’s
operating system), cannot be quoted this way because they send a signal to the operating
system to interrupt Kermit.

You can include problem characters in Kermit commands by using a backslash followed
by the character’s numeric ASCII code value; for example \3 for Ctrl-C, \26 for Ctrl-Z,
\10 for linefeed, or \13 for carriage return (Table VII-1 on page 593 lists these codes).
Example:

C-Kermit>echo Hello!\13\10How are you\?
Hello!
How are you?
C-Kermit>

20 Running C-Kermit / Chapter 2

A common use for backslash is to include ‘‘?’’ as a wildcard5 in a file specification:

C-Kermit>send oofa.? File(s) to send, one of the following:
oofa.c oofa.h oofa.txt oofa.hlp

C-Kermit>send oofa.\?

Without the backslash, the question mark gives you a list of filenames that match what
you have typed so far. With the backslash, it is used to match any single character, so the
SEND command in the example sends the files oofa.c and oofa.h.

In Windows, OS/2, and Atari GEMDOS the directory separator is backslash, the same as
Kermit’s quoting character. On these systems, Kermit goes to unbelievable lengths to
figure out whether a backslash in a filename is a directory separator or the quoting charac-
ter, and it usually guesses right.

However, some situations are intrinsically ambiguous. For example, suppose you have
defined a variable ‘‘\%a’’ (explained in Chapter 17) to be the name of some directory, and
you also have an actual top-level directory called %a. What should the following com-
mand do?

[C:\FILES] K-95>send \%a\oofa.txt

In such cases, you can force Kermit to treat backslashes as part of the filename by dou-
bling them:

[C:\FILES] K-95> send c:\\%a\\oofa.txt
[C:\FILES] K-95> send c:\\dos\\autoexec.bat

This is also necessary when using C-Kermit to transfer files with MS-DOS Kermit. Ker-
mit 95, however, also recognizes forward slash (/) as a directory separator in most con-
texts:

C-Kermit>get c:/%a/oofa.txt
C-Kermit>get c:/dos/autoexec.bat

Spaces in Commands and Filenames
As noted, a Kermit command is a line composed of a series of words from left to right,
each in its own position. Words are separated by ‘‘whitespace;’’ that is, one or more
spaces or tabs. For example, in the command:

rename oofa.txt oofa.old

the first word is ‘‘rename’’, the second is ‘‘oofa.txt’’ and the third is ‘‘oofa.old’’. As
you can see, punctuation marks do not separate words.

5A ‘‘wildcard’’ is a character used in a filename to indicate a group of files. Wildcard characters differ
from one operating system to another. See Table 9-1 on page 195.

Entering Interactive Commands 21

Now suppose you want to rename a file such as ‘‘oofa txt’’, whose name contains a
space. If you try to use the RENAME command in the normal way:

C-Kermit> rename oofa ?No files match - oofa
C-Kermit>

As soon as you type the space after ‘‘oofa’’ C-Kermit thinks you have entered the first
filename, and so looks it up. But you don’t have a file called ‘‘oofa’’ by itself, so this
results in an error.

To force multiple words together into a single word, use doublequotes or braces (the curly
ones, not brackets or parentheses):

C-Kermit> rename "oofa txt" "My new name has even more words"
C-Kermit> rename {My new name has even more words} oofa.txt
C-Kermit>

Kermit strips leading and trailing whitespace from words and text strings as a normal part
of command processing. Use doublequotes or braces to force the whitespace to be kept:

C-Kermit> echo I am indented.
I am indented.
C-Kermit> echo { I am indented.}
I am indented.

C-Kermit> echo " I am indented."
I am indented.

C-Kermit> echo {{ I am indented.}}
{ I am indented.}
C-Kermit> rename oofa.txt " oofa.txt"

The final command creates a file whose name starts with a space (if your operating system
allows it), making it difficult or impossible for most system commands or applications
(other than C-Kermit) to access. But of course, you can use C-Kermit to fix its name:

C-Kermit> rename " oofa.txt" oofa.txt

Finally, braces (but not doublequotes) are used in script programs for grouping lists of
commands in a way described in Chapter 18. This feature might surprise you if you
stumble upon it accidentally at this stage. If a command ends with an opening brace ({),
this tells Kermit to keep reading more lines until it comes to a line that starts with a
closing brace (}):

C-Kermit> echo {
one
two
three
}
one, two, three
C-Kermit>

22 Running C-Kermit / Chapter 2

Interrupting a Command
After you have entered a C-Kermit command by pressing the Return or Enter key, the
command begins to execute. You can interrupt most commands during their execution by
typing Ctrl-C (hold down the Ctrl key and press the C key).6 This returns you to the
C-Kermit prompt immediately, so you can enter another command. Example:

C-Kermit>type moon.doc
No celestial body has required as much labor for the study of its
motion as the moon. Since Clairault (1747), who indicated a way
of constructing a theory containing all the properties of ^C...
C-Kermit>

Note: ^C indicates a real Control-C character, not a circumflex followed by the letter C.

Recalling Commands
C-Kermit saves your commands in a command recall (history) buffer, which, by default,
holds your last 10 commands. To recall your previous command, type Ctrl-B (that is, hold
down the Control or Ctrl key and press the B or b key) or Ctrl-P. Type Ctrl-B (or Ctrl-P)
again to recall the command before that, and so on. If you try to go back too far,
C-Kermit beeps at you. (Note: Ctrl-P should not be used in OS/2, which intercepts it as a
printer command.)

Each time you recall a command, it appears before you as if you had typed it up to, but not
including, the Enter (Return) that actually causes it to execute. If you want to execute the
command, press the Enter (Return) key. If you want to edit it first, use the editing and
other keys, and then press Enter.

When you are viewing recalled commands, you can also go forward in the command
recall buffer by typing Ctrl-N. This is handy in case you typed too many Ctrl-Bs and went
back too far.

Use the SET COMMAND RECALL-BUFFER-SIZE command to change the size of the command
history buffer:

C-Kermit> set command recall 0 (Disable command recall)
C-Kermit> set command recall 100 (Make the buffer bigger)
C-Kermit> set command recall 1000 (Make it bigger still)

You can also use the SAVE COMMAND HISTORY command to write out your saved com-
mands to a file.

6The interrupt character might be something other than Ctrl-C; for example, in some versions of UNIX it
is your ‘‘intr’’ character, which is often Delete or Rubout, in which case you can change it with a UNIX
‘‘stty’’ command, or else use it as the interrupt character and use Ctrl-H to erase characters in C-Kermit
commands.

Entering Interactive Commands 23

Table 2-1 Special Characters in C-Kermit Commands

Character Function

<SPACE> (the space bar) Separates fields.

? (question mark) Requests a menu or help message for the current field.

- (dash) At the end of a line only (after removal of any trailing comment
and/or whitespace): this command is continued on the next line.

\ (backslash) Introduces a backslash code or quotes the following character.
Backslash codes are summarized in Table 2-4 on page 55.

; (semicolon) At the beginning of a command, or within a command
preceded by at least one space or tab: introduces a comment.

(number sign) Same as semicolon: introduces a comment.

, (comma) Separates commands in macro definitions, function arguments.

" (doublequote) Used around fields that contain spaces.

{} (braces) Like doublequote and also used for grouping commands.

<ESC> (The Esc or Escape key, or Ctrl-[) Attempt to complete the current field.

<TAB> (or Ctrl-I) Within a field, same as <ESC>. Between fields, same as
<SPACE> (but only in command files).

 (or Backspace, or Rubout, or Ctrl-H) Deletes the rightmost character from
the command.

Ctrl-H Same as .

Ctrl-I Same as <TAB>.

Ctrl-W Deletes the rightmost word.

Ctrl-U Deletes the entire command, back to the prompt.

Ctrl-R Redisplays the command.

Ctrl-B Recalls previous command. Also, Ctrl-P or (K95 only), gray up-arrow.

Ctrl-N Next command. Also (K95 only) gray down-arrow.

Ctrl-C Interrupts a command in execution, returns to the prompt.

Ctrl-S Stops screen output, if Xon/Xoff flow control is in effect.

Ctrl-Q Resumes screen output, if Xon/Xoff flow control is in effect.

Ctrl-Z (or whatever your suspend character is) Suspends Kermit so it can be
continued later (UNIX only). See UNIX appendix.

Ctrl-Y VMS interruption character. See VMS appendix.

<RETURN> (Carriage Return, Return, Enter, Ctrl-M) Terminates and enters the com-
mand. Also written as <CR>.

<LINEFEED> (Ctrl-J) Same as <RETURN>. Also written as <LF>.

<FORMFEED> (Ctrl-L) Like <RETURN> but also clears the screen. Also written as <FF>.

24 Running C-Kermit / Chapter 2

Command Files

If you issue the same sequence of commands to Kermit every time you run it, that can add
up to a lot of typing over the years. Better to enter the commands just once and let the
computer remember them for you. Use your favorite plain-text editor to record the com-
mands in a Kermit command file and you won’t ever have to type them again.

Kermit commands are lines composed of plain text characters. The text editor used to
create or modify Kermit commands should be set up to handle these simple, unadorned
lines of text. Editors like EDIT or NotePad can be used in Windows. ED, EX, VI, and
EMACS are appropriate for UNIX. EDT, EVE, and EMACS can be used in VMS. SED or
SPEED can be used in AOS/VS. Similar editors can be used in other operating systems. If
you use a word processor or desktop publishing software that is concerned with fonts,
boldface, italics, underlining, and similar effects, please be sure to save (or ‘‘export’’) your
Kermit command file in plain-text (ASCII) format, and don’t let it ‘‘flow’’ lines together,
hyphenate words, or make any other unwanted embellishments.

To execute commands from a file, use the TAKE command:

TAKE filename
Tells Kermit to take its commands from the specified file. C-Kermit reads and ex-
ecutes the commands in order, from top to bottom, until the end of the file is encoun-
tered or until a command is executed that tells C-Kermit to stop, change direction, or
to execute another command file. In this example, C-Kermit is told to execute com-
mands from a file called webupdate.ksc:

C-Kermit>take webupdate.ksc

If Kermit can’t find the command file, and the filename that you gave was not ‘‘absolute’’
— that is, it did not include a full path (device and/or directory information) — Kermit
looks in your home directory or your Kermit software installation area, depending on the
operating system. For example, Kermit 95 looks in its SCRIPTS subdirectory; UNIX or
VMS C-Kermit looks in your home (login) directory.

Kermit command files can have any name at all. A file type of .ksc (‘‘Kermit SCript’’)
is recommended for easy identification, especially in Windows, where the KSC filetype is
associated with K95.EXE. Execution of a command file can be interrupted by typing
Control-C at any time during its execution.

The following sections describe features commonly used in command files, but you can
also use them interactively at the program prompt.

Command Files 25

Adding Comments to Commands
Kermit’s commands can be annotated with comments. A full-line comment can begin
with the word COMMENT or the single character semicolon (;) or number sign (#):

COMMENT - This is a C-Kermit command file.
; I copied it from "Using C-Kermit".
And I put lots of comments in it.

Commands can also have trailing comments. These are introduced by a semicolon or
number-sign preceded by at least one space or tab:

echo Hi there! ; Print a friendly greeting.
space ; Let’s see how much disk space is free.
log transactions ; I always want to keep a log of what I do.

Because ; and # are recognized as comment indicators only at the beginning of a line or
when preceded by whitespace, you can include these characters literally in commands by
preceding them with printing characters:

get oofa.txt;3 ; Fetch file from VMS Kermit server.
remote host lpr -#4 oofa.txt # Print 4 copies of a remote file.

In this example, oofa.txt;3 is a VMS filename, and lpr -#4 is the UNIX command
to print 4 copies of a file.

If you need to include ; or # preceded by a space as part of a command, then prefix the ;
or # with backslash or, in certain contexts, use braces or doublequotes:

C-Kermit>echo Text ; with a comment
Text
C-Kermit>echo Text \; with a comment
Text ; with a comment
C-Kermit>echo {Text ; with a comment}
Text ; with a comment
C-Kermit>echo "Text ; with a comment"
Text ; with a comment

Continuing a Command
Kermit commands are by nature one line long. Some Kermit commands, however, can be
quite lengthy — wider and sometimes longer than your screen. There is nothing to
prevent you from typing past the end of your screen, and if your terminal emulator or con-
sole driver ‘‘wraps’’ your lines for you, you can even see what you’re doing. But the com-
pulsive among us may wish to break long commands at nice places, so as to have a
neat-looking screen or readable and printable command files. C-Kermit commands can be
continued by ending them with a dash (-) as the last character in the line:

C-Kermit>set -
file -
type -
binary
C-Kermit>

26 Running C-Kermit / Chapter 2

Note that the prompt doesn’t come back until you (a) finish entering the command, (b) re-
quest a menu with ?, or (c) make a mistake. In command files only (not at the prompt),
you may add trailing comments after the continuation character:

set - ; This is a SET command
file - ; related to files
type - ; in particular the file type
binary ; which is to be binary.

The command editing characters , Ctrl-W, and Ctrl-U may be used with continued
commands, but their effects are shown only on the current line. Use Ctrl-R to show the
overall effect when you delete back into previous lines. If you need to enter a command
that actually ends in a dash, you can quote it with backslash, encode the final dash as \45
(the ASCII code for dash), or you can use doublequotes or braces:

C-Kermit> echo Ends in dash \45
C-Kermit> echo Ends in dash \-
C-Kermit> echo "Ends in dash -"
C-Kermit> echo {Ends in dash -}

Describing Kermit’s Commands

Before we start explaining C-Kermit’s commands, we need some notational conventions
for describing their syntax, or form. We use special punctuation and typography to show
what fields are required, what fields are optional, and what type of data goes into a field,
as in this typical command syntax description:

SET { RECEIVE, SEND } END-OF-PACKET [number]

This example illustrates the use of boldface to represent keywords literally, italic (slanted)
braces to enclose a list of alternatives, italic square brackets to show an optional field, and
a word in italics to show a substitutable parameter.

Here is a complete listing of the notation used in this book:

WORD
An uppercase word in BOLDFACE means that the word should be typed literally. If
it is a keyword (and it usually is), letters can be omitted from the end as long as what
remains is enough to distinguish the word you have abbreviated from any other word
that is valid in the same context. Letters may be typed in either lowercase or upper-
case. For example, in:

SET FILE TYPE BINARY

all four words are keywords, and the command can be entered as ‘‘SET FILE TYPE

BINARY’’, ‘‘set file type binary’’, ‘‘Set File Type Binary’’, and so on, and abbreviated
as ‘‘set fil typ bin’’, ‘‘set fi ty bi’’, or ‘‘set fi ty b’’. (Of course, many other combina-
tions are possible.)

Describing Kermit’s Commands 27

word
A word in italics is a parameter, which is to be replaced by an actual value of your
choice. The word in italics indicates what sort of quantity is expected: a number, a
filename, a directory-name, a variable-name, and so forth. For example, in:

SET WINDOW number

the word number is to be replaced by an actual number, like 4 or 10.

underlining
In examples, underlined characters, words, or phrases show text that you should type.
The text should normally be terminated by pressing the Return or Enter key at the
point where the underlining ends.

[anything=value]
Any word enclosed in italicized (slanted) square brackets is optional, meaning you
don’t have to include it in the command. If you see square brackets that are not
italicized, they should be taken as literal brackets that you should type. The =value
portion, if any, shows the value that is used if you don’t specify one for this field, that
is, the default value. Example:

SET BLOCK-CHECK [number=3]

This means that the SET BLOCK-CHECK command takes an optional number. If you
enter the command without specifying a number, then 3 is used:

C-Kermit>set block-check 2
C-Kermit>set block-check 1
C-Kermit>set block-check

{ word1, word2, word3 }
Within italicized curly braces, a list of items separated by commas means that you
should pick one of the items from the list. This notation is usually used for a list of
keywords:

SET FILE TYPE { TEXT, BINARY }

This shows that the possible file types are TEXT and BINARY. If you see braces that are
not italic, { such as the ones around this phrase }, they are actually part of the com-
mand.

...

An ellipsis (three dots) means that the preceding item can be repeated. Example:

MSEND filespec [filespec [filespec [...]]]

or, more compactly:

MSEND filespec ...

This means the MSEND (multiple send) command can be given with one or more file-
names separated by spaces.

28 Running C-Kermit / Chapter 2

The most common C-Kermit command parameters are:

number
A decimal (base 10) number, like 31 or 9024. You also can enter small positive num-
bers (0–255) in octal (base 8) or hexadecimal (base 16) using backslash notation. If
you don’t know what octal or hexadecimal notation is, skip the rest of this paragraph.
Use \onnn for an octal number; that is, backslash followed by the letter o (upper- or
lowercase) followed by one to three octal digits (which are 0 through 7). For a
hexadecimal number, use \xnn; that is, backslash followed by the letter X (upper or
lower), followed by exactly two hexadecimal digits, which are 0 through 9 and A
through F. The letters A–F can be in uppercase or lowercase. Example:

SET RETRY number

means you can type commands such as:

C-Kermit>set retry 13 (A decimal number)
C-Kermit>set retry \13 (A decimal number)
C-Kermit>set retry \d13 (A decimal number)
C-Kermit>set retry \o15 (An octal number)
C-Kermit>set retry \x0D (A hexadecimal number)

The allowable range for the number depends on the command. If you enter a number
that is out of range, an error message is given and the command has no effect:

C-Kermit>set window 793
?Sorry, 32 is the maximum
C-Kermit>

In most contexts where a number is expected, you can also enter an arithmetic expres-
sion, provided it does not contain any spaces:

C-Kermit>set window (10+10)/4

More about expressions in Chapter 18.

control-character
Whenever you see this in a command syntax description, it means you can enter a con-
trol character in any of several ways. First, you can enter its ASCII code value (listed
Table VII-2 on page 594) as a number in any of the formats listed above. The value
must be between 0 and 31, or else 127 (decimal). You can also enter most (but not all)
control characters literally if you precede them with a backslash (\). Finally, you can
enter them in circumflex notation; for example, ^C (circumflex followed by the letter
C) stands for Control-C (ASCII code 3). The following examples all select Control-X
(ASCII code 24) as the CONNECT-mode escape character (explained in Chapter 8):

C-Kermit>set escape 24 (As a decimal number)
C-Kermit>set escape \24 (As a decimal number)
C-Kermit>set escape \o30 (As an octal number)
C-Kermit>set escape \x18 (As a hexadecimal number)
C-Kermit>set escape ^X (In circumflex notation)
C-Kermit>set escape \Ctrl-X (Literally after backslash)

Describing Kermit’s Commands 29

hh:mm:ss
A time of day in 24-hour clock notation. hh is the hour, 0 through 23; mm are the
minutes past the hour, 0 through 59; ss the seconds past the minute, 0 through 59. If
the seconds or minutes are omitted, 0 is used. Example:

C-Kermit>pause 23:23:00 (Pause until 11:23 pm)

You can also use "AM" and "PM" (case doesn’t matter) with 12-hour clock times. For
example, 10:28:00pm is the same as 22:28:00.

date
A calendar date in any of the following formats:

2001-February-8
2001-Feb-8
{2001 Feb 8}
"2001 Feb 8"
2001/Feb/8
2001_Feb_8
2001-2-8

2001-02-08
20010208
8-Feb-2001
08-Feb-2001
12/25/2001
25/12/2001

The rules are: (1) The year must have all its digits; (2) If the year comes first, the
second field is the month; (3) The day, month, and year may be separated by spaces, /,
-, or underscore; (4) The month may be numeric (1 = January) or spelled out or ab-
breviated in English; (5) If the date contains spaces, it must be enclosed in double-
quotes or braces. The last two examples show that when the year comes last, and the
month is given numerically, the order of the day and month doesn’t matter if the day is
13 or greater (mm/dd/yyyy is commonly used in the USA, whereas dd/mm/yyyy is the
norm in Europe). However, 08/02/2001 is ambiguous and therefore not accepted. The
following symbolic dates are also accepted: TODAY, YESTERDAY, TOMORROW, and +
or - number DAYS, WEEKS, MONTHS, or YEARS (relative to the current date). Symbolic
names are keywords, and can be abbreviated according to the normal rules.

date-time
A date and/or a time. If a both are included, they must be separated by a space, under-
score, slash, or dash. If the date-time includes any spaces, it must be enclosed in
doublequotes or braces. If the date is omitted, the current date is used; if the time is
omitted the current time used. Examples:

"8 Feb 2001 10:28:01"
{8 Feb 2001 10:28:01}
8_Feb_2001_10:28:01
8-Feb-2001/10:28:01
2001/02/08/10:28:01
2001/02/08_10:28:01
2001/02/08_10:28:01am
2001/02/08_10:28:01pm
2001/02/08_10:28pm
2001/02/08_10pm

10:00:00pm
10:00pm
10pm
22
"yesterday 10:28:01"
{tomorrow 10:28:01}
"+ 10 years 10:28:01"
"20010208 10:28:01"
20010208_10:28:01

30 Running C-Kermit / Chapter 2

pattern
A sequence of characters that may include special metacharacters. A
pattern-matching algorithm compares the pattern against an actual character string.
Kermit’s pattern syntax is explained on page 33, later in this chapter.

wildcard
A pattern that applies to filenames. Wildcard syntax depends on the operating system.
In UNIX, Windows, and OS/2, Kermit’s wildcard syntax is exactly the same as its
pattern syntax. On other platforms such as VMS and AOS/VS, the native wildcard
syntax is used, as listed in Table 9-1 on page 195.

filename
The name of a file on the computer where you are running C-Kermit. The name can,
but need not, include device and/or directory information. Upper- and lowercase let-
ters are treated differently in UNIX, VOS, and OS-9 filenames, but case does not mat-
ter in VMS, Windows, OS/2, AOS/VS, and most other operating systems. The file-
name may not contain wildcard (pattern-matching) characters. For example:

TAKE filename

means that the TAKE command needs the name of a file on your computer:

C-Kermit>take oofa.* (Wildcard Not allowed)
C-Kermit>take oofa.ksc (A single file)
C-Kermit>take $disk2:[olga]oofa.ksc (A VMS file)
C-Kermit>take hd80:test:folder:oofa.ksc (A Macintosh file)
C-Kermit>take /usr/ivan/kermit/oofa.ksc (A UNIX file)
C-Kermit>take b:/usr/ivan/kermit/oofa.ksc (An Amiga file)
C-Kermit>take f:\olaf\kermit\oofa.ksc (OS/2 or Windows file)
C-Kermit>take :udd:olga:sunday.ksc (AOS/VS files)

Note how file names can also include device, directory, or other identifying fields
meaningful to your operating system. Again, ksc stands for Kermit Script File, which
is the preferred filetype (extension) for Kermit command files.

filespec
A file specification applying to the computer where C-Kermit is running. Just like a
filename, except it can (but need not) contain wildcard characters. Example:

SEND filespec

means you can give commands like:

C-Kermit>send oofa.txt (A single file)
C-Kermit>send oofa.* (A group of files)
C-Kermit>send *.* (A big group of files)
C-Kermit>send $disk2:[olga]*.ksc (VMS files)
C-Kermit>send :udd:eugenia:ckd+ (AOS/VS files)
C-Kermit>send /usr/ivan/kermit/*.ini (UNIX, OS-9)
C-Kermit>send f:\olaf\kermit*.* (OS/2 or Windows files)
C-Kermit>send %ssi#m1_do3>usr>david>*.c (Stratus VOS files)

Describing Kermit’s Commands 31

remote-filename
The name of a file on another computer, in whatever format the other computer re-
quires. If it contains any backslashes, such as directory separators, they must be
doubled. It should not contain wildcard characters. Example:

REMOTE TYPE remote-filename

lets us give commands like:

C-Kermit>remote type oofa txt a (A VM/CMS file)
C-Kermit>remote type f:\\olaf\\oofa.txt (DOS or Windows)
C-Kermit>remote type $disk2:[olaf]oofa.txt;17 (VMS)
C-Kermit>remote type :udd:olaf:oofa.txt (AOS/VS)
C-Kermit>remote type ~olaf/oofa.txt (UNIX or OS-9)
C-Kermit>remote type diska:/olaf/oofa.txt (Amiga)

remote-filespec
Just like remote-filename, but wildcard characters may (but need not) be included.
Wildcards, if used, should be in a format acceptable to the other computer. Example:

GET remote-filespec

allows:

C-Kermit>get * exec (Files from VM/CMS)
C-Kermit>get f:\\olaf\\oofa.* (From DOS)
C-Kermit>get $disk2:[olaf]oofa.*;0 (From VMS)
C-Kermit>remote type :udd:olaf:oofa.- (From AOS/VS)

directory-name
The name of a directory on the computer where C-Kermit is running. Upper- and
lowercase letters are distinct in UNIX and OS-9 directory names, but case does not
matter in most other operating systems. Example:

CD [directory-name]

allows:

C-Kermit>cd (Everywhere)
C-Kermit>cd /usr/olga/ (UNIX)
C-Kermit>cd c:\usr\olga (Windows or OS/2)
C-Kermit>cd sys$help: (VMS)
C-Kermit>cd :udd:olga (AOS/VS)

remote-directory-name
The name of a directory on another computer, in whatever form the other computer re-
quires. Backslashes must be doubled. Example:

REMOTE CD [remote-directory-name]

allows:

C-Kermit>remote cd (Everywhere)
C-Kermit>remote cd c1 (VM/CMS)
C-Kermit>remote cd f:\\public (Windows, OS/2, or MS-DOS)

32 Running C-Kermit / Chapter 2

command
Usually, a shell or system command on the computer where C-Kermit is running, such
as you would type to the UNIX shell, to DCL in VMS, or to the AOS/VS CLI. Al-
phabetic case matters in UNIX and OS-9, but not in most other operating systems.
Example:

RUN command

allows:

C-Kermit>run diff oofa.old oofa.new (A UNIX command)
C-Kermit>run purge/log oofa.* (A VMS command)
C-Kermit>run more < ckermit.ini (A Windows command)
C-Kermit>run help/v copy (An AOS/VS command)
C-Kermit>run status (An Amiga command)
C-Kermit>run deldir test (An OS-9 command)

In other contexts, command can stand for a Kermit command.

remote-command
A command or program for another computer, in the form required by the other com-
puter. Example:

REMOTE HOST remote-command

allows:

C-Kermit>remote host lf oofa * (date (A command for VM/CMS)
C-Kermit>remote host mkdir hw2 (A command for UNIX)

text
Any old text. Zero or more words, everything you type up to the end of the command.
As in all C-Kermit commands, trailing comments are ignored. Enclose in braces or
doublequotes if leading or trailing spaces are to be preserved or if the text ends with a
hyphen that should not be taken as a continuation character. Example:

ECHO text

allows:

C-Kermit>echo (No words)
(A blank line appears)

C-Kermit>echo Hi ; This is a comment (One word, with comment)
Hi
C-Kermit>echo " Indented text" (Several words, indented)
Indented text

C-Kermit>

device
The name of a device on your computer. For example:

SET LINE device

allows /dev/cua (UNIX), TXA0: (VMS), and so on.

Pattern Syntax 33

Pattern Syntax

A pattern is a kind of template, a string of characters in which certain metacharacters
stand for classes of characters rather than themselves. The most common use of patterns
is for selecting groups of files, for example *.txt selects all files whose names end with
.txt. C-Kermit’s patterns include the following metacharacters:

* Matches any sequence of zero or more characters. For example: "ck*.c" matches all
files whose names start with "ck" and end with ".c", including "ck.c".

? Matches any single character. For example, "ck?.c" matches all files whose names
are exactly 5 characters long and start with "ck" and end with ".c". When typing
commands at the prompt, you must precede any question mark to be used for matching
by a backslash (\) to override the normal function of question mark, which is provid-
ing menus and file lists.

[abc]

Square brackets enclosing a list of characters matches any single character in the list.
Example: ckuusr.[ch] matches ckuusr.c and ckuusr.h.

[a-z]

Square brackets enclosing a range of characters; the hyphen separates the low and high
elements of the range. For example, [a-z] matches any ASCII lowercase letter from
a to z.

[acdm-z]

Lists and ranges may be combined. This example matches the letters a, c, d, or m
through z.

{one,two,three}

Braces enclose a list of strings to be matched. For example:
ck{ufio,vcon,cmai}.c matches ckufio.c, ckvcon.c, or ckcmai.c. The
strings may themselves contain metacharacters, bracket lists, or indeed, other lists of
strings, but (when matching filenames) they may not contain directory separators.

Thus, the metacharacters are:

* ? [{

Within braces only, comma (,) is a metacharacter. And within square brackets only, dash
(-) is a metacharacter. To include a metacharacter in a pattern literally, precede it with a
backslash (\).

Examples:

send a*b ; all files whose names start with a and end with b.
send a?b ; Ditto, but the name must be exactly 3 chars long.

34 Running C-Kermit / Chapter 2

send a[a-z]b ; Ditto, but 2nd char must be a lowercase letter.
send a[x\-z]b ; Ditto, except the second char must be x, -, or y.
send a[ghi]b ; Ditto, except the second char must be g, h, or i.
send a[?*]b ; Ditto, except the second char must be ? or *.
send a[\?*]b ; Same as previous.
send *?[a-z]* ; All files with names containing at least one char

; that is followed by a lowercase letter.

Or, more practically:

send ck[cuw]*.[cwh] ; Send the UNIX C-Kermit source files.

If the entire pattern is a {stringlist}, you must enclose it in doublequotes (or two pairs of
braces), since the SEND command strips the outer brace pair, because of the "enclose in
braces if the filename contains spaces" rule). So to refer to the C-Kermit sources files and
makefile all in one filespec:

"{makefile,ck[cuw]*.[cwh]}" or {{makefile,ck[cuw]*.[cwh]}}

If the makefile is called ckuker.mak:

ck[cuw]*.{[cwh],mak}

Double braces are not needed here since the pattern does not both begin and end with a
brace.

To add in all the C-Kermit text files:

ck[cuw]*.{[cwh],mak,txt}

All of these features can be used anywhere you would type a filename that is allowed to
contain wildcards.

By the way, patterns such as these are sometimes erroneously referred to as regular ex-
pressions, but they are not quite the same. In a true regular expression ‘‘*’’ means ‘‘zero
or more repetitions of the previous item,’’ so (for example), ‘‘([0-9]*)’’ would match zero
or more digits in parentheses. In Kermit (and in most shells), this matches one digit fol-
lowed by zero or more characters, within parentheses.

Although you can’t match any sequence of digits (or letters, etc), you can match (say) 1, 2,
or 3 of them in row. For example, the following pattern matches Kermit or EMACS
backup files (with backup numbers from 1 to 999):

*.~{[1-9],[1-9][0-9],[1-9][0-9][0-9]}~

There is presently no NOT operator, and therefore no way to match any character or string
except the one(s) given. But creative circumlocutions like the one above can be used in
such situations.

Command Switches 35

Command Switches

As of version 7.0, C-Kermit’s command parser supports a new type of field, called a
"switch". Switches, which are always optional, let you modify the action of a command.
They have two distinct advantages: their effect is local to the command with which they
are given, and they can be combined in creative ways to achieve novel effects. The ad-
dition of switches to Kermit’s syntax arsenal keeps the proliferation of commands under
control and their names more sensible. To illustrate, before the addition of switches, dif-
ferent forms of the SEND command needed different names: BSEND (send in binary mode),
CSEND (send the output of a command), PSEND (send part of a file), MSEND (send multiple
files), RESEND (resume an interrupted transfer from the point of failure), and so on. These
are cryptic and they can’t be combined, so this approach is a dead end. Switches offer a
mechanism for extending commands in a clear and uniform manner, one that allows the
user (rather than requiring a programmer) to create new combinations as needed.

General Switch Syntax
A switch is a keyword beginning with a ‘‘forward slash’’ (/). If it takes a value, then the
value is appended to it (with no intervening spaces), separated by a colon (:) or equal sign
(=). Depending on the switch, the value may be a number, a keyword, a filename, a
date/time, etc. Examples:

send oofa.txt ; No switches
send /binary oofa.zip ; A switch with no value
send /protocol:zmodem oofa.zip ; A switch with value (:)
send /protocol=zmodem oofa.zip ; A switch with value (=)
send /text /delete /as-name:x.x oofa.txt ; Several switches

Like other command fields, switches are separated from other fields, and from each other,
by whitespace, as shown in the examples just above. You can not put them together:

send/text/delete/as-name:x.x oofa.txt

(as you might do in VMS or DOS, or as we might once have done in TOPS-10 or
TOPS0-20, or PIP). This is primarily due to ambiguity between "/" as switch introducer
versus "/" as UNIX directory separator; e.g. in:

send /delete/as-name:foo/text oofa.txt

Does "foo/text" mean the filename is "foo" and the transfer is to be in text mode, or
does it mean the filename is "foo/text"? Therefore (and for consistency with the
general rules about words and fields) whitespace is required between switches to resolve
the ambiguity. A switch with a value, however, is still a special case: it is a ‘‘word’’ (since
it contains no spaces), but the switch name and switch value are distinct ‘‘subwords,’’
separated by the colon or equal sign. Thus, if the value contains spaces, then the value —
and not the entire switch — is enclosed in doublequotes or braces:

send /after:"8 feb 2001 10:28:00" *.txt

36 Running C-Kermit / Chapter 2

In general, if a switch can take a value, but you omit it, then either a reasonable default
value is supplied, or an error message is printed:

send /print:-Plaserwriter oofa.txt ; Value is print options
send /print oofa.txt ; Value omitted, OK
send /mail:kermit@columbia.edu oofa.txt ; Value is address
send /mail oofa.txt ; Value omitted, not OK
?Address required

Context-sensitive help (?) and completion (Esc or Tab) are available in the customary
manner:

C-Kermit> send /pr? Switch, one of the following:
/print /protocol:

C-Kermit> send /pro<ESC>tocol:? File-transfer protocol,
one of the following:
kermit xmodem ymodem ymodem-g zmodem

C-Kermit> send /protocol:k<TAB>ermit

If a switch takes a value and you use completion on it, and it is completable, a colon (:) is
printed at the end of its name to indicate this (an equal sign is printed in VMS for
familiarity, but colon and equal sign are both acceptable on all platforms). If the switch
does not take a value, a space is printed. If you type ? in a switch field, then switches that
take values are shown in the resulting menu with a trailing colon; those that don’t take
values are shown without one (as shown in the example below).

The fact that switches are optional and may be followed by other fields can complicate the
help feature just a bit. Consider the SEND command:

SEND [switches] filespec
Sends the specified file or files. Optional parameters such as text or binary mode can
be supplied as switches before the file specification.

If you type SEND and then question mark, Kermit lists switches, not filenames:

C-Kermit>send ? Filename, or switch, one of the following:
/after: /dotfiles /move-to: /protocol: /subject:
/array: /except: /nobackupfiles /quiet /text
/as-name: /filter: /nodotfiles /recover /transparent
/before: /filenames: /not-after: /recursive /type:
/binary /larger-than: /not-before: /rename-to:
/command /listfile: /pathnames: /smaller-than:
/delete /mail: /print: /starting-at:

C-Kermit>send

If you want a list of filenames instead of list of switches, you need to type something that
doesn’t start with "/" and that indicate the current or desired directory, e.g.:

C-Kermit>send ./? Filename, one of the following:
oofa.txt oofa.zip ...

C-Kermit>

In VMS, use constructions like "send []?".

Command Switches 37

Order and Effect of Switches
The order of switches does not matter (except where noted), but since they are evaluated
from left to right, if you give two switches with opposite effects, the rightmost one over-
rides any others to its left:

send /text /binary oofa.zip ; Sends oofa.zip in binary mode.

Like other command fields, switches have no effect whatsoever until the command is en-
tered (by pressing the Return or Enter key).

Switches affect only the command with which they are included; they do not have global
or side effects. Without getting too far ahead of ourselves, let’s try to illustrate what this
means. Suppose you want to send some ZIP files in binary mode, without any filename
transformations. Without switches:

C-Kermit> set file type binary
C-Kermit> set file names literal
C-Kermit> send *.zip

But now the global file type and names settings have been changed, and this can affect fu-
ture file-transfer commands, which might not be what you wanted. What’s worse, there’s
no (programmatic) way of knowing what the file type and name settings were before, and
therefore no way to restore them. But with switches:

C-Kermit> send /binary /filenames:literal oofa.zip

you can send the files with the desired options without disturbing global settings.

Distinguishing Switches from Other Fields
All switches are optional. A command that uses switches lets you give any number of
them, including none at all. Example:

send oofa.zip
send /binary oofa.zip
send /bin /delete oofa.zip
send /bin /as-name:mupeen.zip /quiet oofa.zip

But how does Kermit know when the first "non-switch" is given? It has been told to look
for both a switch and for something else, the data type of the next field (filename, number,
etc). In most cases, this works well. But conflicts are not impossible. Suppose, for ex-
ample, in UNIX there was a file named "text" in the top-level directory. The command to
send it would be:

send /text

But C-Kermit would think this was the ‘‘/text’’ switch. To resolve the conflict, use
braces:

send {/text}

or other circumlocutions such as "send //text", "send /./text", etc.

38 Running C-Kermit / Chapter 2

The opposite problem can occur if you give an illegal switch that happens to match a
directory name. For example:

send /f oofa.txt

There is no "/f" switch (there are several switches that begin with "/f", so "/f" is am-
biguous). Now suppose there is an "f" directory in the root directory; then this command
would be interpreted as:

Send all the files in the "/f" directory,
giving each one an as-name of "oofa.txt".

This could be a mistake, or it could be exactly what you intended; C-Kermit has no way of
telling the difference. To avoid situations like this, spell switches out in full until you are
comfortable enough with them to know the minimum abbreviation for each one. Hint: use
? and completion while typing switches to obtain the necessary feedback.

Standard File Selection Switches
The following switches are used on different file-oriented commands (such as SEND,
DIRECTORY, DELETE, PURGE) to refine the selection of files that match the given specifica-
tion.

/AFTER:date-time
Select only those files having a date-time later than the one given. See page 28 for
date-time formats. Synonym: /SINCE.

/NOT-AFTER:date-time
Select only those files having a date-time not later than (i.e. earlier or equal to) the one
given. Synonym: /NOT-SINCE.

/BEFORE:date-time
Select only those files having a date-time earlier than the one given. You can combine
date-time selectors to select files within a given date-time range.

/NOT-BEFORE:date-time
Select files having a date-time not earlier than (i.e. later or equal to) the one given.

/DOTFILES
UNIX and OS-9 only: The filespec is allowed to match files whose names start with
(dot) period. Normally these files are not shown.

/NODOTFILES
(UNIX and OS-9 only) Don’t show files whose names start with dot (period). This is
the opposite of /DOTFILES, and is the default. Note that when a directory name starts
with a period, the directory and (in recursive operations) all its subdirectories are
skipped.

Command Switches 39

/LARGER-THAN:number
Select only files larger than the given number of bytes.

/SMALLER-THAN:number
Select only files smaller than the given number of bytes. You can combine /LARGER:

and /SMALLER: to select files within a given size range.

/RECURSIVE
This means that the the command should search not only in the current (or given)
directory for files, but also in all the directories beneath that directory.

/TYPE:{BINARY,TEXT}
Select only files of the given type.

/EXCEPT:pattern
Specifies that any files whose names match the pattern, which can be a regular file-
name or a pattern, are not to be selected. Example:

send /except:*.log *.*

sends all files in the current directory except those with a filetype of ".log". Another:

send /except:*.~*~ *.*

sends all files except the ones that look like Kermit or EMACS backup files (such as
"oofa.txt.~17~") (of course you can also use the /NOBACKUP switch for this). If
the pattern contains any spaces, it must be enclosed in braces:

send /except:{Foo bar} *.*

The pattern can also be a list of up to eight patterns. In this case, the entire pattern
must be enclosed in braces, and each sub-pattern must also be enclosed in braces; this
eliminates the need for designating a separator character, which is likely to also be a
legal filename character on some platform or other, and therefore a source of con-
fusion. You may include spaces between the subpatterns but they are not necessary.
The following two commands are equivalent:

send /except:{{ck*.o} {ck*.c}} ck*.?
send /except:{{ck*.o}{ck*.c}} ck*.?

If a pattern is to include a literal brace character, precede it with "\". Also note the ap-
parent conflict of this list format and the string-list format used in string-matching pat-
terns. In case you want to include a wildcard string-list with braces on its outer ends
as an /EXCEPT: argument, do it like this:

send /except:{{{ckuusr.c,ckuus2.c,ckuus6.c}}} ckuus*.c

or like this:

send /except:"{{ckuusr.c,ckuus2.c,ckuus6.c}}" ckuus*.c

40 Running C-Kermit / Chapter 2

Display Switches
The following switches can be used with many commands. They govern how or whether
the command’s output is displayed:

/LIST
List (display) the results of the command. For example, DELETE /LIST means to print
the name of each file that is deleted. Synonyms: /LOG, /VERBOSE.

/QUIET
Don’t list (display) the results of the command; perform the command silently.
Synonym: /NOLIST.

/PAGE
When listing the command’s output, pause at the end of each screenful and give a
‘‘More?’’ prompt (in response to which you may type ‘‘y’’ or Space to continue, or
‘‘n’’ or ‘‘q’’ to quit).

/NOPAGE
When listing the command’s output, do not pause at the end of each screenful; scroll
all the output continuously, no matter how much.

/HEADING
When listing files or tables, print a heading at the top and a summary at the end.
/NOHEADING suppresses the heading and summary lines.

/SUMMARY
When used with commands that operate on files, this causes a summary to be printed
and the listing of the individual files to be suppressed.

Setting Preferences for Different Commands
Certain oft-used commands offer lots of switches because different people have different
requirements or preferences. Some people want to be able to delete files without having
to watch a list of the deleted files scroll past, while others want to be prompted for permis-
sion to delete each file. Different people prefer different directory-listing styles. And so
on. Such commands can be tailored with the SET OPTIONS command:

SET OPTIONS command [switch [switch [...]]]
Sets each switch as the default for the given command, replacing the ‘‘factory
default’’. Of course you can also override any defaults established by the SET OPTIONS

command by explicitly including the relevant switches in a command.

SHOW OPTIONS
Lists the commands that allows option-setting, and the options currently in effect, if
any, for each. Switches that have synonyms are shown under their primary name; for
example. /LOG and /VERBOSE are shown as /LIST.

Some Basic C-Kermit Commands 41

Commands for which options may be set include DIRECTORY, DELETE, PURGE, and TYPE.
Examples:

SET OPTIONS DIRECTORY /PAGE /NOBACKUP /HEADING /SORT:DATE /REVERSE
SET OPTIONS DELETE /LIST /NOHEADING /NOPAGE /NOASK /NODOTFILES
SET OPTIONS TYPE /PAGE

Not necessarily all of a command’s switches can be set as options. For example, file
selection switches, since these would normally be different for each command.

Put the desired SET OPTIONS commands in your C-Kermit customization file for each com-
mand whose default switches you want to change every time you run C-Kermit.

Some Basic C-Kermit Commands

You already know Kermit’s EXIT command. C-Kermit also includes some other com-
mands that you can experiment with right now, before you learn how to use the program
for data communication and file transfer. These commands give you access to file
management and other functions of your computer’s operating system. Use these com-
mands to practice the features you’ve read about in this chapter: question mark to get
help, completion, abbreviation, recall, correction, continuation, and comments. Within a
few minutes you should be comfortable with Kermit’s command style and an expert
navigator of Kermit commands.

CD [directory-name]
Changes your default directory (CD stands for Change Directory). If you specify a
directory name, it becomes your new default directory for all file-related Kermit com-
mands. The directory name can be fully specified or it can be relative to your current
directory. If the directory name contains spaces, you must enclose it in doublequotes
or braces. If you omit the directory name, most versions of C-Kermit put you back in
your login or home directory. Examples:

C-Kermit>cd $disk1:[olga.letters] (Fully specified, VMS)
C-Kermit>cd [.letters] (Relative directory, VMS)
C-Kermit>cd /usr/olga/letters (Fully specified, UNIX)
C-Kermit>cd :udd:olga:letters (Fully specified, AOS/VS)
C-Kermit>cd c:\olga\letters (Fully specified, Windows)
C-Kermit>cd "c:Program Files" (Contains a space, Windows)
C-Kermit>cd c:\\olga\\letters (Alternate form, Windows)
C-Kermit>cd c:/olga/letters (Alternate form, Windows)
C-Kermit>cd c:\\olga\\letters (Fully specified, Atari)
C-Kermit>cd c:/olga/letters (Fully specified, Amiga)
C-Kermit>cd ~olaf (User’s home directory, UNIX)
C-Kermit>cd letters (Relative directory)
C-Kermit>cd (Login (home) directory)

The CD command applies only within Kermit itself and any programs that Kermit
runs. When you EXIT from Kermit, you should find yourself back where you started.
Synonyms: CWD (Change Working Directory), SET DEFAULT (for VMS).

42 Running C-Kermit / Chapter 2

BACK
Changes to your previous current directory. Consecutive BACK commands switch
back and forth between the same two directories; there is no CD history stack.

ECHO [text]
Displays the text on the screen. The text may contain imbedded backslash codes to be
interpreted. If the text is omitted, an empty line is displayed. Examples:

C-Kermit>echo Good morning.
Good morning.
C-Kermit>echo \7Wake up!\7 ; Comment won’t echo
<BEEP>Wake up!<BEEP>
C-Kermit> echo { This text is indented.}
This text is indented.

C-Kermit>

Synonym: WRITE SYS$OUTPUT. Related: WRITE SCREEN, XECHO.

BEEP
Sounds a beep without printing anything. Example:

C-Kermit>beep
<BEEP!>C-Kermit>

HELP [command]
Displays a help message. The command is a C-Kermit command, one or two words at
most, such as COMMENT, ECHO, or SET DUPLEX. Example:

C-Kermit>help set parity
Syntax: SET PARITY name
Parity to use during terminal connection and file transfer:
EVEN, ODD, MARK, SPACE, or NONE. The default is NONE.
C-Kermit>

If you do not include any text after the word HELP, a brief overview is displayed. Use
question mark to get menus within the HELP command. Synonym: MAN.

MKDIR directory-name
Tells Kermit to create a directory. You may supply either a relative or an absolute
directory name.

PAUSE [number=1]
Tells Kermit to do nothing for the given number of seconds. The prompt returns after
the time has expired or if you type anything in the meantime. Examples:

C-Kermit>pause (Pause for 1 second)
C-Kermit>pau 30 (Pause for 30 seconds)

Related: MSLEEP, like PAUSE but the number is in milliseconds.

SET PRINTER [{ devicename, filename, command }]
Tells C-Kermit where print material should be sent. If "set printer" is entered by itself,

Some Basic C-Kermit Commands 43

your default printer is used, which depends on your operating system and configura-
tion. On systems such as VMS and Windows, where a printer has a device name, you
can specify a device name such as LPT:, LPT1:, PRN, or NUL, using the syntax of
your operating system for device names to specify a real printer or other device, or the
"null" device in case you want all printer output to be discarded.

If you specify a filename, then printer output is appended to the given file, if it exists,
or if not, a new file is created.

To specify a command, use the ‘‘pipe’’ symbol, vertical bar (|), for example:

C-Kermit> set printer |lpr (UNIX)
C-Kermit> set printer |textps.exe>\dev\lpt1 (Windows or OS/2)

If you need to include spaces, enclose the command in curly braces:

C-Kermit> set printer { | lpr -Pmyprintername }

PRINT filename [options]
Prints the local file on your SET PRINTER device. Options can be included after the
filename for your computer’s printing command. Examples:

C-Kermit>print oofa.txt (Print a file)
C-Kermit>print oofa.txt -#2 (UNIX, 2 copies)

PUSH
Invokes your system’s command processor ‘‘underneath’’ Kermit interactively in such
a way that you can return to Kermit later.

C-Kermit>push
% send ivan Hi there!
% exit
C-Kermit>

To return from the lower command processor to C-Kermit, use the exit or Ctrl-D
command in UNIX or OS-9, the EXIT command in OS/2, LOGOUT in VMS, POP in

AOS/VS, ENDCLI on the Amiga. Synonyms: !, @, RUN.

PWD
Stands for Print Working Directory. It displays the name of your current default
(working) directory; that is, the one you are CD’d to. Examples:

C-Kermit>pwd
/usr/olga/letters (UNIX, OS-9, or Amiga)
$DISK1:[OLGA.LETTERS] (VMS)
:UDD:OLGA:LETTERS (AOS/VS)
C:\OLGA (OS/2, Windows, or Atari ST)

Synonym: SHOW DEFAULT.

RMDIR directory-name
Removes the specified directory. On most systems, this is allowed only if the direc-
tory contains no files. Synonym: RD.

44 Running C-Kermit / Chapter 2

RUN [command]
Runs the named system command or program and returns to the C-Kermit prompt
automatically when the command or program is finished. If no command name is
given, the RUN command is exactly like the PUSH command. Examples:

C-Kermit>run fortune
Who messed with my anti-paranoia shot?
C-Kermit>

Synonyms: PUSH, !, @. Examples:

C-Kermit>@search area-codes.txt Chicago (VMS)
C-Kermit>!grep Chicago area-codes.txt (UNIX or OS-9)
C-Kermit>!find "Chicago" areacode.txt (OS/2 or Windows)

More C-Kermit Commands

The commands in this section, like those in the previous one, are used for local file
management, but these commands include option switches to let you customize their be-
havior, so their descriptions are a bit more complicated.

RENAME [switches] filespec { filename, directory }
Moves and/or changes the names of files. If the filespec designates a single file and
the destination is a directory (or on some platforms, a device) name, the file is moved
to the directory; otherwise it is renamed to filename. If the filespec is a wildcard that
matches more than one file and the destination is a directory, all matching files are
moved to the directory; if the destination is not a directory, the command fails.
Switches:

/LIST List each file and how it is renamed or moved.
/NOLIST Operate silently (default).

COPY [switches] filespec { filename, directory }
Copies the given file or files as indicated. Works like RENAME except it makes a copy
of each file rathern than moving or renaming it. The COPY command accepts the /LIST

and /NOLIST switches like RENAME, plus the following switches of its own:

/LIST List each source/destination file pair.
/NOLIST Operate silently (default).
/APPEND Append the source file to the destination file.
/FROMB64 Convert the source from Base 64 encoding.
/TOB64 Convert the source to Base 64 encoding.
/SWAP-BYTES Swap each pair of bytes while copying.

Base 64 is a printable encoding often used for graphics images or other unprintable or
nontransportable files, using 64 printable ASCII characters. Byte swapping is neces-
sary for converting binary data transferred from a "big-endian" computer to a
"little-endian" one, or vice versa. /APPEND can be used only with single files. No
more than one of /FROMB64, /TOB64, and /SWAP-BYTES can be included.

More C-Kermit Commands 45

The DELETE Command
Syntax:

DELETE [switches] filespec

This command deletes (removes, erases, destroys) all files whose names match the
filespec, which may contain wildcards, directory names, and/or device designators. If the
filespec contains spaces, it must be enclosed in doublequotes or braces. Successful execu-
tion of this command requires that you have appropriate access rights to the specified file
or files. Synonym: RM. UNIX examples:

C-Kermit>delete oofa.txt (One file in current directory)
C-Kermit>delete "this file" (Filename contains a space)
C-Kermit>del * (All files in current directory)
C-Kermit>del /usr/olaf/a.txt (Fully specified UNIX file)

VMS examples:

C-Kermit>delete oofa.txt;0 (One file in current directory)
C-Kermit>del *.*;* (All files in current directory)
C-Kermit>del $disk1:[olaf]a.txt;7 (Fully specified VMS file)

The DELETE command allows the following switches:

C-Kermit>delete ? File specification;
or switch, one of the following:
/after: /except: /nodotfiles /not-before: /summary
/ask /heading /noheading /page /tree
/before: /larger-than: /nolist /recursive /type:
/directories /list /nopage /simulate
/dotfiles /noask /not-after: /smaller-than:
C-Kermit>delete

As you can see, the list includes all of the standard file selection switches (/[NOT-]AFTER,
/[NOT-]BEFORE, /[NO]DOTFILES, /EXCEPT, /LARGER, /SMALLER, /RECURSIVE, /TYPE) and dis-
play switches (/[NO]HEADING, /[NO]LIST, /SUMMARY, /[NO]PAGE) described on the previous
pages. Note in particular that recursive deletion is possible; UNIX users might find ‘‘del
/recursive *.o’’ more intuitive than ‘‘find . -name *.o -exec rm-f {} \;’’.
The remaining DELETE switches are:

/ASK
Ask permission to delete each individual file. Example:

C-Kermit> del /ask oofa.*
Delete oofa.txt? ? One of the following:
no ok quit yes
Delete oofa.txt? quit
C-Kermit>

In response to the query, ‘‘yes’’ or ‘‘ok’’ gives permission to delete file, ‘‘no’’ says not
to delete, and ‘‘quit’’ means to quit immediately, and don’t delete or ask about any
more files. /ASK can be canceled with /NOASK.

46 Running C-Kermit / Chapter 2

/DIRECTORIES
Delete not only files, but directories too. On most platforms, directories can not be
deleted unless they are empty.

/TREE
This makes Kermit’s DELETE command behave like DELTREE in DOS or rm -Rf in
UNIX: it deletes an entire directory tree: all the files and all the directories. It’s
equivalent to DELETE /DOTFILES /DIRECTORIES /RECURSIVE. Synonym: /ALL.

/SIMULATE
This tells Kermit to pretend to delete without actually deleting, listing which files
would be deleted and which would not.

The DIRECTORY Command
The DIRECTORY popular is used for listing file names and information. Like DELETE, it in-
cludes all the standard file-selection and listing switches, plus quite a few of its own.
Kermit’s DIRECTORY command and listing format is built in and consistent from line to
line and across UNIX, Windows, VMS, and OS/2, with the obvious platform differences
(e.g. presence or absence of file permissions, format of permissions, etc). Syntax:

DIRECTORY [switches] [{ filespec, directory-name }]

If no filespec or directory name is given, all the file in the current directory are listed. If a
directory name is given, all files in the specified directory are listed. If a wildcard is
given, all matching files are listed. Examples for UNIX:

C-Kermit>directory (List all files in current directory)
C-Kermit>dir ~olga (All files in olga’s login directory)
C-Kermit>dir ~/kermit (All files in my kermit directory)
C-Kermit>dir kermit (All files in kermit subdirectory)
C-Kermit>dir ck*.* (Files whose names match)
C-Kermit>dir .. (All files in superior directory)
C-Kermit>dir ../a*.* (Matching files in superior directory)

Corresponding VMS examples:

C-Kermit>dir (List all files in current directory)
C-Kermit>dir $disk:[olga] (All files in olga’s login directory)
C-Kermit>dir [olga.kermit] (and in olga’s kermit subdirectory)
C-Kermit>dir [.kermit] (All files in my kermit subdirectory)
C-Kermit>dir ck*.* (Files whose names match)
C-Kermit>dir [-] (All files in superior directory)
C-Kermit>dir [-]a*.* ("a" files in superior directory)

Corresponding AOS/VS examples:

C-Kermit>dir (List all files in current directory)
C-Kermit>dir :udd:olga:+ (All files in olga’s login directory)

More C-Kermit Commands 47

C-Kermit>dir :udd:olga:kermit:+ (in olga’s kermit subdirectory)
C-Kermit>dir kermit:+ (All files in my kermit subdirectory)
C-Kermit>dir ck-.- (Files whose names match)
C-Kermit>dir ^+ (All files in superior directory)
C-Kermit>dir ^:a+ ("a" files in superior directory)

DIRECTORY command switches include the standard ones plus the following:

/ALL Show both regular files and directories (default).
/ARRAY:name Put the filenames in an array (explained in Chapter 18).
/ASCENDING List the files in ascending order (default; see /SORT).
/REVERSE List the files in reverse order (see /SORT).
/BACKUP Include backup files (default).
/NOBACKUP Don’t include backup files.
/BRIEF Show filenames only and list them in compact format.
/FILES Show only regular files.
/DIRECTORIES Show only directories.
/ISODATE Write file dates in ISO numeric format: yyyymmdd (default).
/ENGLISHDATE Write file dates with English 3-letter month names.
/MESSAGE:text Add text to the end of each file line.
/NOMESSAGE Don’t add any text to the file lines.
/RECURSIVE List files in subdirectories.
/NORECURSIVE Do not list files in subdirectories (default).
/NOSORT Don’t sort the listing.
/XFERMODE Show the transfer mode (Text or Binary) of each file.
/NOXFERMODE Do not show the transfer mode of each file.

and:

/SORT:{DATE,NAME,SIZE}
Sorts the listing by the given key, file date, file name, or file size. Sorting is done by
default, keyed on the file name. The list is in ascending order by default; use
/REVERSE for descending order.

Try different combinations of DIRECTORY command switches, for example:

dir /sort:size /reverse /dotfiles /page ; Find the biggest files
dir /sort:date /reverse /dotfiles /page ; Find the newest files
dir /sort:date /dotfiles /page ; Find the oldest files

The TYPE Command

TYPE [switches] filename
Displays the contents of the file on the screen. Switches:

/COUNT Counts lines rather than displaying them.
/PREFIX:text Prefix each line with the given text.
/HEAD:number Display only the top number lines.
/TAIL:number Display only the last number lines.

48 Running C-Kermit / Chapter 2

/WIDTH:number Display only the left number columns.
/MATCH:pattern Display only lines that match the pattern.
/PAGE Pause after each screenful.
/NOPAGE Don’t pause after each screenful.

/CHARACTER-SET:
/TRANSLATE-TO:
/TRANSPARENT

The last three switches control character-set translation, which is covered in Chapter 16.
/COUNT counts lines, like the UNIX wc -l command. /PREFIX can be used to indent lines,
mark them with some desired character or string, or even number them, as you’ll see in
Chapter 18, but here’s a preview (try it):

type /prefix:"\v(ty_ln). " oofa.txt

The /HEAD and /TAIL switches can be used to display the top or bottom of a file, like the
UNIX commands of the same names. /WIDTH displays a file with too-long lines truncated,
for example to keep them from wrapping around on your screen.

TYPE /MATCH:pattern displays all the lines in a file that match the given pattern, similar to
UNIX grep. To get the full effect of UNIX grep, however, requires combining many
of these switches. But for convenience, Kermit has its own GREP command.

The GREP Command
The GREP command is named after the UNIX command (etymology unknown) that does
the same thing: it ‘‘greps’’ lines that match a given pattern from the specified files.
Synonyms: FIND, SEARCH. Syntax:

GREP [switches] pattern filespec

Switches:

/COUNT Counts matching lines rather than displaying them.
/DOTFILES Include files whose names start with dot.
/NODOTFILES Don’t include dot-files.
/NAMEONLY Show filenames only.
/NOBACKUP Don’t include backup files.
/NOCASE Ignore alphabetic case when matching.
/NOLIST Don’t show matching lines.
/NOMATCH Show lines that don’t match the pattern.
/PAGE Pause after each screenful.
/NOPAGE Don’t pause after each screenful.
/LINENUMBERS Display line numbers.
/RECURSIVE Search files in subdirectories too.
/TYPE: Only search files of the given type, text or binary.

The C-Kermit Initialization File 49

The C-Kermit Initialization File

The initialization file is a command file that C-Kermit executes automatically when it
starts. Its name and location depend on which type of computer system you have (see
Table 2-2 on the next page), normally ckermit.ini; .kermrc in UNIX and OS-9.

On multiuser computers, the standard initialization file might be kept in a common central
location — for example /usr/share/lib/kermit/ckermit.ini in HP-UX 10.00 and
later, or pointed to by the system logical name CKERMIT_INI: in VMS — to avoid un-
necessary replication. On others, it is kept in each user’s home or login directory, or on
PCs with OS/2 and Windows that do not (necessarily) have ‘‘users,’’ it is kept in the direc-
tory where the C-Kermit program is installed, or in a common place on a file server.

The initialization file contains commands that should be executed every time you start the
C-Kermit program. C-Kermit is distributed with a standard initialization file that sets up
your dialing and services directory and defines several handy ‘‘macros’’ (groups of com-
mands, described in Chapter 17). The standard initialization file also issues a command to
execute your personal ‘‘customization file,’’ described later.

The Standard Initialization File
Like all other C-Kermit command files, the standard C-Kermit initialization file is a
plain-text file that you can read or print. Most of its contents are explained in Chapters 7
and 17 through 19. The initialization file itself is thoroughly commented and is a good
place to look for examples of how to use various script-programming constructs.

The standard initialization file does the following things for you. We recommend that you
not alter it or replace it unless (a) you do not care about any of the services it provides, and
(b) you know what you are doing.

• Prints a greeting message such as ‘‘Executing CKERMIT.INI for VMS’’... If you do
not see this message, then C-Kermit probably did not find its initialization file.

• Sets up system-dependent definitions for your C-Kermit customization file, your
default editor, and your dialing and network directories, plus login and access macros
for various types of hosts and services (explained in Chapter 7).

• Executes your personal customization file.

If there are settings or definitions in the standard initialization file that you don’t like, it is
better to undo them in your customization file than to edit or replace the standard in-
itialization file.

50 Running C-Kermit / Chapter 2

Table 2-2 C-Kermit Initialization File Name

System File Name Remarks

Atari ST CKERMIT.INI C-Kermit looks first in the current directory, then in
your home directory, then in the root directory.

Commodore Amiga CKERMIT.INI C-Kermit looks first in the s: directory, then in the
current directory.

Data General AOS/VS CKERMIT.INI C-Kermit looks in your home directory.

IBM OS/2 K2.INI The file K2.INI in your Kermit/2 directory.

Microware OS-9 .kermrc C-Kermit looks in your home directory first, then in
the current directory.

Stratus VOS ckermit.ini A specially designated common system directory,
or else your home directory.

UNIX (all versions) .kermrc A specially designated common system directory,
or else your home directory, depending on how
C-Kermit was installed.

Windows 95 K95.INI The file K95.INI in your Kermit 95 directory.

Windows NT K95.INI The file K95.INI in your Kermit 95 directory.

Digital (Open)VMS CKERMIT.INI C-Kermit looks for CKERMIT_INI:, then for the
file defined by the symbol CKERMIT_INIT, and
finally in your home directory, SYS$LOGIN, for
CKERMIT.INI.

The Customization File
Your customization file is for commands or settings that customize C-Kermit to your own
personal requirements. It is called .mykermrc on UNIX and OS-9, ckermod.ini on
Stratus VOS, and CKERMOD.INI elsewhere. It is generally in your home or login direc-
tory or, in systems like Windows and OS/2 that do not have login directories, in the same
directory as as initialization file.

To illustrate the use of the customization file, suppose you have a UNIX workstation
whose serial communication device is connected to a US Robotics high-speed modem and
you always use C-Kermit to dial out on this device. Your customization file might contain
commands like these:

echo Olga’s customizations...
set modem type usr ; So DIAL command works right
set line /dev/ttyb ; Use ttyb for communication
set speed 57600 ; Modem’s highest speed
echo Ready for USR dialing at 57600 bps on /dev/ttyb.
echo Remember to turn on the modem!

(The SET commands are explained in the next chapter.) Note the use of trailing comments
for documentation.

The C-Kermit Initialization File 51

With this customization file, the only command you need to give Kermit to dial up another
computer is DIAL (also explained in the next chapter):

$ kermit (Start Kermit)
Ready for USR dialing at 57600 bps on /dev/ttyb.
Remember to turn on the modem!
C-Kermit>show communications (Check effect of init file)

Communications Parameters:
Line: /dev/ttyb, speed: 57600, mode: local, modem: usr
...
C-Kermit>dial 9876543 (Dial another computer)
Call completed. (So easy!)

As you progress through this book, other likely candidates will suggest themselves for in-
clusion in your customization file — terminal settings (Chapter 8), file transfer protocol
settings (Chapters 9–11), character-set selections (Chapter 16), macro definitions (Chap-
ters 17–19). A sample customization file is distributed with C-Kermit; you can use this as
a starting point. Just edit it to suit your needs and preferences.

Alternative Initialization Files
If you want Kermit to use a specific command file for initialization instead of the default
command file shown in Table 2-2, you can specify a different initialization-file name on
the command line, using the -y (lowercase) command-line option:

$ kermit -y special.ksc

If you want to run C-Kermit without any initialization file at all, use the -Y (uppercase)
command-line option:

$ kermit -Y (UNIX, Windows, OS/2, etc.)
$ kermit "-Y" (VMS or VOS, quotes required)

(if necessary, replace ‘‘kermit’’ by the appropriate program name, such as ‘‘k95’’ for
Kermit 95).

If you want C-Kermit to execute a particular command file after it executes the initializa-
tion file but before it issues its first prompt, include the filename as the first word after
kermit (or k95) when you invoke C-Kermit from the system prompt:

$ kermit tuesday.ksc

A C-Kermit command file whose name is given as the first command-line argument, such
as tuesday.ksc in the example, is called a C-Kermit application file. If you want
C-Kermit to exit after executing an application file, include an EXIT command in the ap-
plication file itself.

52 Running C-Kermit / Chapter 2

Commands for Controlling Commands

The commands in this section influence how other commands behave.

SET SUSPEND { OFF, ON }
On systems such as UNIX that allow programs to be stopped and continued, this com-
mand controls whether C-Kermit will allow this. For example, on UNIX systems with
‘‘job control’’ you can type Ctrl-Z (or other character) to ‘‘suspend’’ a program, and
then use the UNIX ‘‘bg’’ or ‘‘fg’’ command to have it continue executing in the back-
ground or foreground. If you want to disallow this sort of thing in C-Kermit for any
reason, use SET SUSPEND OFF. See examples in Appendix III.

SET TAKE { ECHO, ERROR } { OFF, ON }
This command controls the execution of command files by the TAKE command. Nor-
mally commands that are read and executed from command files are not displayed on
the screen. If you would like to watch the commands as they are executed, use SET

TAKE ECHO ON; commands are echoed (printed) on your screen, showing the line num-
ber of each command, which is handy for debugging command files.

Errors in command files are not fatal to the execution of the command file. If you
want C-Kermit to stop executing a command file immediately when an error is en-
countered, use SET TAKE ERROR ON.

SET PROMPT [text]
Even though we don’t show this in all our examples (less is more), C-Kermit’s normal
prompt shows your current directory, plus the program name and a right angle bracket:

[/users/home/olga] C-Kermit>

You can use the SET PROMPT command to change the prompt to something else (either
a constant string or a string containing variables — described in Chapter 17 — that are
re-evaluated every time the prompt is issued), for example:

[/users/home/olga] C-Kermit> set prompt K>
K> ; I like a short prompt.
K> set prompt [\v(time)] K>
[16:35:27] K> set prompt [\v(host)] K>
[hp.olga.com] K>

If you give the SET PROMPT command without any text, the default prompt is restored.
This is equivalent to:

C-Kermit> set prompt [\v(directory)] C-Kermit>

If you want to have a null (empty, zero-length) prompt:

[/users/home/olga] C-Kermit> set prompt {}

CHECK feature
Checks if a particular feature is present, e.g. CHECK KANJI. Fails if the given feature is
not present. Type ‘‘check ?’’ for a list of things you can check.

Commands for Controlling Commands 53

The SET COMMAND Command

SET COMMAND BYTESIZE { 7, 8 }
This command defines the character size, 7 or 8 bits, used by the command processor.
The default is 8 bits. If you have a 7-bit connection to C-Kermit, you can tell
C-Kermit to SET COMMAND BYTESIZE 8.

SET COMMAND RETRY { OFF, ON }
This command controls whether you are automatically reprompted with the ‘‘good
part’’ of a failing command. Normally ON, meaning that you are reprompted.

SET COMMAND RECALL-BUFFER-SIZE number
Use this command to change the size of C-Kermit’s command history buffer. It can
be any reasonable size.

Screen Size and More-Prompting
In displays produced by C-Kermit commands, such as the keyword or file lists that are
shown when you type a question mark in a command, as well as the output of HELP and
similar commands, C-Kermit does its best to pause at the end of each screenful, and ask if
you want ‘‘More?’’ The place where C-Kermit pauses is based on its idea of your screen
dimensions, which it obtains by asking the operating system. If the operating system
doesn’t know, then 24 lines by 80 columns is assumed. You can change C-Kermit’s idea
of your command-screen dimensions with the commands:

SET COMMAND HEIGHT number
This command tells C-Kermit the number of rows (lines) on the command screen.

SET COMMAND WIDTH number
This command tells C-Kermit the number of columns (characters) across the com-
mand screen.

In OS/2 and Windows, these commands actually change the size of your command win-
dow. In UNIX, VMS, and elsewhere, they simply inform C-Kermit what the screen size
actually is so it can format messages appropriately.

The ‘‘More?’’ prompt gives you time to read the material on the screen before it scrolls
away. At the ‘‘More?’’ prompt you can reply ‘‘y’’ (for ‘‘yes,’’ or press the space bar) to
see the next screen, or ‘‘n’’ (for ‘‘no’’), or ‘‘q’’ (for ‘‘quit’’) to cancel the display and return
to the prompt. You can turn more-prompting on and off with the command:

SET COMMAND MORE-PROMPTING { ON, OFF }

If you turn it off, long reports — such as file lists produced by typing a question mark in a
filename field (such as ‘‘send ?’’ in a directory that has many files) scroll past without
pausing. This behavior might be preferred by those using windows with scrollbars.

54 Running C-Kermit / Chapter 2

Taming the Wild Backslash
If you are using C-Kermit on Windows 95 or NT or in OS/2, or you are using C-Kermit to
transfer files with another system that is running DOS, Windows, or OS/2, and you find
C-Kermit’s treatment of the backslash character confusing or annoying, you can use the
following command to tell C-Kermit to treat backslash just like any other character:

SET COMMAND QUOTING { ON, OFF }

If you SET COMMAND QUOTING OFF, you enter DOS pathnames in the natural way in all
commands, but you can’t use backslash codes for special characters or variables:

C-Kermit> set command quoting off
C-Kermit> get c:\users\olaf\letter.txt

If you SET COMMAND QUOTING ON, you can use backslash codes, but you might have to
enter DOS pathnames with double backslashes, as in:

C-Kermit> set command quoting on
C-Kermit> get c:\\users\\olaf\\letter.txt

All of your SET COMMAND settings are displayed for you when you command Kermit with
the SHOW COMMAND command:

C-Kermit> show command
Command bytesize: 7 bits
Command recall-buffer-size: 10
Command retry: on
Command quoting: on
Command more-prompting: on
Command height: 24
Command width: 72
Maximum command length: 4072
Maximum number of macros: 256
Macros defined: 9
...
C-Kermit>

Finally, in case you are growing weary of the word ‘‘command,’’ let it now be noted that
you may abbreviate this overused word to CMD in both the SET and SHOW cmds.

Summary Tables 55

Summary Tables

Table 2-3 lists many of the commands discussed in this chapter, and shows the equivalent
system commands in UNIX, VMS, and AOS/VS. Table 2-4 summarizes the backslash
codes used in C-Kermit commands.

Table 2-3 Basic C-Kermit Commands

Kermit UNIX VMS AOS/VS Description

cd cd set default directory Change directory
delete rm delete delete Delete files
directory ls -l directory filestatus List files
echo echo write write Display text on screen
help man help help Display help messages
mkdir mkdir create/dir create/dir Create a directory
pause sleep wait pause Sleep for some seconds
print lp, lpr print print Print files on a printer
push sh, csh, ksh spawn, @ push Enter system
pwd pwd show default directory Show current directory
rename mv rename rename Rename files
rmdir rmdir delete/dir delete Remove a directory
run command [run] command [xeq] Run a command or program
space df show quota space Show disk space
type cat type type Display contents of a text file

Table 2-4 Summary of Backslash Codes

Code Example Meaning

\ (at end of command) Line continuation
\{ \{27}3 Braces are used for grouping
\% \%a A user-defined simple variable
\& \&a[4] An array reference
\$ \$(TERM) An environment variable
\b \b The BREAK signal (OUTPUT command only)
\d \d123 A decimal number
\f \feval(2+2) A built-in function
\l \l The LONG BREAK signal (OUTPUT command only)
\m \m(oofa) A macro used as a variable
\o \o123 An octal number
\v \v(time) A built-in variable
\x \x0f A hexadecimal number
\\ \\ The backslash character itself

\123 Decimal digit: a 1- to 3-digit decimal number
\? Anything else: quote the next character

56

57

Chapter 3

Making Serial-Port and Modem
Connections

❍ ❍ ❍ ❍ ← (Stepping stones)
If you will not be using Kermit to make connections, you can skip ahead to
Chapter 9, page 193, to learn how to transfer files.

❍ ❍ ❍ ❍

This chapter assumes you are familiar with serial data communication concepts
such as modem, null modem, interface speed, modulation speed, parity, flow
control, cable, and connector. If you aren’t, please review Appendix II.

Kermit can make three types of connections: direct serial, dialed serial, and network.
Serial connections use your computer’s serial port and/or internal modem. Direct serial
connections are a special case; once you have connected your computer to the other com-
puter or device with a proper cable, the target of the connection is already on the other end
of the wire. The software doesn’t have to do anything special to reach it other than open
the serial port.

Dialed serial and network connections, however, require additional setup because there
are many possible destinations on the telephone network and the Internet. To reach the
desired destination, you must tell Kermit what sort of modem or network you will use,
perhaps along with some related configuration details, and then you have to give Kermit
the telephone number or network address you are trying to reach. Dialed connections are
especially complicated because there are so many different kinds of modems and sets of
dialing rules.

58 Making Serial-Port and Modem Connections / Chapter 3

The following chart summarizes the steps needed to establish each of Kermit’s three kinds
of connections:

Direct Serial Dialed Serial Network
Select method: SET MODEM TYPE NONE SET MODEM TYPE name SET NETWORK TYPE name
Select device: SET LINE device SET LINE device
Specify speed: SET SPEED number SET SPEED number
Set flow control: SET FLOW type SET FLOW type SET FLOW NONE

Make connection: DIAL number SET HOST address
Go online: CONNECT CONNECT (*) CONNECT

Close connection: HANGUP HANGUP HANGUP

Examples:

Direct Serial Dialed Serial Network
Select method: SET MODEM TYPE NONE SET MODEM TYPE USR SET NETWORK TYPE TCP/IP

Select device: SET LINE COM1 SET LINE COM1

Specify speed: SET SPEED 57600 SET SPEED 57600

Set flow control: SET FLOW RTS/CTS SET FLOW RTS/CTS SET FLOW NONE

Make connection: DIAL 7654321 SET HOST IBM.COM

Go online: CONNECT CONNECT (*) CONNECT

Close connection: HANGUP HANGUP HANGUP

(*) The CONNECT command is not needed if the DIAL command is given interactively (at the prompt), in
which case Kermit automatically goes into CONNECT (online) mode if the call succeeds.

Let’s begin by clearing up a common source of confusion about network versus dialed
connections. Some network connections are made over dialed connections. The most
common example is TCP/IP networking over a PPP or SLIP connection. The PPP or
SLIP connection is not made by Kermit, but by a special PPP or SLIP dialer or (in Win-
dows) Dial Up Networking. Then Kermit is used as a Telnet or FTP client over the PPP
or SLIP connection, exactly as if TCP/IP were running over a dedicated network adapter.

When Kermit itself dials a modem, it is making a dialed serial connection, not a network
connection. Dialed serial connections were once the only way for terminals (and later,
PCs) to communicate with distant computers, but with the near-ubiquity of the Internet
they are becoming increasingly rare. They are still used, however, to connect computers
that are not both on the Internet, for example a doctor’s office submitting medical in-
surance claims to a clearinghouse, in which case they still offer certain advantages, such
as security (direct phone calls are much harder to spy on than Internet connections). They
are also used for calling beepers and pagers, remotely diagnosing malfunctioning network,
computing, or factory equipment, and myriad other applications in addition to their
original and once-familiar role in connecting terminals or PCs to shell accounts on
timesharing computers.

❍ ❍ ❍ ❍

This chapter and the next two cover serial connections; networks are discussed
in Chapter 6. If you will be using Kermit only on network connections, includ-
ing PPP or SLIP connections, feel free to skip ahead to Chapter 6.

Opening the Serial Port 59

Opening the Serial Port

A serial connection is made over an asynchronous serial communication device (what a
mouthful!), also called a serial port, terminal port, tty port, RS-232 port, V.24 device, EIA
port, UART, or asynchronous adapter. If the port is connected directly to another com-
puter, which would normally be done with a null-modem cable, the connection is direct.
If it is connected to a modem (or it is a modem) that is, in turn, connected to a telephone
line that must be dialed, the connection is dialed.

For any type of serial connection, you must tell Kermit the name of the serial device so
Kermit can open it. The command is:

SET LINE [device]
Opens the serial communication device through which you will be communicating. If
you give the SET LINE command without a device name, Kermit closes any currently
open communication device and returns to the default communication device, shown
in Table 3-1. Synonyms: SET PORT, OPEN LINE, OPEN PORT. Synonyms for
SET LINE with no device name, which closes the currently open device, are CLOSE
and CLOSE CONNECTION, described on page 75. Examples:

C-Kermit>set line /dev/ttyS0 (Linux)
C-Kermit>set line txa4: (VMS)
K-95>set line com2 (Windows or OS/2)
K-95>set line 2 (Same as line com2)
K-95>set port 2 (Same as line 2)
C-Kermit>set line (All, select default device)

Only one serial-port or modem connection can be open at a time, so whenever you give a
SET LINE (or SET PORT) command, Kermit closes any currently open communication
device before attempting to open the new one. The SET LINE command can fail for any of
the following reasons, which are printed as error messages on your screen:

A serial (or network) connection might still be open . . .
Kermit believes a connection is open, e.g. because the current SET LINE device is still
presenting the carrier signal. Kermit asks ‘‘OK to close?’’ Reply ‘‘yes’’ or ‘‘no’’.
You can disable this warning with SET EXIT WARNING OFF.

Sorry, access to device denied
The communication device is protected against you. Contact your system administra-
tor to see if you can get the required access (or if you are the system administrator,
change the device’s permission or the way in which Kermit is installed).

Sorry, access to lock denied
(UNIX only) The lockfile directory is protected against you; contact your system ad-
ministrator or see Appendix III.

60 Making Serial-Port and Modem Connections / Chapter 3

Sorry, device is in use
Somebody else is already using the communication device you have specified. If you
get the ‘‘device is in use’’ message in UNIX, Kermit attempts to let you know who is
using it by showing a directory listing of the lock file:

C-Kermit>set line /dev/ttyh6
-r--r--r-- 1 olga 11 Feb 8 15:17 /var/spool/locks/LCK..ttyh6
/dev/ttyh6: Sorry, device is in use
C-Kermit>

Sorry, can’t open connection
Kermit encountered some other kind of error when trying to open the device. The ap-
propriate system error message is also printed, for example ‘‘No such device’’.

If a new prompt appears and there is no error message, Kermit has opened the device suc-
cessfully. You can use the STATUS or SHOW COMMUNICATIONS command for verification.
If a SET LINE command appears to be stuck, it means that the operating system is having
difficulty opening the device, or is waiting for the carrier signal to appear. You can con-
tinue to wait or you can interrupt by typing Ctrl-C.

Specifying the Communication Speed
Before using the serial communication device that you opened with the SET LINE, you
should specify a transmission speed that is the same as the computer, modem, or other
device it is connected to.

SET SPEED number
Specifies the transmission speed, in bits per second, to use on the serial communica-
tion device specified in your most recent SET LINE or SET PORT command. If you don’t
give a SET SPEED command, Kermit tries to learn the device’s current speed and use it.
Only certain speeds are available; type ‘‘set speed ?’’ to find out what they are. The
list can vary from computer to computer. Here is a typical example:

C-Kermit>set speed ?
Transmission rate in bits per second, one of the following:
110 14400 200 28800 38400 50 7200 9600
115200 150 230400 300 460800 57600 75
1200 19200 2400 3600 4800 600 76800
C-Kermit>set speed 115200

Notice that the speeds are arranged in ‘‘alphabetical’’ rather than numeric order (reading
by columns). Because they are keywords, you can use abbreviation and completion with
them and you can’t enter an illegal value by mistake. Examples:

C-Kermit>set speed 9600 (9600 bits per second)
C-Kermit>set sp 9 (9600 bits per second)
C-Kermit>set sp 9500 (Not in the list)
?No keywords match - 9500 (An error message is printed)
C-Kermit>

Opening the Serial Port 61

Table 3-1 Sample Dialout Device Names

System Default Device Dialout Device Name

Apple A/UX console /dev/modem

AmigaDOS none serial.device/0

Amiga UNIX console /dev/term/ser

AT&T 6300 PLUS console /dev/tty1

AT&T 7300 UNIX PC console /dev/ph0

Atari ST GEMDOS AUX: AUX:

BeBox console /dev/serial1

BSDI/OS console /dev/tty00

Data General AOS/VS console @con1

Data General DG/UX console /dev/tty00

DEC ULTRIX console /dev/tty00

DEC OSF/1 console /dev/tty00

DEC/Compaq Tru64 UNIX console /dev/tty00

DEC/Compaq (Open)VMS console TXA0:, TTA0:, or LTA0:

FreeBSD console /dev/cuaa0

Hewlett Packard HP-UX console /dev/cua0p0 or /dev/cua00

IBM AIX console /dev/tty0

IBM OS/2 console COM1

Interactive UNIX/386 console /dev/tty0 or /dev/acu0

Linux (GNU/Linux) console /dev/ttyS0

Microware OS-9 console /t1

NetBSD console /dev/tty00

NeXTSTEP console /dev/cua or /dev/cufa

OpenBSD console /dev/tty00

Plan 9 from Bell Labs console /dev/eia0

QNX console /dev/ser1

SCO UNIX/OpenServer console /dev/tty1A

SCO Xenix console /dev/tty1a

Siemens/Nixdorf SINIX console /dev/term/01

Silicon Graphics IRIX console /dev/ttym0 or /dev/ttyf0

Stratus VOS console %sys#dialer.0

Sun Solaris console /dev/cua/a or /dev/term/a

Sun SunOS 4.x console /dev/ttyh1

UnixWare 1.x console /dev/tty0

UnixWare 2.x,7.x console /dev/term/00 or /dev/term/00h

Windows 9x/ME/NT/XP/2000 none COM1 or Windows Modem name

62 Making Serial-Port and Modem Connections / Chapter 3

Remember, SET SPEED applies to the current device: the one given in the most recent SET

LINE or SET PORT command. Kermit must know which device’s speed you are setting. So
the rule is: SET LINE (or SET PORT) first, then SET SPEED.

You can’t use Kermit’s SET SPEED command to change your login or console terminal’s
speed. If you issue the SET SPEED command while Kermit is in remote mode, you’ll get an
error message:

C-Kermit>set speed 57600
?Sorry, you must SET LINE first

The common serial interface speeds are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,
57600, 115200, and 203400. But not all speeds are supported on all platforms. In UNIX,
for example, only those speeds that are supported by the underlying operating system and
application program interface (API) can be set. Even today, it is common to find UNIX
versions that do not support speeds above 19200 or 38400 bps, even though the hardware
itself might be capable of going much faster. On the other hand, a certain speed might be
legal to the software but not supported by the underlying hardware; in either case you
should get an appropriate error message.

If the SET SPEED command is successful, Kermit asks the operating system to report the
device’s speed to make sure it matches the speed that was just set, and prints the result:

C-Kermit>set line /dev/tty01
C-Kermit>set speed 115200
/dev/tty01, 115200 bps
C-Kermit>

The Carrier Signal
Serial communication devices might not allow themselves to be opened if the software
and hardware don’t agree about how to treat the RS-232 Carrier Detect (CD, DCD, RLSI)
signal (Appendix II), a signal from the modem to the computer indicating whether the
connection is active.

Most versions of Kermit assume that CD is off during dialing, that it is on when the con-
nection has been made and is in use, and that it goes off again when the connection is
broken. But your modem might be configured to keep CD on (or off) all the time, or the
cable connecting the modem to your serial port might not carry the CD signal. The SET

CARRIER-WATCH command lets you adjust Kermit to such situations.

Successful operation depends on the capabilities of the operating system and version, and
Kermit’s knowledge of them. The SET CARRIER-WATCH command takes effect on the next
communications-oriented command. Here are the SET CARRIER-WATCH commands and
Kermit’s other carrier-related commands:

Opening the Serial Port 63

SET CARRIER-WATCH AUTO
Kermit is to require carrier during CONNECT, TRANSMIT, INPUT, OUTPUT, and SCRIPT

commands, and during file transfer, but not during DIAL operations. If carrier dis-
appears during a CONNECT session, Kermit gives an error message and pops back to its
prompt automatically. If carrier disappears during any of the other commands for
which it is required, the command fails. AUTO is the default.

SET CARRIER-WATCH OFF
Kermit is to ignore the Carrier Detect signal at all times. This is useful for direct con-
nections and misbehaving modem connections. It is also needed when you want to
CONNECT to the modem and type commands to it yourself (or script them with the
INPUT and OUTPUT commands). Use SET CARRIER-WATCH OFF only when necessary
because it takes away Kermit’s ability to detect a broken connection.

SET CARRIER-WATCH ON [number]
Kermit is to require carrier at all times. When CARRIER-WATCH is ON, CD must be
present when you give the SET LINE or SET PORT command. If not, Kermit waits for
carrier to appear. To set a limit on how long SET LINE should wait for carrier, include
an optional number of seconds after SET CARRIER-WATCH ON to indicates how long to
wait before timing out, for example SET CARRIER ON 30.

SET CLOSE-ON-DISCONNECT { ON, OFF }
On a serial connection with SET CARRIER ON or AUTO, this setting governs what hap-
pens if the carrier signal drops during the connection. With SET CLOSE-ON-DISCON-

NECT OFF (the default), Kermit continues to keep the device open and allocated. With
SET CLOSE-ON-DISCONNECT ON, Kermit automatically closes and releases the device,
thus allowing other users or processes to use it. However, it remains the default
device for input and output (DIAL, REDIAL, INPUT, SEND, CONNECT, etc), so if a sub-
sequent I/O command is given, the device is reopened if it is still available. When it
has been automatically closed in this manner, SHOW COMMUNICATIONS puts "(closed)"
after its name, and in UNIX, the lockfile disappears — both from SHOW COMM and
from the lockfile directory itself. If CLOSE-ON-DISCONNECT is ON, and a HANGUP com-
mand is given on a serial device, and the carrier signal is no longer present after the
HANGUP command, the device is closed and released. Synonym: SET
DISCONNECT.

SET EXIT ON-DISCONNECT { ON, OFF }
Like SET CLOSE-ON-DISCONNECT, but makes Kermit EXIT automatically when a con-
nection drops, rather than just closing its end of the connection.

Note that SET CLOSE-ON-DISCONNECT and SET EXIT ON-DISCONNECT apply only to connec-
tions that drop; they do not apply to connections that can’t be made in the first place. For
example, they have no effect when a SET LINE, SET PORT, or DIAL command fails.

64 Making Serial-Port and Modem Connections / Chapter 3

Stop Bits, Data Bits, and Parity
Stop bits, data bits, and parity are explained in Appendix II. They determine how charac-
ters are delimited when sent and received by the serial port. The most common format is:
8 data bits, No parity, 1 stop bit (8N1). Less common is: 7 data bits, Even parity, 1 stop
bit (7E1). Kermit lets you set each of these parameters if the underlying operating system
supports it. The commands are:

SET PARITY { EVEN, ODD, MARK, SPACE, NONE }
This command has always been part of Kermit, and it assumes 8-bit transmission. If
PARITY is NONE, all 8 bits are used for data. If it is any of the others, 7 bits are used
for data and one bit is used for parity. Kermit takes care of the data and parity bits it-
self and does not rely on any underlying drivers or hardware to do it. This command
affects all types of connections, serial and network, as well as remote mode, and works
in all versions of Kermit.

SET PARITY HARDWARE { EVEN, ODD, MARK, NONE }
This command selects 8 data bits plus a ninth bit for the indicated type of parity to be
applied or checked by the underlying hardware or device driver, a setup that is re-
quired only rarely. This command is effective only with serial devices. It has no ef-
fect in remote mode, nor on network connections. Some platforms that support this
command might allow only EVEN and ODD as choices.

SET STOP-BITS { 1, 2 }
This tells the number of 1-bits to insert after an outbound character’s data and parity
bits, to separate it from the next character. Normally 1. Choosing 2 stop bits should
do no harm, but will slow down serial transmission by approximately 10 percent. His-
torically, two stop bits were used with Teletype machines (at 110 bps or below) for
print-head recovery time. There is presently no method for choosing any number of
stop bits other than 1 and 2.

SET SERIAL [dps]
dps stands for Data-bits, Parity, Stop-bits. This is the notation familiar to many people
for serial port configuration: 7E1, 8N1, 7O2, etc. The data-bits number also becomes
the TERMINAL BYTESIZE setting (Chapter 8). The second character is E for Even, O for
Odd, M for Mark, S for Space, or N for None. The list of available options depends
on the capabilities of the specific platform. If dps is omitted, 8N1 is used. Type "set
serial ?" for a list of valid choices. Examples:

Command Equivalent to
SET SERIAL 7E1 SET PARITY EVEN, SET STOP-BITS 1, SET TERM BYTE 7
SET SERIAL 8N1 SET PARITY NONE, SET STOP-BITS 1, SET TERM BYTE 8
SET SERIAL 8E1 SET PARITY HARDWARE EVEN, SET STOP-BITS 1, SET TERM BYTE 8
SET SERIAL 7E2 SET PARITY EVEN, SET STOP-BITS 2, SET TERM BYTE 7
SET SERIAL 8E2 SET PARITY HARDWARE EVEN, SET STOP-BITS 2, SET TERM BYTE 8

Opening the Serial Port 65

Notes:

• The SET SERIAL xx2 options are available only in Kermit versions where the SET

PARITY HARDWARE command is also available, and affect only serial-port connections.

• The SET SERIAL 7xx and 8N1 options always affect the software parity setting.

• If you do not give a SET STOP-BITS or SET SERIAL command, Kermit does not try to set
or change the device’s stop bits.

Kermit’s default serial-port configuration is 8 data bits, no parity, 1 stop bit: 8N1. This
configuration should be appropriate for almost every serial connection.

Flow Control
Flow control is the method by which two independently functioning devices attempt to
prevent data loss while sending data to each other. Flow control methods are explained in
Appendix II and in Chapter 10. The Kermit command to select the flow control method is
SET FLOW-CONTROL or simply SET FLOW. There are several forms of this command:

SET FLOW AUTO
This is the default and recommended flow control setting. When a communication
device or connection is opened, the associated type of flow control is taken automati-
cally from the flow-control table.

SET FLOW { XON/XOFF, RTS/CTS, ... NONE }
Selects a specific flow control method, to apply to the current connection (if any) and
to all subsequent connections until another SET FLOW command is given. Example:

C-Kermit> set flow rts/cts

SET FLOW { /DIRECT, /MODEM, /TCPIP, ... } { XON/XOFF, RTS/CTS, ... }
Changes an entry in Kermit’s flow control table. The switch tells which entry to
change, and the flow-control type tells what to change it to.

There is one switch for each communication method that your version of Kermit supports;
some Kermit versions might not have all those listed above, some might have others such
as /X.25, /DECNET, or /LAT. Examples

C-Kermit> set flow-control /remote xon/xoff
C-Kermit> set flow /modem rts/cts
C-Kermit> set flow /tcpip none
C-Kermit> set flo /lat xon/xoff
C-Kermit> set flo /direct none
C-Kermit> set fl /x.25 none

The appropriate kind of flow control for most network connections is NONE, but there are
exceptions; for example, the VMS and HP-UX TCP/IP stacks tend to require Xon/Xoff.

66 Making Serial-Port and Modem Connections / Chapter 3

Kermit’s flow-control methods include:

KEEP
Use whatever flow control was configured for the device when Kermit opened it.

NONE
Don’t use any method of flow control. Use this option when the two computers or
devices do not share a flow control method in common, or when flow control is
provided in some other way not known to or controllable by Kermit, or when the con-
nection is not serial at all, for example most TCP/IP network connections.

RTS/CTS
Selects ‘‘out-of-band’’ hardware flow control using the RTS and CTS wires. This op-
tion is available only for operating systems and devices that support it, and can be
used only if the other device also supports it and the cable (if any) includes the wires.
RTS/CTS is the best flow control choice for all types of serial connections, especially
high-speed modems and terminal servers. Its effect is instantaneous and the signals
can’t be lost or damaged as long as the circuits are intact.

XON/XOFF
Selects ‘‘in-band’’ software flow control using Ctrl-S (Xoff) and Ctrl-Q (Xon) charac-
ters mixed in with the data stream, and therefore subject to loss, corruption, or delays.
Works with the first device along the communication path that is also configured for
Xon/Xoff flow control: the locally attached modem, a terminal server, the computer
on the far end. Use this method when both parties support it and hardware flow con-
trol is not available.

The SHOW FLOW-CONTROL command reports the current setting and displays the current
flow-control table:

C-Kermit> show flow

Connection type: tcp/ip
Current flow-control: none

Defaults by connection type:
remote : none
direct-serial : none
modem : rts/cts
tcp/ip : none
decnet : xon/xoff

C-Kermit>

RTS/CTS flow control is sometimes available even when Kermit’s SET FLOW command
does not offer it. In certain UNIX versions such IRIX or NeXTSTEP, it can be selected
by using special device names (see Table 3-1 on page 61). On other platforms it can be
enabled by giving a system command before starting Kermit, for example:

% stty crtscts < /dev/ttyh4

Opening the Serial Port 67

on certain UNIX systems (but, of course, not others), or:

) characteristics /on/ifc/ofc

in AOS/VS. In such cases, tell Kermit to SET FLOW KEEP. Consult your operating system
documentation for further information.

Certain Kermit versions might also support less common hardware flow-control options,
such as DTR/CD or DTR/CTS. If your version of Kermit, and the underlying device and
driver software, and the directly connected communication device, support these options,
then you can use them if RTS/CTS is not appropriate or available. Use them with caution,
however; the CD signal normally tells Kermit the connection is broken, so you must SET

CARRIER-WATCH OFF before attempting to use DTR/CD flow control. Also, when using
either DTR/CD or DTR/CTS, make sure your communication device is configured not to
hang up the connection if your computer turns off the DTR signal!

If the two connected parties do not agree on the flow control method, or if cables or
modems are not configured appropriately, a flow control deadlock can result, i.e. no com-
munication. SET FLOW NONE avoids deadlocks, but also can result in lost data.

Displaying Communication Settings
To find out your current communication device, speed, carrier, flow control, and other set-
tings, as well as the modem-signal values on the current serial device, use the SHOW

COMMUNICATIONS command. Here’s an example from HP-UX:

C-Kermit>sho comm

Communications Parameters:
Line: /dev/cua0p0, speed: 115200, mode: local, modem: none
Parity: none, stop-bits: (default) (8N1)
Duplex: full, flow: none, handshake: none
Carrier-watch: auto, close-on-disconnect: off
Lockfile: /var/spool/locks/LCK..cua0p0
Secondary lockfile: /var/spool/locks/LCK..ttyd0p0
Terminal bytesize: 8, escape character: 28 (^\)

Carrier Detect (CD): On
Dataset Ready (DSR): On
Clear To Send (CTS): On
Ring Indicator (RI): Off
Data Terminal Ready (DTR): On
Request To Send (RTS): Off

Type SHOW DIAL to see DIAL-related items.
Type SHOW MODEM to see modem-related items.
C-Kermit>

SHOW COMMUNICATIONS shows the type of flow control currently in effect. Use SHOW

FLOW-CONTROL to also see the flow-control table. Duplex is explained in Chapter 8 and
handshake in Chapter 9.

68 Making Serial-Port and Modem Connections / Chapter 3

Figure 3-1 A Direct Connection

Direct Serial Connections

Figure 3-1 shows a direct serial connection from a DEC VAXstation to another computer
using a null modem cable. The VAXstation could also be any other kind of computer that
has a serial port. All you have to do is tell Kermit the name of the communication device
that the cable is connected to and the communication speed to use. The other end of the
cable is connected a computer or device that has been configured for communication at
the same speed.

The only commands Kermit should need to establish a direct connection are SET LINE, SET

SPEED, and perhaps SET FLOW (if SET FLOW AUTO does not produce the best result). Here
is an example of setting Kermit up for a local-mode direct connection, showing the order
in which you should give the commands:

C-Kermit>set carrier-watch off (Only if necessary)
C-Kermit>set modem type none (Only if necessary)
C-Kermit>set term byte 7 (Only if necessary)
C-Kermit>set flow none (Only if necessary)
C-Kermit>set line txa5 (Select communication device)
C-Kermit>set speed 9600 (Now set the speed)
C-Kermit>connect (Go online, Chapter 8)

If you have trouble establishing a direct connection:

• Make sure you have used a null-modem cable rather than a modem cable (see Figure
II-6 on page 524), and that each computer’s serial port asserts the DTR signal and
receives all the signals it requires, usually DSR, CTS, and CD (Model B in the figure),
or else that the appropriate signals are cross-wired or looped back (Model A).

• Make sure the total length of the cable does not exceed 15 meters or 50 feet. For
longer distances, use powered line drivers or limited-distance modems at each end of
the cable, or use a shielded low-capacitance cable.

Dialed Serial Connections 69

• Try SET CARRIER-WATCH OFF before SET LINE in case the CD signal is missing.

• The SET MODEM TYPE NONE command should not be necessary but it might make a
difference on some platforms. If Kermit fails to make the connection without this
command, try including it before the SET LINE command.

• Make sure the serial devices on the two computers are set to the same communication
speed. If you don’t know the other device’s speed, try different speeds.

• If you you see gibberish on your screen, the other computer is probably sending 7 data
bits plus parity. Use SET TERMINAL BYTESIZE 7 or the appropriate SET PARITY value.

• If you were expecting a login prompt but see nothing at all, make sure the port on the
other computer is configured for logins.

• Watch out for flow-control deadlocks. Use SET FLOW NONE at first. Try other
flow-control methods only after you know the connection works.

REMEMBER: SET CARRIER-WATCH first (only if necessary), then SET LINE, then SET

SPEED, in that order.

If your direct connection is wired with a true null modem cable (such as the one shown in
Figure II-6, Model B), Kermit should notice when you log out from the remote computer
and return you automatically to the local Kermit prompt with a message like
‘‘communications disconnect’’. If you have used a ‘‘fakeout’’ cable (like Model A in
Figure II-6), Kermit will not notice when you log out or the other computer turns off DTR,
and the connection remains open.

❍ ❍ ❍ ❍

The rest of this chapter tells how to make dialed connections. If you will not be
making dialed connections, but you will be making network connections, turn to
Chapter 6 on page 137. If you will not be making dialed or network connec-
tions, turn to Chapter 8 on page 169 to learn how to go online.

Dialed Serial Connections

When you can’t connect two computers with a direct cable or through a network, you can
do it with modems and telephone lines, as illustrated in Figure 3-2. With Kermit and a
modem, your computer can call any other computer in the world that accepts modem calls
and has a modem compatible with yours.

Just tell Kermit what device the modem is attached to and (if necessary) what kind of
modem it is, what speed to use, and what number to call; Kermit sends the appropriate
dialing commands to the modem; the modem places the call and tells Kermit whether
there was an answer. Then Kermit tells you whether the call was placed successfully.

70 Making Serial-Port and Modem Connections / Chapter 3

Figure 3-2 A Dialed Connection

Let’s demonstrate the simple steps that should work in most situations. Follow this ex-
ample, substituting your own particulars for the ones shown, but issue the given com-
mands in exactly the order shown:7

C-Kermit>set line /dev/ttyS0 (Identify the communication device)
C-Kermit>set speed 57600 (Select the dialing speed)
C-Kermit>dial 7654321 (Dial the phone number)

USING MODEM SERVERS: A different technique is used for dialing a modem that is
connected to a TCP/IP modem server. It is described on page 146 in the networks chapter.

Prior to C-Kermit 7.1, if you wanted to make a modem call you were required to issue a
SET MODEM TYPE command to tell Kermit which kind of modem you would be using, be-
fore giving the SET LINE command to choose the serial port and the DIAL command to
place the call. In C-Kermit 7.1 and later, this is no longer necessary in most cases. Now
Kermit assumes that you have a modern modem that uses the AT command set (modem
type GENERIC) that is already configured appropriately. If that is not the case, or if the
generic modem type does not work for you, Chapter 4 explains what to do.

A successful SET LINE command turns on the port’s DTR signal to enable communication
with the modem. Now use Kermit’s SET SPEED command to choose a communications in-
terface speed. Normally this would be the highest speed supported by both Kermit and the

7All telephone numbers shown in this book are fictitious unless noted otherwise.

Dialed Serial Connections 71

modem. If you don’t give a SET SPEED command, the device’s current speed is used,
which might not be the speed you want. The available speeds are listed by ‘‘set speed ?’’.
Modern modems also support intermediate speed values like 12000, 14400, 16800, 21600,
24000, 26400, 28800, 36000, 48000, and 50000 between themselves. These are modem-
to-modem modulation speeds that are not intended to be used as serial interface speeds,
and usually can’t be.

Because most modern modems provide error correction and data compression, you are ex-
pected to set the interface speed between the modem and the computer higher than the
modem’s modulation speed and to keep the interface speed fixed. This is especially im-
portant with V.34, V.90, and V.92 modems, which can change modulation speeds many
times during a session by negotiating ‘‘speed shifts’’ with the other modem, according to
observed fluctuations in line quality. V.90 is asymmetric, supporting incoming speeds of
about 50000 bps and outbound speeds of about 32000 bps; V.92 supports somewhat
higher outbound speeds. The serial interface speed should be at least 57600 bps, and
preferably 115200 or 230400 bps, to keep up with the decompressed incoming data
stream, but unfortunately such high speeds might not be handled well by some serial inter-
faces. Use the highest speed that works.

Dialing with Kermit 95
Windows 95 and later are unique among the platforms where Kermit runs in that modems
and ports are combined into a single concept that we will call the Windows Modem. A
Windows Modem might be an external modem connected by a modem cable to the PC
serial port; it might be an internal modem that looks like a serial port to the software; or it
might be a special Windows-specific device that has nothing at all to do with serial ports
but that still acts like a modem (a so-called ‘‘Winmodem’’). When a real serial port and
modem are involved, Kermit 95 can use them as described in the previous sections:

C-Kermit>set modem type compaq (Modem type first)
C-Kermit>set line com2 (Then device name)
C-Kermit>set speed 115200 (Then speed)
C-Kermit>dial 7654321 (Dial a number)

But it is usually better (‘‘when in Rome...’’) to use the native Windows method of access-
ing the modem, which is Microsoft’s Telephony Application Program Interface, or TAPI,
and in some cases this is the only method that works. To use a Windows Modem, replace
the SET MODEM TYPE, SET LINE sequence with the single command, SET TAPI LINE:

SET TAPI LINE [name]
Asks Windows to allocate and open the given Windows Modem device or, if no name
is given, the default (first or only) Windows Modem device. TAPI device names are
found in the Modems folder of the Control Panel. If the modem is currently owned by
another TAPI-aware application such as a fax program, but is idle, Windows borrows

72 Making Serial-Port and Modem Connections / Chapter 3

it from the application for the duration of the call and returns it afterwards. When the
TAPI interface is used, the Windows modem database (rather than Kermit’s) is used to
obtain the modem’s capabilities and commands. Thus K-95 can configure and dial
any modem at all in Windows, as long as it appears in the Modems folder of the Win-
dows Control Panel.

Since most Windows PCs have only one modem, it usually takes only a SET TAPI LINE and
a SET SPEED command to set up a call:

C-Kermit>set tapi line (Select default Window Modem)
C-Kermit>set speed 115200 (Then speed)

If you have more than one modem and you want to place a call on a particular one, specify
the name of the desired modem from the Windows Control Panel, but with spaces
replaced by underscores:

C-Kermit>set tapi line ? TAPI device name, one of the following:
Compaq_Presario_56K-DF US_Robotics_V.Everything_56K
C-Kermit>set tapi line US<ESC>_Robotics_V.Everything_56K
C-Kermit>set speed 115200

As you can see, ?-help and completion are available here, just as they are anywhere else
that a choice among alternatives is required.

The DIAL and REDIAL Commands
Once you have selected the communication port and speed and (implicitly or explicitly)
the modem type, you’re ready to place your call:

DIAL text
Dials the given text (telephone number) using the procedures appropriate to the current
modem type. Example:

C-Kermit>dial 7654321 (Dial the number)

REDIAL
Dials the number specified in your most recent DIAL command again. Example:

C-Kermit>dial 7654321 (Dial the number)
Failed ("BUSY") (Got a busy signal)
C-Kermit>redial (A few minutes later...)

When you give the DIAL command, Kermit issues configuration and dialing instructions
appropriate to the modem and reads the modem’s responses. Most modems automatically
recognize the speed at which these commands are sent and adjust their own interface
speed accordingly. In particular, AT-command-set modems, whose commands all begin
with the letters AT, use these letters for speed and parity recognition.

Dialed Serial Connections 73

The DIAL text can be anything from the name of dialing directory entry (Chapter 5) to an
ordinary telephone number or a list of numbers. It can also include modem-specific dial
modifiers and/or access codes expressed in the syntax of your telephone system or PBX,
for example:

C-Kermit>dial 93W1 (212) 555-4321

This example shows how you might dial out from a PBX with a Hayes-compatible
modem. Parentheses, spaces, and hyphens are ignored in Hayes dial strings but may be
included for clarity. 93 is a PBX code to get an outside line, ‘‘W’’ is a Hayes dial modifier
meaning ‘‘wait for the secondary dialtone,’’ and ‘‘1’’ requests a long-distance call in the
North American dialing region. Consult Table II-2 on page 517 for details about the spe-
cial characters allowed in Hayes modem dial strings, or read your modem manual.

Suppose you are dialing a service that has several telephone numbers, and if one is busy
you want to try the next automatically, and so on. Here’s how to supply a list of numbers
to the DIAL command:

DIAL {{number}{number}{number}...}

(Those are literal braces because they aren’t slanted.) Example:

C-Kermit> dial {{9-212-555-1212}{9-212-555-1213}{9-212-555-1214}}

(You can’t simply use commas to separate the numbers as you might expect, since comma
can be part of the phone number in Hayes-compatible modems, as you can see in Table
II-2). In this example, Kermit dials 9-212-555-1212 and if it’s busy, then dials 9-212-555-
1213, and so on, until it gets an answer or runs out of numbers.

Tone versus Pulse Dialing
Use the following command to select tone or pulse dialing:

SET DIAL METHOD { AUTO, DEFAULT, PULSE, TONE }
Specifies pulse or tone dialing. The default is AUTO, meaning to choose the dialing
method based on the local country code, if known. TONE means to use tone dialing;
PULSE means to use pulse dialing. DEFAULT means Kermit should not tell the modem
which method to use, so the modem can use its default dialing method. For AT-
command-set modems, DIAL 9876543 becomes ATD9876543 when DIAL METHOD is
DEFAULT, and ATDT9876543 when it is TONE, and ATDP9876543 when it is PULSE.

If an environment variable K_DIAL_METHOD, is defined with a value of TONE, PULSE, or
DEFAULT, the indicated method is used. Otherwise, if Kermit knows the local country
code and this code is in Kermit’s tone/pulse countries database (explained in Chapter 5),
Kermit chooses the method recorded in the database; for example, Country Code 1 is as-
sumed to have tone dialing.

74 Making Serial-Port and Modem Connections / Chapter 3

But tone dialing is not available everywhere, which is why it is not the default method.
Pulse dialing is not the default method either, because the extra telephone keys ‘‘*’’ and
‘‘#’’ cannot be dialed on a rotary telephone, and also because pulse dialing is slow and an-
noying to people who are accustomed to tone dialing. Therefore Kermit assumes the
modem is already configured for the appropriate type of dialing.

Dialing Repeatedly
If the line is busy or the call is not answered successfully, you can make Kermit keep dial-
ing until the call succeeds. Use the following commands. You can cancel automatic
redialing by typing Ctrl-C.

SET DIAL RETRIES number
Tells Kermit how many times to redial the number if there is no answer or the

number is busy. The default is normally 0 (see Chapter 5), meaning no retries. When
multiple numbers for the same name have been fetched from the dialing directory, the
entire sequence is retried the given number of times. Retries are not done if there is an
unrecoverable error (modem is not turned on, no dialtone, etc).

SET DIAL INTERVAL seconds
How many seconds to pause between dial retries. The default interval is 10 seconds.
This interval applies when retrying the same number or group, but not between mul-
tiple entries in a group.

IMPORTANT: AUTOMATIC REDIALING IS PROHIBITED BY LAW IN SOME
COUNTRIES, and the intervals at which and/or the number of times a call can be redialed
might be regulated. Be sure not use Kermit’s automatic redial feature in any way that is
against your local laws.

When Dialing Is Complete
If the DIAL command succeeds and the connection is made, Kermit can either issue a new
prompt and wait for you to enter another command, or it can go online so you can ‘‘see’’
and interact directly with the computer or service you have called. The command to con-
trol this is:

Dialed Serial Connections 75

SET DIAL CONNECT { ON, OFF, AUTO }
Instructs Kermit what to do when a DIAL or REDIAL command succeeds. ON means
that Kermit should immediately enter online terminal (CONNECT) mode, explained in
Chapter 8. OFF means it should await another command. AUTO, which is the default,
means it should CONNECT automatically if the DIAL command was typed at the
keyboard, but if the DIAL command came from a command file or macro (explained in
Chapter 17), it should keep executing commands from the command file or macro.

The default setting of AUTO should do the right thing in almost every case. Use ON or OFF

to force Kermit to do exactly what you want if the AUTO setting does not.

Closing the Connection
To terminate a connection, use the HANGUP or CLOSE command:

HANGUP
When you are using a modem, the HANGUP command either sends a modem-specific
command to hang up the phone or else lowers the Data Terminal Ready (DTR) signal
for half a second, depending on the MODEM HANGUP-METHOD setting (page
-MDMHANGUP). The HANGUP command does not release the serial port; after
HANGUP you can open another connection or place another call on the same device.

CLOSE [CONNECTION]
Does what HANGUP does and then closes and releases the communication port. Clos-
ing a serial port turns off DTR in any case. Kermit returns to its default communica-
tions device: remote mode in UNIX, VMS, etc; none in K-95.

Normally, the HANGUP command need not be used. When you log out from a remote
computer or service, it hangs up its end of the connection, causing the modem local
modem to turn off its CD signal, and Kermit should notice and automatically pop back to
its prompt. Use the HANGUP or CLOSE command in situations where this does not happen,
or it takes too long, or when you want to be doubly sure that the connection is broken and
the telephone is hung up.

Manual Dialing
If you wish, you can also dial a modem by hand or reconfigure or query the modem
directly. Here is an example of manual dialing using an AT-command-set modem:

C-Kermit>set carrier-watch off (Ignore the carrier signal)
C-Kermit>set flow none (Avoid deadlocks)
C-Kermit>set line /dev/tty0p0 (Select the device)
C-Kermit>set speed 57600 (Set the communication speed)
C-Kermit>connect (Make a terminal connection)
Connecting to /dev/tty0p0, speed 57600.
The escape character is Ctrl-\ (ASCII 28, FS).
Type the escape character followed by C to get back,

76 Making Serial-Port and Modem Connections / Chapter 3

or followed by ? to see other options.
ATE1Q0V1 (Make sure it’s there)
OK (Modem responds OK)
ATDT7654321 (Type the dialing command)
CONNECT 36000 (Modem confirms the connection)

(Conduct a session with the remote computer or service)

Ctrl-\C (Escape back to the prompt)
C-Kermit>

You have to escape back by hand because when CARRIER-WATCH is OFF, Kermit doesn’t
pop back automatically when the call hangs up. The CONNECT command and escaping
back is thoroughly explained in Chapter 8.

Partial and Multistage Dialing
Some types of modems can be told to return to command mode immediately after being
given a dial command, without waiting for carrier. For Hayes and compatible modems,
this is done by including a semicolon (;) as the last character of the phone number. This
is useful when the number you are calling is not a modem and it will never send carrier or
when the dial string is too long for the modem and needs to be broken into pieces (it is
still common to find modems with a maximum command length of 40 characters).

To dial a credit-card call that is too long for your modem, you might expect to be able to
use the semicolon trick and then issue two DIAL commands (a comma in the dial string
tells a Hayes or compatible modem to pause for a couple seconds):

C-Kermit>dial 10288,0,212,5551234,,,;
C-Kermit>dial 4114 9999 9999 9999

This would be fine, except that the second DIAL command hangs up the phone and reini-
tializes the modem, so this technique is guaranteed to fail. Therefore a special command
is required for partial dialing:

PDIAL number
Like DIAL, but issues the dialing command in the modem-specific way that causes the
modem to return to command state immediately after dialing the number, rather than
waiting for carrier, and instructs Kermit not to expect a call completion code. Fur-
thermore, Kermit remembers that this call was partial, and so does not reinitialize or
hang up the modem when the next DIAL or PDIAL command is issued.

If your modem is Hayes or compatible, Kermit automatically appends a semicolon to the
number so you need not include it yourself, and it looks for an OK response rather than a
dial completion code such as CONNECT or BUSY.

Now we can call that long telephone number:

Dialed Serial Connections 77

C-Kermit>pdial 10288,0,212,5551234,,,
C-Kermit>dial 4114 9999 9999 9999

Check your modem manual for dial-string details. Some modems support a ‘‘wait for
credit-card tone’’ modifier such as & or $, which you could use to take the guesswork out
of deciding how many commas to use.

In case you issue a partial dialing command but then wish to cancel the partially-dialed
status, so the next DIAL or PDIAL command does not skip the modem hangup or initializa-
tion steps, either HANGUP the connection, which implicitly clears the dial status, or:

CLEAR DIAL-STATUS
Clears Kermit’s dial status without hanging up the modem.

CLEAR DIAL-STATUS also sets the \v(dialstatus) variable (explained in Chapter 17) to
its default value, -1, meaning ‘‘no calls have been placed yet.’’

Dialing Beepers and Pagers
A beeper is a mobile device that has a phone number; when the number is called, the
device beeps. Beepers were the predecessors of pagers. The owner of the beeper can’t
tell who the call is from, so must call a prearranged number to find out; for example, a
doctor would call her office or answering service whenever she is beeped. Here’s how to
dial a beeper with Kermit:

C-Kermit>set line /dev/tty00 (And serial port device)
C-Kermit>set speed 2400 (And interface speed)
C-Kermit>pdial 7654321@ (Dial the beeper)
C-Kermit>clear dial-status (For next call)

PDIAL is used rather than DIAL because the beeper number does not answer with a modem,
so Kermit should not wait for a carrier or a CONNECT message. The at-sign (@) is a dial
modifier that can be used to tell most Hayes-compatible modems to wait for the call to be
answered. This way the modem will report BUSY or NO ANSWER if the call does not
succeed, and will say OK only if it does, and therefore the PDIAL command will fail or
succeed accordingly, which is important for scripting. The CLEAR command is needed if
another call will be made, so it will not be misinterpreted as a continuation of this call.

A numeric pager is like a beeper, except a numeric message (such as a telephone number)
can be sent and displayed on the pager (alphanumeric paging is explained in Chapter 19).
Suppose your friend’s pager number is 555-1234 and you want him to call you at
8765432:

C-Kermit>set line /dev/tty00
C-Kermit>set speed 2400
C-Kermit>pdial 5551234@8765432#
C-Kermit>clear dial-status

78 Making Serial-Port and Modem Connections / Chapter 3

‘‘@’’ is the Hayes wait-for-answer code, ‘‘#’’ is an end-of-message signal to the pager,
which can vary depending on the pager service.

If your modem does not support the ‘‘@’’ dial modifier, you can insert the appropriate
number of pause characters in its place, but then the modem will not be able to let Kermit
know whether the call was answered. AT-command-set modems use comma (‘‘,’’) for
this purpose. Each comma in the dial string causes a two-second pause:

C-Kermit>pdial 5551234,,,,,,8765432#

Test paging applications thoroughly. They work only as well as your modem, and many
modems were not designed with paging in mind.

Answering Incoming Calls
Not only can Kermit place calls, you can also have Kermit answer them. The command is
simply:

ANSWER [timeout]
Waits for a telephone call to come in on the SET LINE device. If a timeout value is in-
cluded, Kermit waits up to the given number of seconds and then gives up. If no
timeout value is included, or a timeout value of 0 is given, Kermit waits indefinitely or
until interrupted from the keyboard with Ctrl-C.

To answer an incoming call, give the following sequence of commands:

C-Kermit>set line /dev/cua (and communication port)
C-Kermit>set speed 57600 (and interface speed)
C-Kermit>answer (Wait for a call to come in)

In subsequent chapters, we’ll see what sorts of services Kermit can offer to incoming
callers: interactive chatting, callback, file transfer and management, ‘‘host mode,’’ and so
on, and we will see how to automate operations like those above so you don’t have to type
lots of commands.

The Connection Log

Kermit can log your connections so you can see where you’ve been and have a record of
calls you’ve made. This is especially handy if you make a lot of long-distance modem
calls; you can check the log against your phone bill.

A connection is defined as any session that is begun by SET LINE, SET PORT, DIAL, SET

HOST, TELNET, RLOGIN, or FTP (network connections are explained in subsequent chap-
ters). Connections are not logged unless you request it.

The Connection Log 79

The command is:

LOG CX [filename [{ NEW, APPEND }]]
Enables logging of connections in the given file. If the trailing NEW or APPEND

keyword is omitted, the file is opened for appending; i.e. new records are written to
the end. If NEW is specified, a new file is created; if a file of the same name already
exists, it is overwritten. If the filename is omitted, CX.LOG in your home (login)
directory is used (note: uppercase). To accept all defaults, just use ‘‘log cx’’ (‘‘l c’’ for
short). Synonym: LOG CONNECTIONS.

CLOSE CX-LOG
This closes the connection log if it was active. Note: CLOSE CONNECTION is not a
synonym for CLOSE CX-LOG; CLOSE CONNECTION closes the connection itself).

SHOW CX
This shows information about your current connection, if any, including the elapsed
time (since you opened it). Synonym: SHOW CONNECTION. Example:

[C:\K95\] K-95> sho cx

Status: Active
Opened: 20010319 18:04:58
User: olaf
PID: 16263
Type: DIAL
From: olaf.xyzcorp.com
Device: com1
To: 741-8100
Origin: +1(212)
Elapsed time: 02:17:12
Encrypted: No
Log: (none)

[C:\K95\] K-95>

The connection log contains one line per connection, of the form:

yyyymmdd hh:mm:ss username pid p=v [p=v [...]]

where the timestamp (in columns 1-18) shows when the connection was made and is
suitable for sorting and merging; username is the login identity of the person who made
the connection; pid is Kermit’s process ID when it made the connection. The p’s are
parameters that depend on the type of connection, and the v’s are their values:

T = Connection Type (TCP, SERIAL, DIAL, DECNET, etc).
H = The name of the Host from which the connection was made.
N = Destination phone Number or Network host name or address.
D = Serial connections only: Device name.
O = Dialed calls only: Originating country code and area code if known.
E = Elapsed time in hh:mm:ss format (or hhh:mm:ss, etc).

80 Making Serial-Port and Modem Connections / Chapter 3

Example:
20010208 20:37:11 olaf 19684 T=SERIAL H=hpux3 D=/dev/cua0p0 E=00:11:43
20010314 20:41:10 olaf 19685 T=DIAL H=hpux3 D=/dev/cua0p0 N=7654321 O=+1(212) E=03:55:08
20010429 20:58:33 olaf 18965 T=TCP N=hq.xyzcorp.com H=hpux3 E=00:31:23

The log is opened whenever an entry must be made, and closed immediately afterward;
therefore multiple instances of yourself making connections with Kermit, even on dif-
ferent computers with the same NFS-mounted home directory, are accommodated.

If you always want to keep a connection log, simply add the LOG CONNECTIONS command
to your C-Kermit customization file.

Troubleshooting Dialed Connections

For dialing to succeed, you must ensure proper setup and configuration of Kermit, your
computer, the modem, the modem cable, and the telephone line. If you can’t complete a
dialed call, first check the the physical compenents:

1. Make sure your modem is turned on. This applies to internal modems too: some lap-
tops have a power-saver feature that turns internal modems off (consult your laptop’s
owners manual for details).

2. Make sure your modem is connected to the phone line. With most modems, a
telephone cable from the wall jack is plugged into the ‘‘Line’’ socket of the modem.

3. External modems only: Make sure your modem is connected to your computer with a
straight-through modem cable (not with a null modem cable, see Appendix II), and
that the cable has not wiggled loose and that the wires in the cable and the pins in the
connector are not broken and all the pins are straight.

4. External modems only: Make sure your modem cable conveys (has wires for) all the
necessary signals, including at least SG, TD, RD, DSR, RTS, CTS, CD, and DTR (see
Appendix II).

5. Give a SET LINE command for the device that the modem is connected to, and then use
SHOW COMMUNICATIONS to check the modem signals. DSR, CTS, or both should be
on. If neither is on, you probably have the wrong port or a bad cable. Or else the
modem is misconfigured: except in VMS, modems should be set to assert DSR when-
ever they are turned on; the command is AT&S0 in most AT-command-set modems —
check your modem manual to be sure.

6. SET SPEED to an appropriate value, SET CARRIER-WATCH OFF, SET FLOW NONE, and
CONNECT. Type a command at the modem and see if you get a response. For AT-
command-set modems, type the letters AT (uppercase) and then press the Enter or
Return key. You should see OK or the digit 0. If not, then try again with ATQ0E1V1.
If you still don’t get a response:

Troubleshooting Dialed Connections 81

• The computer is supposed to turn on its DTR signal when the port is open; most
modems do not communicate unless the computer’s DTR signal is on. Check the
SHOW COMMUNICATIONS report (and/or the modem’s lights if it is an external
modem) for DTR. Perhaps the modem cable is not conducting it. If you are sure
you have the right port, but can’t fix or replace your modem cable, try configuring
your modem to ignore DTR. In most AT-command-set modems, the command for
this is AT&D0.

• Most modern modems detect the interface speed automatically from the AT com-
mand. If you typed something besides the uppercase letters AT first, the modem
might have set its interface speed to something that doesn’t match Kermit’s. Turn
the modem off and on again, escape back to Kermit (explained in Chapter 8 but for
now, if you don’t know what this means, in C-Kermit type Ctrl-\ — that is, hold
down the Ctrl key and press the Backslash key — and then press the letter C key;
in K-95 hold down the Alt key and press the X key to escape back) and go back to
the beginning of this step

• The modem might have been configured for a fixed interface speed, which is dif-
ferent from the one Kermit is using. The only solution to this problem is to try
each speed. Escape back to the Kermit prompt, give a SET SPEED command for a
different speed, and go back to the beginning of this step; repeat until you get an
intelligible answer to your AT command. See your modem manual for how to
(re-)enable your modem’s automatic interface speed recognition feature.

Once you have established basic connectivity with the modem and verified that it can take
commands and respond to them, but dialing still doesn’t work, follow these steps:

1. The automatic predial hangup operation might be causing problems. Try SET DIAL

HANGUP OFF or SET MODEM HANGUP-METHOD RS232 before dialing.

2. Before giving a DIAL command, tell Kermit to SET DIAL DISPLAY ON so you can watch
the dialog between Kermit and the modem and spot any commands that result in an
ERROR message. If you see any, then you need to try a different modem type or
modify the current one, as explained in Chapter 4. Don’t use SET MODEM TYPE HAYES

unless you really have a Hayes 2400 modem.

3. If the modem reports NO DIALTONE (or similar message) and refuses to dial, make sure
the telephone cable is connected to both the wall jack and the modem, and that your
telephone is working. If so, perhaps the dialtone is not recognized by the modem even
though the telephone circuit is ready for dialing. In this case you can use Kermit’s
‘‘blind dialing’’ feature (explained in Chapter 5): tell Kermit to SET DIAL

IGNORE-DIALTONE ON and try dialing again.

82 Making Serial-Port and Modem Connections / Chapter 3

4. If the modem reports NO ANSWER (or similar message), then you have dialed the
wrong phone number or else something is wrong at the destination — perhaps the
answering modem is disconnected, powered off, or broken. Check the number; if it is
correct, try again later. Hint: use Kermit’s automatic redialing feature.

5. If the modem reports BUSY (or similar message), the telephone number is busy. Try
an alternative number (if any) or dial again later, using Kermit’s automatic redialing
feature if desired.

6. Make sure your modem’s speaker (if any) is turned on. Although Kermit attempts to
do this itself, some modems have a manual volume control that takes precedence; for
example, US Robotics Courier modems have a slider under the right edge. Once the
speaker is operational, you can better monitor the progress of the call: dialing, ringing,
answer, modem tones. Now you can tell if the number actually rings or you get a
voice message (like ‘‘number not in service’’) or error tone, and if it is answered,
whether it is answered by a modem or by a person. If a person answers, that’s a good
indication that the number is incorrect, or was incorrectly dialed.

7. If your modem uses tone dialing but your telephone company accepts only pulse
(rotary) dialing, tell Kermit to SET DIAL METHOD PULSE. Or if the reverse is true, tell
Kermit to SET DIAL METHOD TONE.

8. Make sure the telephone number was given in a format acceptable to the modem.
Usually, modems do not convert letters to digits (as in 1-800-FLOWERS). Also note
that certain punctuation characters are ignored (such as hyphen and parentheses) and
others are treated as ‘‘dial modifiers’’ (such as comma and at-sign), depending on the
make and model of the modem. Consult your modem manual for details.

Now you should be able to dial a number that is answered by a modem. But if you still
don’t get a usable data connection:

1. If dialing fails with a ‘‘Timed out’’ message, use the SET DIAL TIMEOUT command to
increase the timeout interval.

2. Make sure your modem supports at least one modulation technique (Bell 103, Bell
212, ITU-T V.21, V.22, V.32, V.32bis, V.34, V.90, V.92, etc.) in common with the
modem you are calling and it is configured to negotiate it. If the two modems can’t
agree on a modulation-protocol combination, perhaps your modem is configured for
some special nonstandard protocol with negotiation and fallback disabled; for ex-
ample, maybe it is set to make only fax or voice calls. Consult your modem manual to
find out how to configure for data calls.

3. If your modem has error-correcting or compression protocols enabled, try using
Kermit’s SET DIAL ERROR-CORRECTION OFF command (Chapter 5) to turn them off. In
particular, MNP modems (not used much any more) send characters to negotiate

Troubleshooting Dialed Connections 83

protocol level and features after carrier has been established. If the answering modem
doesn’t support MNP, these characters can pass through the remote modem and inter-
fere with the host’s speed detection or login procedures. In general, take your modem
down to its least sophisticated level and work up from there one feature at a time. See
the next chapter for details.

4. Consult the online documentation, website, newsgroup, bug list, or FAQ for your
modem and your particular Kermit program for additional hints, tips, and
late-breaking news. If you’re a K95 user, go the website of your modem or PC maker
and see if you need to download a new driver for your modem.

Once you have a successful connection, you might still experience some difficulties:

1. Complete gibberish caused by interface speed mismatch. Refer to the SET MODEM

SPEED-MATCHING command discussion earlier in this chapter.

2. Complete or partial gibberish because the computer or service you have called is using
parity. Use the SET TERMINAL BYTESIZE 7 command (explained in Chapter 8 and see if
the gibberish stops. If not, try different PARITY settings (described earlier in this chap-
ter).

3. Data loss caused by inadequate flow control. If the modem does not support flow con-
trol with the computer it is attached to, you can use end-to-end Xon/Xoff flow control
with the host, with no guarantees. If the modem does support local flow control, make
sure Kermit’s flow control setting (as displayed by SHOW COMMUNICATIONS) agrees
with the modem’s. Consult your modem manual for how to find out the modem’s cur-
rent configuration. Most modern modems report their settings in response to an ATIn
command, where n is a digit, for example, ATI5.

4. Long pauses during a session. This is normal with modern modems, which
renegotiate their protocols and modulations to adjust to changing conditions of the
connection. This is called retraining and can take anywhere from several seconds to a
minute.

5. Interruptions caused by incoming telephone calls when your telephone line has the
Call Waiting feature. Most telephone companies allow call waiting to be disabled
during a particular call by dialing a special prefix such as *70 (more about this in
Chapter 5.

Once you have made a successful data connection, you can use it interactively (as
described in Chapter 8), you can transfer files over it (Chapter 9), or you can run
automated procedures on it (Chapter 19).

84 Making Serial-Port and Modem Connections / Chapter 3

This wraps up our discussion of the basics of making serial connections. The next chapter
explains how to achieve fine-grained control modems and Chapter 5 presents the dialing
directory. A summary list of commands for this chapter appears on the next page.

Command Summary

If you are making a dialed connection, first tell Kermit the type of modem you are using,
and then give any desired SET MODEM commands (defaults are bold):

SET MODEM TYPE { NONE, name }
SET MODEM HANGUP-METHOD { MODEM-COMMAND, RS232-SIGNAL }
SET MODEM SPEED-MATCHING { ON, OFF }

Use the SET CARRIER-WATCH OFF command, if necessary, to allow communications with
the modem prior to dialing, or for using a serial device that does not present a carrier sig-
nal; otherwise the default setting of AUTO is normally best:

SET CARRIER-WATCH { AUTO, ON, OFF }

Now choose the serial communication device and make the appropriate settings:

SET LINE device
SET PORT device (Same as SET LINE)
SET SPEED number
SET FLOW-CONTROL { AUTO, KEEP, NONE, RTS/CTS, XON/XOFF }

If you are dialing a modem, make any desired DIAL settings and then give one of the dial-
ing commands. Use CLEAR DIAL-STATUS to cancel the effects of any previous DIAL or
PDIAL operation.

SET DIAL CONNECT { ON, OFF }
SET DIAL DISPLAY { ON, OFF }
SET DIAL HANGUP { ON, OFF }
SET DIAL INTERVAL seconds
SET DIAL RETRIES number
SET DIAL TIMEOUT seconds [differential]
DIAL phone-number
PDIAL phone-number
REDIAL
CLEAR DIAL-STATUS

To hang up the connection, use HANGUP. To close the communication device, which
might be necessary on direct connection where hanging up might not be noticed by the
other computer, use the CLOSE command:

HANGUP
CLOSE

Command Summary 85

And to display your communications-related settings:

SHOW COMMUNICATIONS
SHOW DIAL
SHOW MODEM
SHOW FLOW-CONTROL

86

87

Chapter 4

Configuring Modems

❍ ❍ ❍ ❍

This chapter covers Kermit’s features for controlling and configuring modems.
If you are already operating your modem to your satisfaction, feel free to skip
ahead to Chapter 5 and learn about telephone numbers and the dialing directory
and come back here for reference if you need to.

When Kermit’s modem type is GENERIC (as it is unless you change it) and you give a
DIAL, REDIAL, PDIAL, or ANSWER command, Kermit dials the modem by sending it just a
few AT commands that are common to all ‘‘Hayes compatible’’ modems. Generic dialing
is fast because it makes assumptions about how your modem is set up, rather than actively
configuring each relevant feature. It’s easy to use because it doesn’t require any modem-
related commands.

Generic dialing works if your modem (a) uses the basic Hayes AT command set; (b) is
capable of speed buffering; (c) hangs up when the computer drops DTR momentarily; and
(d) is already configured appropriately for use by Kermit. Appropriate configuration
means (a) the most effective form of flow control is enabled and matches Kermit’s flow
control; (b) error correction is enabled; and (c) speed buffering is enabled. All of these re-
quirements are met by virtually every modem sold since 1994 in their default power-up
configurations, so the chances are small that generic dialing will fail. Small, but not zero:
your modem might not be Hayes compatible at all; it might not do speed buffering; it
might be configured in some nonstandard way. Or you might need to change the standard
configuration for some special purpose such as alphanumeric paging.

88 Configuring Modems / Chapter 4

Choosing a Specific Modem Type

If the GENERIC modem type doesn’t work for you, begin by telling Kermit the specific
type of modem you actually have so Kermit can account for its particular features and
commands:

SET MODEM TYPE name
Tells Kermit which kind of modem will be used for dialing. The modem name is a
keyword; you must pick one that matches your modem. (If your modem is not listed,
you can add it as described later in this chapter.)

At this writing, Kermit has more than 80 different modem types built in, old and new.
Most of them use the AT command set, but Kermit also supports modems and PBXs that
have their own unique command languages. If you type ‘‘set modem type ?’’, Kermit lists
the modem types you can choose:

C-Kermit>set modem type ? (See what’s available)
acer hayes-1200 penril
att-dataport hayes-2400 ppi
boca hayes-high-speed racalvadic
bestdata intel rockwell-v90
digitel-dt22 itu-t-v.250 rolm-dcm
fujitsu lucent smartlink-v90
(many more)...

C-Kermit>set modem type ppi (Practical Peripherals Inc.)

Kermit’s modem types fall into several categories:

GENERIC
As of C-Kermit 7.1, this is the default modem type and should work with any rela-
tively modern modem that uses the AT command set. The GENERIC modem type
should also work for direct connections: if you don’t DIAL Kermit doesn’t send any
modem commands.

NONE
The default GENERIC modem type should also work for direct connections. If it
doesn’t, use SET MODEM TYPE NONE, which causes Kermit to open the device in a spe-
cial ‘‘no-modem’’ mode. Synonym: DIRECT. Examples:

C-Kermit>set carrier-watch off (Only if necessary)
C-Kermit>set modem type none (Direct connection)
C-Kermit>set line /dev/tty00 (Open the device)

UNKNOWN
This means that there is a modem, but it is of a type unknown to Kermit, or you don’t
want Kermit to control it. You must specify the modem’s entire dialing sequence in
Kermit’s DIAL command. Modem signals are ignored while dialing, but Kermit, after

Choosing a Specific Modem Type 89

dialing, waits for the CD signal for a certain amount of time (usually between one and
two minutes) to see whether the call was succesfully completed. Here’s an example
for a modem that uses the Hayes AT command set:

C-Kermit>set modem type unknown
C-Kermit>set line /dev/tty0
C-Kermit>set speed 57600
C-Kermit>set flow rts/cts
C-Kermit>dial ATDT7654321

USROBOTICS, COMPAQ, ROLM, HAYES-HIGH-SPEED, ...

If you name a specific type of modem, Kermit uses its built-in knowledge of the dial-
ing language and procedures for that modem when you issue a DIAL command, and it
declares the connection complete or failed based on responses from the modem, which
are also recorded in the database.

HAYES-1200, HAYES-2400
These mean exactly what they say. They refer to early Hayes models that do not sup-
port hardware flow control, error correction, speed buffering, or data compression.
For historical reasons, HAYES is accepted as an abbreviation for HAYES-2400. Don’t
SET MODEM TYPE HAYES just because your modem uses AT commands or claims to be
Hayes compatible. Pick the exact modem type or use the default GENERIC type.

TAPI
(Windows only) This means the modem is not one of Kermit’s built-in modem types,
but a Windows Modem accessed through Microsoft’s Telephony Applications
Program Interface (TAPI).

USER-DEFINED
This indicates a modem whose characteristics and commands are supplied by you, as
described later in this chapter.

Some of the modems known to Kermit are listed in Table 4-1; here is what the abbrevia-
tions mean:

CS (Column label) Command Set.
Sp (Column label) Speed.
AT Uses Hayes AT command set.
IT Uses ITU-T V.25bis command set.
SX Uses Microcom SX command set.
HS High speed.

‘‘High speed’’ means capable of speeds in excess of 9600 bps, plus error correction, data
compression, hardware flow control, and speed buffering. A complete list of modem
types can be obtained by typing ‘‘set modem type ?’’. To see the details for any of
Kermit’s built-in modem types, give a SET MODEM TYPE command for any of those in the
list, and then a SHOW MODEM command.

90 Configuring Modems / Chapter 4

Table 4-1 Some of C-Kermit’s Built-in Modem Types

Name CS Sp Description

ATT-DATAPORT AT HS AT&T / Paradyne DataPort.
ATT-ISN AT&T ISN Network
ATT-SWITCHED-NET AT AT&T switched network modems
ATT-7300 AT&T 7300 (3B1) internal modem
BOCA AT HS Various BOCA models
COMPAQ AT HS Compaq Presario 56K-DF
CONEXANT AT HS Conexant 56K Modem Family
DIGITEL-DT22 IT Digitel DT-22 (Brazil)
GATEWAY-TELEPATH AT HS Gateway 2000 Telepath II
HAYES-1200 AT Hayes Smartmodem 1200
HAYES-2400 AT Hayes Smartmodem 2400
HAYES-HIGH-SPEED AT HS Hayes Ultra, Optima, or Accura
INTEL AT HS Intel High-Speed Faxmodem
ITU-T-V25BIS IT ITU-T (CCITT) V.25bis, async only
ITU-T-V250 AT HS ITU-T V.250 AT command set
LUCENT AT HS Lucent Technologies VENUS chip set
MEGAHERTZ-XJACK-56K AT HS 3Com / USR / Megahertz 56K CC/XJ-CC1560 X2
MICROCOM-AT AT HS Microcom AX, QX, SX in AT mode
MICROCOM-SX SX HS Microcom AX, QX, SX in SX mode
MICROLINK AT HS ELSA GmbH MicroLink 14.4 / 28.8
MOTOROLA-SM56-V90 AT HS Motorola SM56 V.90 chip set
MULTITECH AT HS Multitech MT Series MultiModem
MWAVE AT HS IBM Mwave
OLD-TELEBIT AT HS TrailBlazer,T1000/1500/2000/2500

PPI AT HS Practical Peripherals, V.22bis–V.34
ROCKWELL-V34 AT HS Rockwell Rc288 ACi and ACL V.34 family
ROCKWELL-V90 AT HS Rockwell RCVDL56ACF, RC55D, RC335D family
ROLM-244PC AT Rolm (Siemens) CBX 244PC
ROLM-600-SERIES AT Rolm (Siemens) CBX 600 Series
ROLM-DCM Rolm (Siemens) CBX DCM
SPIRIT-II AT HS QuickComm Spirit II
SUPRA-EXPRESS-V90 AT HS Diamond Supra Express V.90 56K
SUPRASONIC AT HS Diamond SupraSonic 288V+
TELEBIT AT HS T1600/3000, Q/Fast/WorldBlazer
USROBOTICS AT HS US Robotics (3Com) Courier or Sportster
ZOLTRIX AT HS Zoltrix V.32bis or V.34
ZOOM-V34 AT HS Zoom V.34
ZOOM-V90 AT HS Zoom V.90
ZOOM-V92 AT HS Zoom V.92
ZYXEL AT HS ZyXEL V.32bis or V.34

Choosing a Specific Modem Type 91

When you give a SET MODEM TYPE command for a specific kind of modem, Kermit
fetches all the required modem-specific information and commands from its database.
You can see how this works by giving a SET MODEM TYPE command and then viewing the
information with the SHOW MODEM command. Here’s an example:

(/home/olga) C-Kermit>set modem type usr (Specify modem type)
(/home/olga) C-Kermit>set line /dev/tty01 (Specify port)
(/home/olga) C-Kermit>show modem (View modem info)
Line: /dev/tty01, Modem type: usrobotics
US Robotics Courier or Sportster

Modem capabilities: AT SB EC DC HWFC SWFC
Modem carrier-watch: auto
Modem maximum-speed: 115200 bps
Modem error-correction: on
Modem compression: on
Modem speed-matching: off (interface speed is locked)
Modem flow-control: auto
Modem hangup-method: modem-command
Modem speaker: on
Modem volume: medium
Modem kermit-spoof: off
Modem escape-character: 43 (= "+")

MODEM COMMANDs (* = set automatically by SET MODEM TYPE):

* Init-string: ATQ0X4&A3&S0&N0&Y3S14=0\{13}
* Dial-mode-string: (none)
* Dial-mode-prompt: (none)
* Dial-command: ATD%s\{13}
* Compression on: AT&K1\{13}
* Compression off: AT&K0\{13}
* Error-correction on: AT&M4&B1\{13}
* Error-correction off: AT&M0\{13}
* Autoanswer on: ATS0=1\{13}
* Autoanswer off: ATS0=0\{13}
* Speaker on: ATM1\{13}
* Speaker off: ATM0\{13}
* Volume low: ATL1\{13}
* Volume medium: ATL2\{13}
* Volume high: ATL3\{13}
* Hangup-command: ATQ0H0\{13}
* Hardware-flow: AT&H1&R2&I0\{13}
* Software-flow: AT&H2&R1&I2\{13}
* No-flow-control: AT&H0&R1&I0\{13}
* Pulse: ATP\{13}
* Tone: ATT\{13}
* Ignore-dialtone: ATX3\{13}
* Predial-init: (none)

For more info: SHOW DIAL and SHOW COMMUNICATIONS
(/home/olga) C-Kermit>

The first line of the SHOW MODEM report lists the current SET LINE device, if any, and the
modem type keyword. The second line is a brief description of the modem type.

92 Configuring Modems / Chapter 4

The next section of the report lists the modem’s capabilities (explained in Table 4-2), fol-
lowed by Kermit’s current modem-related settings and selections, which are the default
values appropriate to this modem, which you can change if you want to. For example, if
you want the modem speaker off, you can tell Kermit to SET MODEM SPEAKER OFF. Cer-
tain of these settings are loaded from the database by the SET MODEM TYPE command,
overwriting previous values; for example, if the modem has EC capability then MODEM

ERROR-CORRECTION is set to ON. Other settings are persistent, such as MODEM SPEAKER

ON or OFF.

The final section of the report shows the commands that are actually sent to the modem
when you give a DIAL command, chosen according to the settings in effect when the DIAL

command is given. You can change any or all of them if you wish, as described later in
this chapter. To illustrate, suppose you have SET MODEM TYPE USR (as in the example),
but your modem is a (hypothetical) newer model that uses slightly different commands to
turn the speaker on and off:

C-Kermit> set modem command speaker on AT%M1\13
C-Kermit> set modem command speaker off AT%M0\13

Now whenever you give a DIAL-class command, the appropriate modified speaker com-
mand is emitted automatically, according to your MODEM SPEAKER setting, ON or OFF.

As you read this chapter, remember that Kermit commands need not always be typed at
the prompt. They can also be collected into files that you tell Kermit to TAKE, or even put
into your initialization or customization file, which is executed automatically when you
start Kermit. Also remember that the backslash (\) character is special in Kermit com-
mands; it introduces a backslash code that stands for a control character or a variable, for
example ‘‘\13’’ (or ‘‘\{13}’’, same thing) for carriage return.

Table 4-2 Modem Capabilities

Code Description

AT Modem uses Hayes AT command set and responses

ITU Modem uses ITU-T (CCITT) V.25bis command set and responses

SB Modem can do speed buffering (interface speed can be locked)

EC Modem can do error correction (MNP or V.42/LAPM)

DC Modem can do data compression (MNP or V.42bis)

HWFC Modem can do local hardware flow control (RTS/CTS) (listed in Table 4-1 as LF)

SWFC Modem can do local software flow control (Xon/Xoff) (also listed in Table 4-1 as LF)

KS Modem has ‘‘Kermit spoof’’ (modem itself runs Kermit protocol)

TB Made by Telebit (used internally for simplification)

Important Settings 93

Important Settings

Let’s look again at the following portion of the SHOW MODEM listing (line numbers have
been added for reference):

1. Modem error-correction: on
2. Modem compression: on
3. Modem speed-matching: off (interface speed is locked)
4. Modem flow-control: auto

When you give a SET MODEM TYPE command for a specific type of modem:

1. If Kermit knows that the modem is capable of error correction, Kermit tells the
modem to use it by sending the MODEM COMMAND ERROR-CORRECTION ON command
that was loaded from the database when you gave your SET MODEM TYPE command.

2. If Kermit knows that the modem is capable of data compression, Kermit tells the
modem to use it by sending the MODEM COMMAND DATA-COMPRESSION ON command
that was loaded from the database.

3. If Kermit knows that the modem is capable of speed buffering, Kermit assumes the
modem has been configured to use it and will, therefore, not change its own interface
speed in response to CONNECT speed reports from the modem. This is generally a safe
assumption because in most in modems, error correction and compression imply speed
buffering.

4. If the modem is capable of local flow control, Kermit configures it to use the same
kind of flow as Kermit itself is set to use. If Kermit’s FLOW-CONTROL is set to AUTO,
and your version of Kermit supports RTS/CTS flow control, and the modem does too
(SHOW MODEM lists HWFC capability), then Kermit switches to RTS/CTS and also con-
figures the modem for RTS/CTS by sending the MODEM COMMAND HARDWARE-FLOW

command that was loaded from the database. Otherwise Kermit configures itself for
Xon/Xoff flow control, and if the modem supports local Xon/Xoff, Kermit configures
the modem to use it by sending the MODEM COMMAND SOFTWARE-FLOW command
from the database; otherwise Xon/Xoff is used end-to-end.

Kermit does not, however, set any of the following automatically:

1. Communication device.
2. Speed of the communication device.
3. Parity.

So you should take care to ensure they are set appropriately. Kermit does its best to catch
mistakes or possible mismatches, however. For example, you can’t DIAL or CONNECT un-
til after you have opened a communication device with SET PORT or SET LINE (or, in the
case of network modem servers, SET HOST).

94 Configuring Modems / Chapter 4

Changing Things

The following commands let you turn selected features of your modem on and off (if it
has them). Give these commands after the SET MODEM TYPE command to override the
values that are picked up from the database.

SET MODEM SPEED-MATCHING { ON, OFF }
When you SET MODEM TYPE, Kermit obtains the modem’s speed-buffering (SB)
capability from the database. If the modem has this capability (as most modern
modems do), Kermit keeps its interface speed constant, no matter what speed is
reported in the modem’s CONNECT message. If the modem does not have SB
capability, Kermit attempts to change its interface speed to match the one reported in
the modem’s CONNECT message. Use SET MODEM SPEED-MATCHING ON to force Ker-
mit to change its interface speed, or SPEED-MATCHING OFF to force Kermit to keep its
speed fixed; that is, to override the capability from the database.

SET MODEM ERROR-CORRECTION { ON, OFF }
When this is ON and the modem has EC capability, Kermit sends the MODEM COM-

MAND ERROR-CORRECTION ON string to the modem as part of the dialing process, to
enable its error correction feature, in case it is not currently enabled. When this is OFF

and the modem has EC capability, Kermit sends the MODEM COMMAND

ERROR-CORRECTION OFF string. Sometimes when an error-correcting modem dials
another modem that can’t do error correction, the negotiations confuse the other
modem so badly that the connection can’t be made; this tends to be the case when call-
ing banking services and alphanumeric pagers. Use SET MODEM ERROR-CORRECTION

OFF to disable your modem’s error correction feature prior to dialing. Note: This also
disables compression and (depending on the modem) sometimes also speed buffering.

SET MODEM COMPRESSION { ON, OFF }
Works similarly to MODEM ERROR-CORRECTION. Data compression is almost always
beneficial when it is done by the modem, at least as long as you have an effective
means of local flow control (preferably RTS/CTS) between your computer and the
modem. If adequate flow control is lacking, or if the compression negotiations con-
fuse the other modem, use this command to disable data compression.

The next group of commands lets you customize Kermit’s interactions with the modem:

SET MODEM FLOW-CONTROL { AUTO, NONE, RTS/CTS, XON/XOFF }
This tells Kermit how to configure the modem’s local flow-control feature, if any.
AUTO, the default, tries to ‘‘do the right thing’’ based on a combination of the modem’s
capabilities (from Kermit’s modem database) and Kermit’s FLOW-CONTROL setting.
The other options let you override the automatic procedure, for example, when you
have a version of UNIX that does not let Kermit SET FLOW RTS/CTS, but which

Changing Things 95

nevertheless lets you have RTS/CTS flow control by using a ‘‘special’’ device name,
e.g. ‘‘set line /dev/cufa’’. So, for example, if Kermit’s FLOW-CONTROL is NONE but
you tell Kermit to SET MODEM FLOW-CONTROL RTS/CTS, then Kermit will still con-
figure the modem for hardware flow control.

SET MODEM HANGUP-METHOD { MODEM-COMMAND, RS232-SIGNAL }
Tells Kermit how to hang up the modem: with the appropriate modem command (e.g.
ATH0) or by briefly turning off the RS-232 DTR signal. MODEM-COMMAND is the
default when the modem database includes a command for hanging up, otherwise the
RS232-SIGNAL method is used. If one gives you trouble, try the other.

SET MODEM ESCAPE-CHARACTER number
For Hayes compatibles, Kermit normally uses ‘‘+++’’ as the escape sequence in the
MODEM-COMMAND sent to hang up the modem. The escape sequence activates the
modem’s command processor so it can be given the modem-specific hangup com-
mand, such as ATH0. However, if the local modem has the same escape character as
the answering modem, the connection will become unusable if the answering modem
improperly pops back to command mode, too. In such cases, use this command to
change your modem’s escape character; number is the numeric ASCII value of the
character to be used, e.g. 43 for the customary ‘‘plus’’ character, ‘‘+’’. For Hayes
compatibles, we use a one-second guard time, three copies of the escape character, and
guard time again. For others (e.g. Microcom in native mode) we just send the escape
character. This command is also handy for disabling the escape character altogether,
e.g. SET MODEM ESC 128, in case your modem does not use a guard time around the es-
cape character and you need to make it transparent to all character sequences.

SET MODEM KERMIT-SPOOF { ON, OFF }
Some modems have a Kermit spoof, in which the modem actually executes the Kermit
protocol itself. A matching modem (e.g. Telebit) is required on the other end. Kermit
can usually transfers files faster without the modem’s help (see Chapter 12) so the
modem’s Kermit spoof (if any) is disabled by default. Use SET MODEM KERMIT-SPOOF

ON to enable it.

SET MODEM SPEAKER { ON, OFF }
Determines whether the modem speaker is on or off while call is being placed. ON by
default. This command does not provide fine-grained control over when the speaker is
on or off. Normally, ON means while the call is being placed, until the point at which
carrier is successfully established. If your modem has a different speaker option that
you want to choose, then use the SET MODEM COMMAND SPEAKER ON text command to
send the modem command that does what you want.

SET MODEM VOLUME { LOW, MEDIUM, HIGH }
When MODEM SPEAKER is ON, this command selects the volume. Note: In some
modems, especially internal ones, these commands have little or no effect; this is a
limitation of the particular modem or computer, not of Kermit.

96 Configuring Modems / Chapter 4

Modifying Modem Commands

During the dialing process, as many as eight separate interactions might take place be-
tween Kermit and the modem, each involving one or more modem commands. These
commands are taken from Kermit’s internal database, but you can override any or all of
them with Kermit’s SET MODEM COMMAND command:

SET MODEM COMMAND feature [string]
Tells Kermit the modem-specific command string for the specifed feature. If the
string is omitted, this restores the original built-in command. If the string is specified
with empty braces, the associated command is not sent to the modem, for example:

C-Kermit> set modem command error-correction on {}

Of course, you will need to work from your modem manual. The SET MODEM COMMAND

commands are described on this and the next two pages. When using most modern
modems, alphabetic case does not matter, but in some older ones, uppercase is required.
When in doubt, use only uppercase letters in modem commands. For Hayes and com-
patible modems, remember that each command must begin with the letters AT and end
with carriage return, represented in backslash notation as \13 (carriage return is ASCII
character 13) or \{13}.

SET MODEM COMMAND INIT-STRING [string]
The command string that should be used to initialize the modem. This string should
contain the modem commands to enable result codes and to select the desired level of
result codes (so Kermit can read and process them), plus any other commands that
would apply regardless of Kermit’s settings, such as: the commands to enable
modulation fallback, to allow the BREAK signal to pass through transparently, and
perhaps the commands to tell the modem what to do about the CD, DSR, and DTR
signals (see Appendix II for terminology).

As a fictitious example, let’s say you’ve just bought a new-model Hayes modem. It works
just like the Hayes Ultra, Accura, and Optima, except that the S82 register (which controls
how BREAK is handled in the earlier models) is not supported in the new model, and so
the built-in ‘‘init-string’’ —

ATQ0X4N1Y0&S0&C1&D2S37=0S82=128\{13}

(which you can see by telling Kermit to SET MODEM TYPE HAYES-HIGH-SPEED and then
SHOW MODEM) — causes an ERROR response from the modem, which, in turn, makes the
DIAL command fail. In real life, this sort of thing happens all the time and is easily dis-
covered by using SET DIAL DISPLAY ON. In this case, you would choose the HAYES-HIGH-

SPEED modem type, but then use SET MODEM COMMAND INIT-STRING to construct a new
‘‘init-string’’ without the offending S82 reference:

set modem command init-string ATQ0X4N1Y0&S0&C1&D2S37=0\13

Modifying Modem Commands 97

Obviously you can also make any other changes here you like (remember, \13 represents
carriage return). Here are the rest of the SET MODEM COMMAND commands:

SET MODEM COMMAND AUTOANSWER ON [string]
The command string that puts the modem into autoanswer mode, i.e. that makes it
wait for an incoming call; used by the ANSWER command. Example:

set modem command autoanswer on ats0=1\13

SET MODEM COMMAND AUTOANSWER OFF [string]
The command string that takes the modem out of autoanswer mode, i.e. that puts it in
originate mode for making calls. Example:

set modem command autoanswer off ATS0=0\13

SET MODEM COMMAND COMPRESSION ON [string]
The command string that instructs the modem to negotiate data compression with the
other modem. This varies wildly from one modem model to the next. Example:

set modem command compression on AT&K4\13

SET MODEM COMMAND COMPRESSION OFF [string]
The command string that turns off the modem’s data compression feature and disables
data-compression negotiation with the other modem. Example:

set modem command compression on AT&K3\13

SET MODEM COMMAND DIAL-MODE-STRING [string]
Command to put the modem into dialing mode (does not apply to Hayes compatibles).

SET MODEM COMMAND DIAL-MODE-PROMPT [string]
The prompt (if any, normally none) issued by the modem when it is in dialing mode
(doesn’t apply to Hayes compatibles).

SET MODEM COMMAND ERROR-CORRECTION ON [string]
The command string that requests the modem to negotiate error correction with the
other modem. Example (for Hayes Ultra):

set modem command error-correction on AT&Q5S36=7S48=7\13

SET MODEM COMMAND ERROR-CORRECTION OFF [string]
The command string that turns off the modem’s error correction feature and disables
error-correction negotiation with the other modem. Example (for Hayes Ultra):

set modem command error-correction off AT&Q0\13

SET MODEM COMMAND HANGUP-COMMAND [string]
The command string that tells the modem to hang up the telephone connection.
Example (for most Hayes compatibles):

set modem command hangup-command ATH0\13

98 Configuring Modems / Chapter 4

SET MODEM COMMAND HARDWARE-FLOW [string]
The command string that enables local hardware (RTS/CTS) flow control in the
modem. Example (for Microcom Deskporte in Hayes mode):

set modem command hardware-flow AT\\Q3\13

The double backslash must be used to send a literal backslash to the modem.

SET MODEM COMMAND IGNORE-DIALTONE [string]
The command to enable blind dialing; that is, that tells your modem to dial even if it
does not detect dialtone.

SET MODEM COMMAND NO-FLOW-CONTROL [string]
The command string to disable local flow control in the modem. Example (for
Microcom Deskporte in Hayes mode):

set modem command hardware-flow AT\\H0\\Q0\13

If Kermit is using Xon/Xoff flow control, then it will be effective end to end (if the
other end cooperates) rather than locally.

SET MODEM COMMAND PREDIAL-INIT [text]
Extra commands to be sent to the modem just prior to dialing. Normally none.

SET MODEM COMMAND PULSE [string]
The command string that instructs the modem to use pulse (or rotary) dialing. Note
that certain characters (such as ‘‘*’’ and ‘‘#’’) cannot be dialed with pulse dialing. For
Hayes compatible modems, the command is:

set modem command pulse ATP\13

SET MODEM COMMAND SOFTWARE-FLOW [string]
The command string that enables local software (Xon/Xoff) flow control in the
modem. Example (for Microcom Deskporte in Hayes mode):

set modem command hardware-flow AT\\Q1\13

SET MODEM COMMAND SPEAKER { ON, OFF } string
Specifies or overrides the commands to turn your modem’s speaker on and off.

SET MODEM COMMAND TONE [string]
The command string that sets the modem’s dialing method to tone. Note that tone
dialing is not available in all areas. For Hayes compatible modems, this command is:

set modem command tone ATT\13

SET MODEM COMMAND VOLUME { LOW, MEDIUM, HIGH } string
Specifies or overrides the commands Kermit uses to set your modem’s speaker
volume.

Adapting a New Modem to Kermit 99

Adapting a New Modem to Kermit

We introduced the previous section with an example of how to use the SET MODEM COM-

MAND INIT-STRING command to adapt Kermit to a minor variation on a modem it already
knew about. Now let’s look at another case, in which we have a new modem that is
‘‘Hayes compatible’’ but whose commands are totally different from anything else in
Kermit’s database, but which has various ‘‘configuration profiles’’ that you can select with
a single command.

For example, suppose your modem uses the AT command set and has a hardware flow-
control profile. Your modem manual says that issuing the command AT&F3 to the
modem enables not only hardware flow control but also error correction, data compres-
sion, speed buffering, and all available fallback options, and this is exactly how you want
your modem to be set up (but it is not the default profile, so you can’t use MODEM TYPE

GENERIC). Further suppose that you always want to use tone dialing. In that case you can
set up the modem as follows:

set modem type generic
set modem command init-string AT&F3Q0V1T\13

The first command chooses the GENERIC modem type, in case it was not already the cur-
rent modem type. The init-string includes &F3 to load the desired profile, Q0 to enable
dialing result codes, V1 to request them in word (rather than digit) format, and T to enable
tone dialing, in case these were not part of the &F3 profile. Word-format result codes are
used because they are relatively consistent among all Hayes-compatible modems, whereas
digit codes vary for each make and model.

If you wanted your modem to always use this configuration, you could set it up by hand
and save it as the default profile, using whatever commands are provided for this by the
modem (see your modem manual). Here’s an example in which &W is the ‘‘save
configuration’’ command:

C-Kermit> set carrier-watch off (Allow CONNECT with no Carrier)
C-Kermit> set line /dev/ttyS2 (Specify port)
C-Kermit> set speed 57600 (Specify interface speed)
C-Kermit> connect (Enter terminal mode, Chapter 8)
AT&F3Q0V1T&W (Configure and save)
OK
Ctrl-\c (Escape back to Kermit prompt)
C-Kermit>

In this example, &W is the command to save the current configuration as the default, mean-
ing the configuration that is used whenever you power the modem on and that is automati-
cally restored after a connection hangs up.

Once you have set and saved your modem’s default configuration appropriately for Ker-
mit, you can use it without giving any special commands to select the modem type or con-
figure the modem.

100 Configuring Modems / Chapter 4

Adapting Kermit to a New Modem

The commands in this section let you define a new modem type that can be used just like
any of the built-in specific types, which, unlike the GENERIC type, allow fine-grained con-
trol of their settings and features with the SET MODEM commands described in this chapter.

SET MODEM TYPE USER-DEFINED [name]
The optional name identifies one of the built-in modem types. The default name is
UNKNOWN, a modem type that has no commands. If you give a name (other than
UNKNOWN or NONE), all the characteristics of that modem type are copied to the user-
defined type. For example, if you are adding a high-speed modem that uses the Hayes
command set, you can choose a modem of that sort (e.g. HAYES-HIGH-SPEED, PPI, etc).

Then you can define its basic characteristics with following commands; then use SET

MODEM COMMAND commands to change any of its commands that differ from those of the
built-in modem, if any, that you chose as a model, just as you can use any of these com-
mands to change the definition of a built-in modem type.

SET MODEM NAME text
Changes the descriptive name of the modem (effects SHOW MODEM only).

SET MODEM MAXIMUM-SPEED bits-per-second
Tells Kermit what the modem’s maximum interface speed is. Currently the only ef-
fect of this command is to cause a warning message if Kermit’s speed is higher than
the modem’s maximum speed when you give a DIAL command.

SET MODEM DIAL-COMMAND [string]
This is the command used by the modem to dial a call. The [string] must contain
‘‘%s’’ (without the quotes) to show where the phone number must be placed, and
remember to include ‘‘\13’’ at the end if the command should be terminated by a car-
riage return, as is usually the case. For example, for a Hayes modem, you would use:

set modem dial-command ATD%s\13

SET MODEM CAPABILITIES [item [item [...]]]
Tells Kermit the modem’s capabilities. The items may be entered as as the codes
shown in Table 4-2 on page 92, or with their full names ("error-correction", etc),
which are listed for you if you type ‘‘set modem capabilities ?’’. AT must be set
for any modem that uses the Hayes AT command set and responses; otherwise, Kermit
won’t be able to read the responses. Similarly ITU must be set for for V.25bis
modems. If SB (Speed Buffering) is in the item list, MODEM SPEED-MATCHING is
automatically set to OFF, and to ON if SB is absent.

If your user-defined modem does not use Hayes word-result, Hayes digit-result, or
V.25bis completion codes, then Kermit decides whether a call has completed or failed
based on whether the carrier signal comes on within the DIAL TIMEOUT interval.

Adapting Kermit to a New Modem 101

Now you must tell Kermit the modem-specific commands to use for each modem function
it must control. This is done with the SET MODEM COMMAND command, described in the
previous section.

Example 1: SupraExpress 144i Fax/Modem (RPI)
With the appearance of Windows 95, modem manufacturers embarked on a series of
schemes to cut the prices of their products by removing vital features and moving the
missing functionality to Windows-specific driver software. One of the first such schemes
was the Rockwell Protocol Interface (RPI), in which error correction (MNP and V.42) and
data compression (V.42bis) was moved from the modem to the Windows driver.

Supra V.32bis Data/Fax modems came in two models: regular and RPI. Kermit’s MODEM

TYPE SUPRAFAXMODEM applies to the regular full-featured model. Suppose you have
have inherited a Supra Fax/Data modem, but when using it with SET MODEM TYPE

SUPRAFAXMODEM, you quickly find that dialing fails with an ERROR response to the com-
mand, AT&Q5\\N3S48=7\{13}, that enables error correction.

RPI modems can still be used on platforms that do not have software drivers for them, as
long as you don’t mind making ‘‘bare’’ connections. The trick is to tell Kermit not to send
the commands that cause errors. One way to do this is to set up a user-defined modem
type based on the built-in SupraFaxModem type:

SET MODEM TYPE USER-DEFINED SUPRARAXMODEM
SET MODEM NAME SupraExpress 144i Fax/Modem RPI
SET MODEM CAPABILITIES AT SB HWFC SWFC

or if speed buffering doesn’t work (since, in general, it depends on an error-correcting
protocol between the modems):

SET MODEM CAPABILITIES AT HWFC SWFC

Removing the EC and DC capabilities prevents Kermit from sending any EC- or
DC-related commands to the modem, which would cause an error with this model.

Unfortunately, such tricks don’t work with the more recent and even cheaper
‘‘controllerless’’ or Host Signal Processing (HSP) modems, such as Winmodems, that
don’t do anything at all without a software driver. Most such modems come with drivers
only for Windows, in which case they simply can not be used on other operating systems
such as Linux, FreeBSD, or SCO.

This is just one of many reasons why it’s better to use external modems on non-Windows
platforms. An external modem can be used with any computer that has a serial port,
whereas internal PC modems increasingly tend to work only with Windows.

102 Configuring Modems / Chapter 4

Example 2: LASAT Internet 56.000 External V.90 Modem
In this example we install an entirely new modem type, a typical 56K V.90 unit, working
from the manual that was downloaded from the manufacturer’s website. While it is pos-
sible, perhaps even likely, that this modem uses the same command set as some other
modem already in Kermit’s database, you might find it easier to define a new type than to
search through all of Kermit’s modems, comparing them command-by-command with this
modem. Table 4-3 summarizes the information from the modem manual relevant to Ker-
mit dialing. The Applies To column indicates the applicable SET MODEM COMMAND com-
mand.

If you look through the command sets of a great many ‘‘Hayes compatible’’ modems,
you’ll find that certain commands are portable to all of them. These include D, E, H, L
(1-3; the meaning of 0 varies), M, Q, V, X0 through X4 (some allow higher values), &Cn,
&Dn, and &Sn, as well as the low-numbers S-Register values (S0 through S10). Thus you
can use practically any other AT-command-set modem as a model for your new type; for
example, the US Robotics model whose commands are listed on page 91, and inherit these
commands from it.

The items that are not standardized from model to model are the settings for BREAK han-
dling, error correction, data compression, and flow control, plus certain other items in the
init string, such as the command to force data mode rather than voice or fax mode.

Let’s put together a user-defined modem type for the LASAT modem, based on the US
Robotics type, substituting the appropriate commands when the two types differ:

set modem type user-defined usrobotics
set modem name LASAT Internet 56.000 V.90 Modem
set modem command init ATQ0E1V1N1X4Y0&C1&D2&S0\\K5+FCLASS=0\13
set modem command hardware-flow AT&K3\13
set modem command software-flow AT&K4\13
set modem command no-flow AT&K0\13
set modem command error-correction on AT&Q5\13
set modem command error-correction off AT&Q6\13
set modem command data-compression on AT%C3\13
set modem command data-compression off AT%C0\13

As you can see, the commands for autoanswer, dialing, hanging up, speaker and volume
control, escape character, etc, are omitted since they are the same as for our US Robotics
template. The new modem also has the same list of capabilities, so the command:

set modem capabilities AT EC DC SB HWFC SWFC

was omitted. Of course it would do no harm to include it, nor would it hurt to include SET

MODEM DIAL-COMMAND ATS%S\13 or SET MODEM COMMAND SPEAKER ON ATM1\13, or any
other redundant command.

Adapting Kermit to a New Modem 103

Table 4-3 LASAT Modem Command Set

Command Applies To Description

Dn DIAL-COMMAND Dials the given phone number.

En INIT-STRING Echo control.
E0: Disables echo of command characters to computer.
E1: Enables command echo (default).

H0 HANGUP Hangs up the telephone connection.

Ln VOLUME Speaker volume.
L0: Speaker off.
L1: Low speaker volume.
L2: Medium speaker volume (default).
L3: High speaker volume.

Mn SPEAKER Speaker control.
M0: Speaker is always off.
M1: Speaker on during call placement, off when receiv-
ing carrier (default).

Nn INIT-STRING Automode control.
Enable/Disable Automode detection.
N0: Automode detection disabled.
N1: Automode detection enabled. A subsequent hand-
shake will be conducted according to the Automode algo-
rithm. Translation: negotiation of modulation method
enabled, with fallback to highest common modulation.

Qn INIT-STRING Quiet result codes control.
Q0: Not quiet, enables result codes to computer (default).
Q1: Quiet, disables result codes.

S0=n AUTOANSWER Answer mode.
S0=0: Modem does not answer the phone.
S0=1: Modem answers the phone after one ring.

S2=n ESCAPE-CHARACTER n = ASCII value (43 = "+").

S7=n TIMEOUT n = number of seconds to wait for carrier.

Vn INIT-STRING Result code format.
V0: Short-form, terse, numeric result codes.
V1: Long-form, verbose, word result codes.

Xn INIT-STRING Extended result codes.
X0: Disables BUSY and NO DIALTONE reporting.
X1: Like X0 but adds speed to CONNECT message.
X2: Like X1 but enables NO DIALTONE reporting.
X3: Like X3 but disables BUSY reporting.
X4: Enables all detection and reporting (default).

Yn INIT-STRING Long space (i.e. BREAK) disconnect.
Y0: Disables long space disconnect (default).
Y1: Hangs up the phone upon receipt of a long space
(BREAK).

104 Configuring Modems / Chapter 4

Table 4-3 LASAT Modem Command Set (continued)

Command Applies To Description

\KN INIT-STRING BREAK control. Controls response to BREAK received
from computer.
\K0: Modem enters command mode.
\K1: Clears buffers and sends BREAK to remote modem.
\K2: Same as \K0.
\K3: Sends BREAK to remote modem immediately.
\K4: Same as \K0.
\K5: Sends break to remote modem in sequence with
transmitted data (default).

\NN ERROR-CORRECTION Operating mode.
\N0: Selects Normal mode, forces &Q6. Translation:
disables error correction but enables speed buffering.
\N1: Selects direct mode. Translation: disables error
correction and speed buffering.
\N2: Selects reliable mode. Translation: Tries to make
an error-corrected connection, and hangs up if it can’t.
\N3: Selects auto-reliable mode (default). Translation:
Tries to make an error-corrected connection, falls back
to normal mode if it can’t. \N4: Selects LAPM (V.42)
error correction, hangs up if not negotiated. \N5: Selects
MNP error correction, hangs up if not negotiated.

&Cn: INIT-STRING The Carrier Detect (DCD) signal.
&C0: DCD remains ON at all times.
&C1: DCD follows the Carrier signal (default).

&Dn: INIT-STRING The Data Terminal Ready (DTR) signal.
&D0: DTR is ignored.
&D1: Modem returns to command mode if DTR drops.
&D2: Modem hangs up if DTR drops (default).
&D3: Modem resets if DTR drops.

&Kn: FLOW-CONTROL Flow control.
&K0: Disables flow control.
&K3: Enables RTS/CTS hardware flow control (default).
&K4: Enables Xon/Xoff software flow control.
&K5: Enables transparent Xon/Xoff flow control.
&K6: Enables both RTS/CTS and Xon/Xoff flow control.

&Qn: INIT-STRING Connection Mode.
&Q0: Direct mode (equivalent to \N1).
&Q5: Autoreliable mode (equivalent to \N3).
&Q6: Normal mode (equivalent to \N0).

&Sn: INIT-STRING The Data Set Ready (DSR) Signal.
&S0: DSR remains ON at all times.
&S1: DSR follows Carrier (default).

Adapting Kermit to a New Modem 105

Table 4-3 LASAT Modem Command Set (continued)

Command Applies To Description

%Cn: DATA-COMPRESSION Data Compression.
%C0: Disables data compression.
%C1: Enables MNP 5 data compression.
%C2: Enables V.42bis data compression.
%C3: Enables both types of data compression (default).

+FCLASS=0 INIT-STRING Forces data (not fax) connection.

Now let’s look at some of the commands in our definition in more detail. The
initialization string contains commands that should be in effect for all calls.

Q0 The modem should give a response to each command, so Kermit can tell
whether the command was received, understood, and executed correctly.

E1 The modem should echo commands. In fact, Kermit does not require this, but if
you ever CONNECT to the modem and type commands by hand, this lets you see
what you are typing.

V1 Use word result codes rather than numeric ones. In fact, Kermit works with
both kinds, but word results are standardized better, and also easier for you to
understand when you see them.

N1 This command, which is fairly standard among high-speed modems (V.32 and
above), but not found on original Hayes modems, tells the modem to originate
the call at its highest modulation protocol (such as V.90) and then fall back
automatically in case the modem answers with a lower protocol (such as V.34),
as opposed to (say) insisting on a certain standard and hanging up if the other
modem doesn’t support it.

X4 This command tells the modem to detect and report NO DIALTONE and BUSY
conditions, as well as CONNECT, NO CARRIER, ERROR, NO ANSWER, and
(for incoming calls) RING. This command is almost universally portable, and
should be the default for most modems.

Y0\\K5 Pass BREAK through the connection transparently. Note how the backslash
must be doubled. These BREAK-handling commands are not particularly port-
able.

&C1 This tells the modem to turn its CD signal on while the Carrier signal is being
received from the other modem, and to turn off when there is no Carrier. This
allows Kermit to detect when the connection is broken. This command should
be portable to all Hayes compatible modems.

106 Configuring Modems / Chapter 4

&D2 This tells the modem to hang up the telephone connection if the computer turns
off its DTR signal. This allows Kermit’s HANGUP command to work by
briefly turning off DTR. This command should be portable to all Hayes com-
patible modems.

&S0 This tells the modem to leave its DSR signal on at all times, which is required
by Windows and by most UNIX operating systems. VMS, on the other hand,
requires the &S1 setting. Kermit’s built-in modem types send &S0 or &S1 ap-
priately, depending on the platform where Kermit is running. This command
should be portable to all Hayes compatible modems.

+FCLASS=0
Forces a data call, rather than a fax call. This command is accepted by most
V.34 and later modems.

The flow-control commands are straightforward, copied from the modem manual. To be
extra safe, you might want to use:

set modem command software-flow AT&K4S32=17S33=19\13

for the software flow-control command, to ensure that the Xon character is indeed Ctrl-Q
(ASCII 17) and the Xoff character is Ctrl-S (19).

The error-correction commands can be tricky. Normally automatic modem-to-modem er-
ror detection and correction is desirable because shields you from line noise. However,
some computers or services (financial transaction clearinghouses and alphanumeric
paging services are common examples) do not accept connections from modems that have
this feature enabled, so you have to disable it. But the method for doing this is often un-
clear from the modem manual’s terminology. Here’s a brief explanation:

Normal Mode
Error correction is disabled but speed buffering is enabled. This requires an effective
method of flow control between your computer and your modem. There is, however,
no flow control between the two modems, but this should not matter if Kermit’s in-
terface speed is higher than the connection speed. The modem flow-controls material
coming from your computer, and material coming from the modem to your computer
is arriving at a lower rate so your computer can keep up.

Direct Mode
Both error correction and speed buffering are disabled. If the other modem answers
at a lower speed, your modem drops both its connection speed and interface speed
down to match. In this case, Kermit must be told to change its interface speed too,
either automatically (with SET MODEM SPEED-MATCHING ON) or by hand (with a SET

SPEED command>). Since this is rather tricky and potentially disruptive, it is best to
choose the modem’s Normal Mode command for your SET MODEM COMMAND

ERROR-CORRECTION OFF string.

Adapting Kermit to a New Modem 107

Autoreliable Mode
Error correction and speed buffering are enabled. If an error-corrected connection is
not negotiated, speed buffering remains in effect. This is the modem command that
should be used in the SET MODEM COMMAND ERROR-CORRECTION ON string.

In our example, note that \N0 is said to "force" &Q6, and so on. This might or might not
be the case with different modems. You might have to use one, or the other, or both.

The command to disable data compression is %C0 in many (but not all) modern modems.
However, in those same modems, the command to enable it can be either %C1 or %C3,
and it makes a difference. You should pick the one that means ‘‘negotiate the highest
mutually acceptable form of compression’’ rather than the one that insists on a particular
type of compression.

Most modern modems are built from one of a handful of ‘‘chip sets.’’ Table 4-4 gives a
brief look at the commands used in each of several popular chipsets for features important
to Kermit.

Table 4-4 Variations in AT Commands

Feature Hayes AT&T USR/TI Lucent Rockwell PCTEL

BREAK Transparency Y0 Y0\\K5 &Y3 Y0\\K5 Y0\\K5 Y0\\K5

Hardware flow control &K3 \Q3 &H1&R2&I0 &K3 &K3 &K3

Software flow control &K4 \Q1\X0 &H2&R1&I2 &K4 &K4 &K4

No flow control &K0 \Q0 &H0&R1&I0 &K0 &K0 &K0

Error correction on &Q5 \N7 &M4 &Q5 &Q5 \N0

Error correction off &Q6 \N0 &M0 &Q6 &Q6 \N3

Data compression on S46=0 %C1 &K1 %C1 %C3 %C1

Data compression off S46=2 %C0 &K0 %C0 %C0 %C0

Where to Put Commands
You probably don’t want to type all these commands every time you use Kermit. If you
always use the same modem, you would want your modem-related commands executed
automatically every time you start Kermit. In that case, you could add them to your Ker-
mit customization file, which is executed automatically every time you start Kermit. If
you need more flexibility, all sorts of options are open to you, which are covered in Chap-
ter 17, Command Files, Macros, and Variables. There is nothing magic about where the

108 Configuring Modems / Chapter 4

commands come from. You can type them at the prompt, execute them automatically at
startup, execute them explicitly from a file or from a macro — it makes no difference, the
result is the same.

Let’s suppose you have put all the commands for your user-defined modem in your Ker-
mit customization file. After you start Kermit, if you give a SHOW MODEM command,
you’ll see your custom modem definition. If you SET MODEM TYPE to another kind of
modem, say USROBOTICS, all your custom settings and commands are replaced by the US
Robotics ones. But now if you SET MODEM TYPE USER-DEFINED, your custom defintion
comes back.

Modem Command List 109

Modem Command List

Here is a concise list of all Kermit’s SET MODEM commands. Recall that each keyword
can be abbreviated (truncated) to any extent that still distinguishes it from any other
keyword that can appear in the same position. Note that SET CARRIER-WATCH is a
synonym for SET MODEM CARRIER-WATCH. Also, for compatibility with earlier releases of
Kermit, SET DIAL is accepted as a substitute for SET MODEM in most commands; for ex-
ample, SET DIAL SPEED-MATCHING OFF.

The first group must be set by the user. If not, the defaults shown in boldface are used:

SET MODEM TYPE { name, name, ... GENERIC }
SET MODEM CARRIER-WATCH { AUTO, ON, OFF }
SET MODEM HANGUP-METHOD { MODEM-COMMAND, RS232-SIGNAL }
SET MODEM KERMIT-SPOOF { ON, OFF }
SET MODEM FLOW-CONTROL { AUTO, NONE, RTS/CTS, XON/XOFF }

The rest are loaded from the modem database when a SET MODEM TYPE command is
given. Use these commands after SET MODEM TYPE to to override the values that are
loaded from Kermit’s database:

SET MODEM NAME [string]
SET MODEM CAPABILITIES { AT, DC, EC, HWFC, ITU, KS, SB, SWFC, TB }
SET MODEM MAXIMUM-SPEED { ..., 1200, ..., 57600, 115200, ... }
SET MODEM SPEED-MATCHING { ON, OFF }
SET MODEM ESCAPE-CHARACTER number
SET MODEM DIAL-COMMAND [string]
SET MODEM ERROR-CORRECTION { ON, OFF }
SET MODEM COMPRESSION { ON, OFF }

SET MODEM COMMAND AUTOANSWER ON [string]
SET MODEM COMMAND AUTOANSWER OFF [string]
SET MODEM COMMAND COMPRESSION ON [string]
SET MODEM COMMAND COMPRESSION OFF [string]
SET MODEM COMMAND DIAL-MODE-PROMPT [string]
SET MODEM COMMAND DIAL-MODE-STRING [string]
SET MODEM COMMAND ERROR-CORRECTION ON [string]
SET MODEM COMMAND ERROR-CORRECTION OFF [string]
SET MODEM COMMAND HANGUP-COMMAND [string]
SET MODEM COMMAND HARDWARE-FLOW [string]
SET MODEM COMMAND SOFTWARE-FLOW [string]
SET MODEM COMMAND NO-FLOW-CONTROL [string]
SET MODEM COMMAND IGNORE-DIALTONE [string]
SET MODEM COMMAND INIT-STRING [string]
SET MODEM COMMAND PREDIAL-INIT [string]
SET MODEM COMMAND PULSE [string]
SET MODEM COMMAND TONE [string]
SET MODEM COMMAND SPEAKER ON [string]
SET MODEM COMMAND SPEAKER OFF [string]
SET MODEM COMMAND VOLUME LOW [string]
SET MODEM COMMAND VOLUME MEDIUM [string]
SET MODEM COMMAND VOLUME HIGH [string]

110 Configuring Modems / Chapter 4

Modem-Related Variables

Variables are explained in Chapter 17. Table 4-5 lists the modem-related variables. Their
values pertain to the modem selected in the most recent SET MODEM TYPE command.

Modem-Related Variables 111

Table 4-5 Modem Variables

Variable Description

\v(line) Communication device (SET LINE value)

\v(speed) Interface speed (SET SPEED value)

\v(modem) Current modem type (SET MODEM TYPE value)

\v(dm_hf) Dial modifier Hook Flash

\v(dm_lp) Dial modifier Long Pause

\v(dm_sp) Dial modifier Short Pause

\v(dm_pd) Dial modifier Pulse Dial

\v(dm_td) Dial modifier Tone Dial

\v(dm_wa) Dial modifier Wait for Answer

\v(dm_wd) Dial modifier Wait for Dialtone

\v(dm_wb) Dial modifier Wait for Bong

\v(dm_rc) Dial modifier Return to Command mode

\v(m_aa_off) Modem command to turn Auto Answer Off

\v(m_aa_on) Modem command to turn Auto Answer On

\v(m_dc_off) Modem command to turn Data Compression Off

\v(m_dc_on) Modem command to turn Data Compression On

\v(m_dial) Modem command to dial a telephone number

\v(m_ec_off) Modem command to turn Error Correction Off

\v(m_ec_on) Modem command to turn Error Correction On

\v(m_fc_hw) Modem command to select Hardware Flow Control

\v(m_fc_no) Modem command to select No Flow Control

\v(m_fc_sw) Modem command to select Software Flow Control

\v(m_hup) Modem command to hang up the phone

\v(m_init) Modem initialization command

\v(m_name) Name or description of modem

\v(m_pulse) Modem command to enable pulse Dialing

\v(m_tone) Modem command to enable tone Dialing

\v(m_sig_cd) Current state of modem signal CD

\v(m_sig_cts) Current state of modem signal CTS

\v(m_sig_dsr) Current state of modem signal DSR

\v(m_sig_dtr) Current state of modem signal DTR

\v(m_sig_ri) Current state of modem signal RI

\v(m_sig_rts) Current state of modem signal RTS

112

113

Chapter 5

The Dialing Directory

Much has changed since the last edition of this book. In 1996, there were still plentiful
dialup text-mode data services like MCI Mail, Dow Jones News/Retrieval, Genie, Lexis,
Nexis, and CompuServe, plus access services like SprintNet, Tymnet, Datex-P, and
DATAPAC, plus countless bulletin board systems, as well as dialup shell accounts at In-
ternet service providers and at your own company or university. Thousands of people
used Kermit or similar software every day to dial these places and conduct their business.
By 2001, all of this had virtually disappeared, replaced by the Internet. Modem dialing is
used more now than ever before; not with Kermit, however, but by the operating system’s
PPP dialer, which makes a TCP/IP connection that can be used by Internet applications
such as Web browsers, email clients, chat clients, Telnet clients, and so on.

Nevertheless, directly dialed (non-PPP) calls are still quite common, but primarily in spe-
cialized areas such as medical and pharmaceutical insurance claim submission, bank trans-
fers, retail franchising, customer/client support and troubleshooting, and numeric and al-
phanumeric paging. So this chapter remains relevant and timely, but to a decidedly dif-
ferent audience: systems integrators, consultants, support personnel, and application
developers rather than the general computer-using public.

❍ ❍ ❍ ❍

If you will not be using Kermit to make modem calls, you won’t need a dialing
directory and therefore can skip this chapter unless you are interested telephony,
which we like to think Kermit handles rather well. You might wish that your
PPP dialer had some of the same capabilites. Unfortunately most operating sys-
tems do not allow ordinary application programs like Kermit to make PPP con-

114 The Dialing Directory / Chapter 5

nections. of course Kermit can make the connection, but the OS generally
provides no way for Kermit to hand off the connection to the TCP/IP stack.

Dialing Directory Files

C-Kermit’s dialing directory is a collection of one or more plain-text files that associate
names with phone numbers, allowing you to dial by name so you don’t have to remember
specific numbers. For example, you can type ‘‘dial clearinghouse’’ rather than ‘‘dial
18005551234’’. Dialing directory files can be maintained by a text editor such as
EMACS, UNIX vi or ed, or Windows EDIT, or NotePad, that reads and saves files in
plain-text (ASCII) format. Recall the syntax of the DIAL command:

DIAL text

The text can be either a telephone number or the ‘‘name’’ of a telephone number. If you
give a name instead of a number, the name is automatically looked up in your dialing
directory (if you have one). Before C-Kermit can use a dialing directory, it must be told
where to find it. The command is:

SET DIAL DIRECTORY [file1 [file2 [file3 [...]]]]
Specifies a dialing directory consisting of zero, one, or more files. If you do not in-
clude any filenames, the dialing directory feature is disabled and the DIAL command
expects and handles only real telephone numbers. If you include one or more file-
names, then Kermit searches the given files when you DIAL a ‘‘number’’ that starts
with a letter (the exact rules are spelled out in more detail shortly).

Examples:

C-Kermit> set dial directory (None)
C-Kermit> set dia direct ckermit.kdd (One file)
C-Kermit> set di dir ckermit.kdd bbslist.kdd cis.kdd (3 files)

If you installed C-Kermit according to instructions and you are using the standard in-
itialization file, then the default dialing directory is:

.kdd (UNIX, OS-9)
ckermit.kdd (VOS)
CKERMIT.KDD (OS/2, Windows, VMS, AOS/VS, etc)

and if such a file exists, it is used. In the absence of an initialization file (or of a SET DIAL

DIRECTORY command in your initialization or customization file), C-Kermit uses the
file(s) given by the environment variable K_DIAL_DIRECTORY, if it is defined, for example
(in UNIX ksh):

export K_DIAL_DIRECTORY="/usr/local/lib/ckermit.kdd $HOME/.kdd"

In this example, which might be added to the system-wide login profile on a multiuser
UNIX computer, two dialing directory files are set up: the first is a system-wide directory,

Looking up and Dialing Numbers 115

centrally administered and shared by everyone, and the second is a personal dialing direc-
tory in each user’s home directory. A similar technique might be useful on a corporate
PC-based LAN, where the corporate-wide directory would be placed on the file server,
and the user’s directory on her or his own disk; the LAN login procedure would then set
up the environment variable.

Dialing Directory Format

Each dialing directory entry consists of a name followed by a telephone number, option-
ally followed by an comment. The name is a ‘‘word’’ that does not contain any spaces8;
alphabetic case distinctions in names are ignored. The number can be in any format at all
that is acceptable to your dialout modem, meaning, in most cases, it can include spaces
and/or certain punctuation. The comment, if any, begins with a semicolon preceded by at
least one space or tab.

Full-line comments may also be entered. These begin with a semicolon. Blank lines in
the dialing directory are ignored. Comments are optional.

Here is a short sample (but fictional) dialing directory:

; Olga’s dialing directory - Last update: 11 June 2001

XYZcorp +1 (212) 765 4321 ; XYZ Corporation
ABCinc 1 800 874-2937 ; ABC Incorporated
NYCsprint 1 212 7418100 ; New York City Sprint
USABBS 18002341998 ; A BBS in the USA
Germany 011 49 511 5352301 ; A BBS in Germany

Each entry is either ‘‘portable’’ or ‘‘literal’’. In portable entries, phone numbers start with
a plus sign (+), as in the XYZcorp entry in the example. Literal entries do not start with a
plus sign, so all the other entries are literal. Portable numbers are designed to be called
from any dialing location, whereas literal entries only work from a specific dialing loca-
tion. The differences are described thoroughly later in this chapter.

Looking up and Dialing Numbers

There are two ways to look things up in the dialing directory: one, the LOOKUP command,
just does the looking up part; the other, DIAL looks up and dials:

8A name may contain spaces if it is surrounded by braces or doublequotes, for example:

{Hot Trivets Inc} 1 800 555-4321 # Our trivet supplier

116 The Dialing Directory / Chapter 5

LOOKUP name
Looks up the name in your dialing directory or directories, and displays the entries, if
any, that match. If any matching entries are found, then the name becomes the
default name for the next DIAL command. If a portable-format number is given in-
stead of a name, Kermit displays the number the way it actually would be dialed.

Entry names can be abbreviated, provided no entries start with the same abbreviation but
are different from each other. For example, if your directory has entries with the follow-
ing names:

acorn aardvark abba abccorp aa abdicate abccorp

then ‘‘abc’’ would select the two ‘‘abccorp’’ entries, but ‘‘ab’’ would be ambiguous and
the lookup would fail. Note, however, that if you spell out the name in full, then all exact
matches are used, even if other entries start the same way; for example ‘‘aa’’ matches only
the ‘‘aa’’ entry and not the ‘‘aardvark’’ entry.

DIAL [text]
Makes a telephone call. If the text is omitted, the name, if any, from the most recent
DIAL command or successful LOOKUP command is used. Then:

• If the text does not begin with a letter, it is not looked up in the dialing directory or
directories.

• If the text begins with an equals sign (‘‘=’’), the equals sign is discarded (the text
becomes the part after the equals sign) and the name is not looked up in the dialing
directory, even if it begins with a letter.

• If the original text began with a letter and a dialing directory is active, the text is
looked up. If it is found, it is replaced by one or more phone numbers; if the text is
not found, then the text itself is used as the phone number.

• If the phone number (as given, or as found in the dialing directory) does not start
with ‘‘+’’, it is sent as-is to the modem.

• If the phone number starts with ‘‘+’’, it is converted to the appropriate form for
dialing, based on your dialing location, as described later in this chapter.

If you have multiple entries with the same name, Kermit builds up a list of all the numbers
for that name. Each number is dialed until the phone is answered successfully. If none of
them answers, then the entire process is repeated automatically according to your DIAL

RETRIES setting until there is an answer, or the maximum number of retries is exceeded, or
the police come.

Literal Entries 117

The entries need not be adjacent, or even in the same file, thus the directory can be ar-
ranged any way you like. If you specify multiple dialing directory files, Kermit searches
through all of them, in the order given in the SET DIAL DIRECTORY command, looking for
matching entries when building up its list of telephone numbers.

Literal Entries

The advantage of a literal entry is its ease of use. Just enter the number exactly as you
would dial it (optionally inserting spaces for clarity) and you need not be concerned with
any of the locale-related features that occupy the rest of this chapter. The drawback is that
literal entries can not be dialed from area codes or countries other than the ones they were
created for. But literal entries are perfectly adequate for directories that are always used
from the same place, and if that is all you will ever need, you can skip the rest of this
chapter.

Suppose you are a traveling sales representative for XYZ Corp, and you need to call cor-
porate headquarters in Manhattan, New York City (area code 212 at this writing but who
knows for how long) to obtain quotations, place orders, and so on. (And for the sake of
argument, also assume that XYZ Corp prefers to use directly dialed connections for this
purpose, perhaps for security reasons). When you are calling from within area 212, you
could use the following dialing directory entry (all phone numbers are fictional):

XYZCORP 765 4321 ; Corporate HQ

To use this entry, simply tell Kermit to DIAL XYZCORP. But now suppose you have taken
your laptop to a customer site in Brooklyn (area code 718) and must call from there. DIAL

ZYZCORP doesn’t work because the number lacks the necessary long-distance dialing
prefix and the area code. Of course, you could change the entry to read:

ZYZCORP 1 212 765 4321 ; Corporate HQ

but this would not work when you returned to Manhattan, where (at this writing) local
calls cannot be dialed as if they were long distance.

If you made two entries:

XYZCORP 765 4321 ; Corporate HQ (local)
XYZCORP 1 212 765 4321 ; Corporate HQ (long distance)

then Kermit would try the first one, and if that didn’t work, it would try the second. But
this is a poor solution, because if you are outside Manhattan, it’s a local number in the
wrong area code. Of course, you could avoid this problem by giving each entry a different
name. But if you travel to many different places, you’ll need lots of different entry names
for calling the same place:

118 The Dialing Directory / Chapter 5

XYZCORP 765 4321 ; From within Manhattan
XYZNYCPBX 9,765 4321 ; From a PBX in Manhattan
XYZNA 1 212 765 4321 ; From elsewhere in North America
XYZNAPBX 93,1 212 765 4321 ; From a different PBX outside NYC
XYZCUBA 119 1 212 765 4321 ; From Cuba
XYZRUSSIA 8,10 1 212 765 4321 ; From Russia
XYZUK 00 1 212 765 4321 ; From the UK
XYZUKHR 102 00 1 212 765 4321 ; From a hotel room in the UK

As the list grows, soon you will have as much trouble remembering the names of the
entries as you would remembering the numbers themselves. And this approach also com-
plicates directory maintenance; if a phone number changes, you must change your direc-
tory in many places.

❍ ❍ ❍ ❍

If literal, dialing-location-dependent phone numbers are sufficient for your
needs, feel free to skip the rest of this chapter.

Portable Entries

Portable entries are for people who travel, or for dialing directories that are to be dis-
tributed to diverse locations. Whereas a literal entry contains elements of both the target
number and the dialing location, portable entries separate these two concepts. The target
number is entered in a consistent structured format in which the country code, area code,
and subscriber number are clearly identified. The dialing location is specified by giving
commands to Kermit. Given the dialing location and a portable-format number, Kermit
can decide whether a call is internal, local, toll-free, long-distance, or international, and
then it can automatically convert the number appropriately for dialing.

Portable entries are in ITU-T (CCITT) E.234 [8] format:

+ country-code (area-code) local-number

Here are some examples:

XYZcorp +1 (212) 765 4321 ; XYZ Corporation
ABCinc +1 (800) 874 2937 ; ABC Incorporated
NYCsprint +1 (212) 741 8100 ; New York City Sprint
USABBS +1 (800) 234 1998 ; A BBS in the USA
Germany +49 (511) 535 2301 ; A BBS in Germany

The plus sign (+) means the phone number is in portable format and it indicates that the
digits between itself and the opening parenthesis are a country code (such as ‘‘1’’ and
‘‘49’’ in the example). And then:

• The number in parentheses is the area or city code within the country.

• The number following the number in parentheses is the local number (‘‘subscriber
number’’) within the area

Portable Entries 119

Table 5-1 Dialing Category Codes

Code Description

0 Internal PBX

1 Toll free

2 Local

3 Literal

4 Long distance

5 International

• The plus sign and parentheses are discarded before passing the number to the modem.

Characters other than plus sign, digits, parentheses, and space are allowed, but are not
truly portable. Such characters are passed to the modem literally, so the result depends on
your modem. For example, most Hayes and compatible modems ignore hyphens and
periods in phone numbers, so the following notation works with Hayes modems but might
not work with other kinds:

+1 (212) 555-1212 ; Phone number contains hyphen
+1 (212) 555.1212 ; Phone number contains period

Letters included in a phone number are not translated to dialing digits because some dial-
ing devices (such as data PBXs) can be given alphabetic names, and also because the con-
version from letters to digits is not uniform for all countries. So if you want Kermit to dial
1 800 COLLECT, you must give the phone number as 1 800 2655326.

You can mix literal and portable entries in the same directory. Each entry is treated in-
dividually, depending on whether the telephone number starts with a plus sign.

Order of Dialing
After Kermit builds up its list of numbers, it sorts them into the six categories shown in
Table 5-1, which are supposed to be (but obviously cannot be guaranteed to be9)
‘‘cheapest first,’’ and dials them in order of category (the category numbers are displayed
by Kermit when you give a LOOKUP command). No sorting is done within each category.
Literal numbers are those that do not begin with ‘‘+’’ in the dialing directory, and there-
fore can’t be categorized.

9Example: dialup information services that charge a premium when accessed from a toll-free number.

120 The Dialing Directory / Chapter 5

In some cases, this sorting might produce unwanted effects, as when a toll-free number ac-
tually results in higher charges to you than (say) a local call, or when literal numbers
(whose ‘‘geography’’ can’t be recognized by Kermit) don’t fall where you want them to,
or when a long-distance call is actually cheaper than a local call. In such cases, you can
inhibit sorting and force Kermit to dial the numbers in the same order in which they are
encountered with the command:

SET DIAL SORT { OFF, ON }
OFF inhibits ‘‘cheapest-first’’ sorting, ON (the default) enables it.

Use the LOOKUP command to check the sort order to see whether you might want to SET

DIAL SORT OFF before calling a particular destination from a particular location.

You also have another control. When the numbers for a particular entry range from local
to international, you can put a cap on how ‘‘far’’ Kermit is allowed to dial:

SET DIAL RESTRICT { INTERNATIONAL,LOCAL,LONG-DISTANCE,NONE }
INTERNATIONAL means international calls are restricted, i.e. not allowed.
LONG-DISTANCE means that long-distance and international calls are restricted.
LOCAL means all calls except internal PBX calls are restricted. NONE, the default,
means all calls are allowed. Note: This command has nothing to do with your phone
— telephones may have their own restrictions, which are independent of Kermit’s.

Suppose, for example, you have a dialing directory that contains 500 different worldwide
Sprint access numbers, and all the entries are called ‘‘sprint’’. If the toll-free numbers are
all busy, and the local access numbers are also busy, and all the long-distance numbers in
your entire country are also busy, you might not want to pay for a call to Scotland or
Venezuela (unless you happen to be there). So SET DIAL RESTRICT INTERNATIONAL would
be appropriate for such a call.

Dial Modifiers
Certain phone-number modifiers, shown in Table 5-2, apply to Hayes and compatible
modems, and are also widely used even by non-Hayes compatibles, so you can include
them in phone numbers when you know your modem handles them appropriately. For
greater portability, you can use the variables listed in the first column of the table, which
supply the given modifier (if any) appropriate to the current modem type (variables are ex-
plained in Chapter 18).

Dial modifiers should not be used in portable-format dialing directory entries because
dialing procedures (such as pausing, waiting for secondary dialtone, etc) are dependent on
the calling location and because dial modifiers can vary with the modem. The appropriate
place for dial modifiers is in the dialing prefixes and suffixes described in the rest of this
chapter.

Portable Entries 121

Variables should not be included in the dialing directory because all text in the directory is
taken literally; variables are not expanded. This is to promote portability of dialing direc-
tories among different applications.

Here’s an example. To make an international call from Russia, one must dial 8, wait for a
secondary dialtone, then dial 10, the country code, area/city code, and susbscriber number.
Therefore in Russia, the international dialing prefix (SET DIAL INTL-PREFIX) might look
like 8W10. We would not include 8W10 in dialing directory entries because it would not
work if (a) we were dialing the same number from outside Russia, or (b) we were using a
modem that did not support this dial modifier.

Table 5-2 Telephone Number Modifiers for Hayes Modems

Variable
Typical
Value Description

\v(dm_lp) , (comma) Long pause (usually 2 seconds)

\v(dm_wd) W Wait for secondary dialtone, e.g. when getting an outside line

\v(dm_wa)Wait for quiet answer, i.e. phone is answered, but not by a modem

! @ \v(dm_hf) (exclamation mark) Flash (try to get dialtone)

\v(dm_rc) ; (semicolon) Return to command state immediately after dialing

\v(dm_wb) $ (dollar sign) Wait for ‘‘bong’’, e.g. to enter calling-card number

Adding Prefixes and Suffixes
The rest of this chapter describes the commands you can use to specify where you are
dialing from, and the dialing procedures used in that location.

The first two commands give you a simple and straightforward way to modify phone num-
bers — a prefix and a suffix that are blindly added to all phone numbers prior to dialing,
no matter whether the number was obtained from the dialing directory or whether it is in-
ternal, local, long-distance, or international. (If you are dialing out from a PBX, however,
the PBX outside-line prefix precedes the dial prefix.)

SET DIAL PREFIX [text]
An item to precede the phone number, for example, to get a tie-line or to disable call
waiting. This goes before anything else in the phone number except the
PBX-OUTSIDE-PREFIX (if any). Example:

SET DIAL PREFIX *70W

122 The Dialing Directory / Chapter 5

which is used on touch-tone telephones in many parts of North America to disable
call-waiting for the duration of the call; this is usually desirable when making modem
calls.

SET DIAL SUFFIX [text]
An item to follow the phone number.

There is no default prefix or suffix. Use these commands to create prefixes and suffixes;
give these commands without any text to remove them, once created.

About Country and Area Codes
Every country has a country code — a short number, presently one to three digits long,
that identifies your country to the worldwide telephone system. Most countries have their
own country code, such as 39 for Italy, 47 for Norway, 351 for Portugal. Some countries
share a country code; for example, country code 1 is shared under the North American
Numbering Plan (NANP) by the USA, Canada, and various Carribean and Pacific islands.

A list of the world’s country codes appears in Appendix VIII-1 (according to our best
knowledge at this writing). In case you don’t know what your (or somebody else’s)
country code is, you can probably find it there.

Just as the world is divided into countries, most countries are divided into calling areas,
identified by area codes or city codes. For example, in North America, 212 is the area
code for the Borough of Manhattan in New York City; 416 is an area code in Toronto, On-
tario; 808 is the area code for Hawaii (all of these are subject to change due to area-code
splits). In other countries area codes might be longer or shorter, while some countries,
such as Costa Rica, Luxembourg, and Singapore, do not have area codes at all.

Be careful not to confuse your country code or area code with your long-distance dialing
prefix. In the NANP dialing area, the country code is 1 and the normal long-distance dial-
ing prefix is also 1, whereas in most other places, the long-distance dialing prefix is dif-
ferent from the local country code. In most West European countries, the long-distance
dialing prefix is 0; it is not part of the area code. So, for example, in Central London, the
country code is 44 and the area code is 20 (not 020). Very few, if any, countries have
area/city codes that begin with 0.

Using Portable Entries

To use portable dialing directory entries, Kermit must know the country code and area
code you are dialing from. If it doesn’t have this information, portable (‘‘+’’) entries can’t
be dialed. The commands are:

Using Portable Entries 123

SET DIAL COUNTRY-CODE number
The numeric country code of the country you are dialing from. Examples: 1 for USA
and Canada (etc), 44 for the UK, 33 for France, 49 for Germany. This command tells
Kermit what your local country code is, so it can compare it with the country codes
given in portable dialing directory entries to tell whether a call is national or inter-
national. If you have not set a long-distance or international dialing prefix at the time
you give this command, Kermit sets default ones for you: for country code 1, these are
1 and 011, respectively, and for all others they are 0 and 00. If these are not correct
(as they will not be for many countries), use the SET DIAL LD-PREFIX and SET DIAL

INTL-PREFIX commands, described shortly, to specify the right prefixes.

SET DIAL AREA-CODE [number]
The numeric area or city code you are dialing from. If your country does not have
area codes, give this command but omit the number. Be careful not to include your
long-distance dialing prefix as part of the area code (e.g. 0 in England or Germany, 1
in the USA and Canada). Here are some examples:

9 for Helsinki, Finland
69 for Frankfurt, Germany
20 for central London, England
212 for Manhattan, New York City, USA
516 for Long Island, New York, USA
511 for Hannover, Germany
6431 for Marburg, Germany
38427 for Blowatz, Germany
(blank) for Singapore, no area codes

The reason Kermit needs to know your area code is so it can distinguish between local
calls and long-distance calls. In most countries, local calls are dialed without a
long-distance prefix and without an area code. Of course there are exceptions, and we
will discuss them shortly.

SET DIAL LD-PREFIX number
The prefix for dialing long-distance (non-local) calls from where you are. This is the
access code you must dial in order to place a call outside your own dialing area, but
inside your country code. Examples: 1 for USA and Canada (etc), 8 for Russia, 0 for
Germany, England, and most others. Strictly speaking, the DIAL LD-PREFIX need not
be a number; it may contain commas or other dial modifiers if needed (see Table 5-2
on page 121) that are sent to the modem literally. It also can be a long-distance-carrier
access code, such as 10288 for ‘‘10-ATT’’ or 10652 for ‘‘10-NJB’’.

SET DIAL INTL-PREFIX number
The prefix for dialing international calls from where you are. Examples: 011 for USA
and Canada (etc), 00 for many other countries, with some exceptions. This one, too,

124 The Dialing Directory / Chapter 5

might also contain non-numeric characters if necessary, such as 8W10 in most of the
former Soviet republics (8, await secondary dialtone, 10). It can also be an
international-carrier access code, for example in countries like France, Finland, and
Japan.

Versions of C-Kermit that come with installation programs collect this information from
you at installation time. Otherwise, you will have to add this information to your
C-Kermit customization file yourself.

Kermit has no built-in defaults for these items, but it will pick up initial values for them
from the environment, if they are defined there. The environment variable names are
K_AREACODE, K_COUNTRYCODE, K_INTL_PREFIX, K_LD_PREFIX.

Kermit also makes these values available to you in variables (see Chapter 17 to learn how
to use them):

\v(d$ac) DIAL AREA-CODE
\v(d$cc) DIAL COUNTRY-CODE
\v(d$lp) DIAL LD-PREFIX
\v(d$ip) DIAL INTL-PREFIX

Example: Germany
German dialing rules are perfectly straightforward. Local calls are dialed without a prefix.
Long-distance calls require a prefix of ‘‘0’’ and international calls must be prefixed by 00.
Area codes can be different lengths. A typical dialing directory entry for Germany would
be:

ffmbbs +49 (69) 5352301 ; A BBS in Frankfurt am Main

And here is a sample setup for dialing from Hannover (area code 511):

SET DIAL COUNTRY-CODE 49
SET DIAL AREA-CODE 511
SET DIAL LD-PREFIX 0
SET DIAL INTL-PREFIX 00

Example: France
Since 1996 France, like Germany, England, and other European Union countries, has ‘‘0’’
as its long-distance prefix and ‘‘00’’ as its international dialing prefix, but with a dif-
ference.

All calls within France, even local ones, must be dialed as long distance. Thus all calls
within France start with ‘‘01’’, ‘‘02’’, ... ‘‘06’’: the one-digit long-distance prefix (‘‘0’’)
and a one-digit area code ("1"–"6"). This is a subtle distinction inside France, because it
makes no difference what the digits are called. But when calling into France from outside,
the leading zero must be dropped.

Using Portable Entries 125

So to enter French numbers portably in the dialing directory, the leading zero must be
dropped:

paris +33 (1) 55 55 55 55

When dialing within France, use the following command to instruct Kermit to dial all calls
as long-distance:

SET DIAL FORCE-LONG-DISTANCE { ON, OFF }
When OFF (the default), Kermit omits the the long-distance prefix and area code when
they match those of the calling location. SET DIAL FORCE-LONG-DISTANCE ON forces
all numbers to be dialed as long distance, even when they are local.

Here is a sample setup for Northwest France (area code 2):

SET DIAL COUNTRY-CODE 33
SET DIAL AREA-CODE 2
SET DIAL LD-PREFIX 0
SET DIAL INTL-PREFIX 00
SET DIAL FORCE-LONG-DISTANCE ON

Example: The USA and Canada
Dialing procedures in the USA and Canada are constantly changing. When direct dialing
was first available, long-distance calls were simply prefixed by a three-digit area code,
whose second digit was always 0 or 1. After several decades the demand for area codes
forced this convention to be dropped, and and a long-distance prefix (‘‘1’’) was required
for all calls outside one’s own area code. Now due to the glut of cell phones, pagers,
faxes, and ISPs, area codes themselves are constantly being split and overlaid, and it is not
unlikely that the familiar 3-digit area code plus 7-digit subscriber number will pass into
history. But at least for now, a typical dialing directory entry looks like this:

manhattan +1 (212) 765-4321

Local calls in many locations are still made by dialing 7 digits, and long-distance calls by
dialing ‘‘1’’, the area code, and the subscriber number. At this writing (2001), Manhattan
still falls into this category, and the setup is:

SET DIAL COUNTRY-CODE 1
SET DIAL AREA-CODE 212
SET DIAL LD-PREFIX 1
SET DIAL INTL-PREFIX 011

But because of all the splitting and overlaying, in many areas it is now necessary to either
dial all calls as long distance (in which case you can simply add SET DIAL

FORCE-LONG-DISTANCE ON to your setup) or else to dial ten digits for certain kinds of
calls.

126 The Dialing Directory / Chapter 5

Ten-Digit Dialing
Ten-digit dialing is usually found where an existing area code has been overlaid by a new
one; for example, 416 by 647 in Toronto. All calls within this area are local, and yet there
are two area codes. Calls within this area must be dialed with an area code but without a
long-distance prefix. Calling into this area from outside is straightforward. Calling within
the area, however, requires an addition setup command:

SET DIAL LC-AREA-CODES [number [number [...]]]
Specifies local-call area codes. The list may include up to 32 area codes. If your DIAL

AREA-CODE (that it, the area code you are calling from) is in this list, and a number is
called whose area code is also in this list, it is dialed without the long-distance prefix
but with the area code.

Thus the setup for dialing from area code 416 in Toronto would be:

SET DIAL COUNTRY-CODE 1
SET DIAL AREA-CODE 416
SET DIAL LD-PREFIX 1
SET DIAL INTL-PREFIX 011
SET DIAL LC-AREA-CODES 416 647

In some area codes, 7-digit dialing is required, whereas 10-digit dialing is required in, to,
and from adjacent area codes. For example, Toronto has another area code, 905, in which
7-digit dialing is permitted. However, 10-digit dialing must be used from 905 to 416 and
647, and from 416 and 647 to 905. As you can see by trying some examples, the setup
just illustrated works for dialing from area code 905 too:

C-Kermit> set dial area-code 905
C-Kermit> set dial lc-area-codes 416 647
C-Kermit> lookup +1 (647) 555-1234
+1 (647) 555-1234 => 647555-1234 10-digit local
C-Kermit> lookup +1 (416) 555-6789
+1 (416) 555-6789 => 416555-6789 10-digit local
C-Kermit> lookup +1 (905) 5559876
+1 (905) 5559876 => 5559876 7-digit local
C-Kermit> lookup +1 (212) 555-1212
+1 (212) 555-1212 => 1212555-1212 long distance
C-Kermit>

In some areas, it is possible to prefix 10-digit numbers by the long-distance prefix; in
others, it is not. In areas where it is possible, this might result in an additional charge, or it
might not. Thus it is generally better to use 10-digit dialing when it is allowed.

Using Portable Entries 127

Toll-Free Calls
The following command allows Kermit to recognize toll-free calls in your dialing direc-
tory and dial toll-free numbers in preference to (presumably) more expensive calls when
you have multiple dialing directory entries with the same name:

SET DIAL TOLL-FREE-AREA-CODE [number [number [...]]]
Specify zero, one, or more toll-free area codes in your country, such as 800, 888,
877, and so on, in the North American dialing area. If one or more toll-free area
codes are specified, then dialing-directory entries with these area codes within your
country are considered toll-free, rather than long-distance, for purposes of
‘‘cheapest-first’’ sorting. Synonym: SET DIAL TF-AREA-CODE.

The following command can be used to specify a dialing prefix for toll-free calls that is
different from your long-distance dialing prefix:

SET DIAL TOLL-FREE-PREFIX [number]
Prefix to be used when making toll-free calls. If not set, then your long-distance
prefix (DIAL LD-PREFIX) is used. Synonym: SET DIAL TF-PREFIX.

These items will also be picked up by Kermit at startup from the environment variables
K_TF_PREFIX and K_TF_AREACODE. The latter can include multiple area codes separated
by spaces. SET DIAL commands in your initialization or customization file, or given at any
other time, supersede environment variable values.

How a Portable Number Is Dialed
When a dialing-directory entry is in portable format or you give a portable-format number
directly in your DIAL command, Kermit chooses the dialing method as follows:

1. If your local COUNTRY-CODE is unknown, then Kermit prints a warning message and
stops dialing. Otherwise:

2. If your COUNTRY-CODE is different from the number’s country code, then Kermit
makes an international call using its INTL-PREFIX, the country code, area code (if any),
and subscriber number. Otherwise:

3. If DIAL FORCE-LONG-DISTANCE is ON, Kermit places a long-distance call by dialing the
long-distance prefix, the area code, and the subscriber number. Otherwise:

4. If the area code is in the current DIAL LC-AREA-CODES list, Kermit dials the call with
the area code but without the long-distance prefix. Otherwise:

128 The Dialing Directory / Chapter 5

5. If your AREA-CODE is not blank and it differs from the number’s area code, Kermit
makes a long-distance call: the country code is ignored and the call is placed using the
LD-PREFIX, the area code, and the subscriber number (toll-free calls fall into this cate-
gory too). Otherwise;

6. Kermit makes a local call. The country code and area code are ignored, and Kermit
dials the subscriber number directly.

Alternative Notations
It is permissible to omit parentheses from around the area code in a portable dialing direc-
tory entry, for example:

+1 212 555 1212

or:

+12125551212

(Remember, spaces are ignored.) If you do this, Kermit treats the entry a bit differently.
Since it can’t ‘‘parse’’ this type of phone number (i.e. separate its country code, area code,
and subscriber number), it tries to match the concatenated DIAL COUNTRY-CODE and DIAL

AREA-CODE (if any) with the beginning of the phone number, ignoring the inital ‘‘+’’, as
well as any ‘‘/’’, ‘‘.’’, and spaces. Thus permissive entries can also look like this:

+1 / 212 / 555-1212
+1/212/555-1212
+1.212.555.1212

(This notation is not recommended, but it does agree with notation commonly used in
some parts of the world, and might aid in importing dialing directories from other applica-
tions or databases.)

This type of entry can be used in parts of the world where the distinction between area
code and subscriber number are blurry. By setting different length DIAL AREA-CODEs, you
can ‘‘move’’ digits between the area code and subscriber number for matching. For ex-
ample, suppose you have this dialing directory entry:

Some-Name +9876543210

If you:

SET DIAL COUNTRY-CODE 9
SET DIAL AREA-CODE 87

then Kermit dials ‘‘6543210’’. But if you:

SET DIAL COUNTRY-CODE 9
SET DIAL AREA-CODE 8765

then Kermit dials ‘‘43210’’.

Using Portable Entries 129

Dialing from Private Branch Exchanges
A private branch exchange (PBX) is a private telephone system installed within a build-
ing, company, hotel, organization, or other thing, that is also connected to the public
telephone network. For our purposes, a PBX has the following properties:

1. If you are dialing out from the PBX to the public telephone network, you must dial a
special prefix, such as ‘‘9’’, to get an outside line (the prefix could be anything at all,
and there might be more than one of them, and it might include some kind of account
code for internal charging purposes).

2. If you are dialing from your PBX phone to another phone on the same PBX, the dial-
ing method is different from what it would be if you were making a local call into the
PBX from outside. For example, if your local phone number (as seen from outside) is
987-6543, it might be dialed internally as 6543, or 7-6543.

3. PBXs have their own exchange or exchanges, and no telephone numbers outside the
PBX (but in the same country and area code) have the same exchange. In the North
American Numbering Plan, the exchange is the first three digits of the subscriber num-
ber. Large PBXs might have two or more exchanges.

The following commands allow you to use the same dialing directory entry for internal
calls within the PBX, calls to the outside from within the PBX, and calls into the PBX
from outside:

SET DIAL PBX-OUTSIDE-PREFIX [number]
Tells the prefix you must dial to get an outside line. Issue this command to specify
the prefix when you are using a PBX phone. And be sure that no
PBX-OUTSIDE-PREFIX is defined when you are dialing on the public telephone network
(issuing this command without a number removes the prefix).

SET DIAL PBX-EXCHANGE [number [number [...]]]
Tells the leading digits of a subscriber number within the DIAL AREA-CODE that iden-
tify it as belonging to the PBX, typically a 3- or 4-digit number. You may list one or
more exchanges.

SET DIAL PBX-INSIDE-PREFIX [number]
Specifies the prefix, if any, that must be used to dial an internal number.

If a PBX-OUTSIDE-PREFIX is defined and a call is determined to be local (same area code),
the PBX-EXCHANGE (if any) is compared with the beginning of the local phone number. If
they match, then those digits are removed from the local phone number before dialing. In
addition, if a PBX-INSIDE-PREFIX is specified, it is added to the beginning of the phone
number before dialing.

130 The Dialing Directory / Chapter 5

Here’s an example. Suppose we have the following dialing directory entries:

MARKETING +1 (617) 765 4321
BOONDOCKS +1 (617) 444 6789

and suppose we have given the following commands:

SET DIAL COUNTRY-CODE 1
SET DIAL AREA-CODE 617
SET DIAL PBX-OUTSIDE-PREFIX 9
SET DIAL PBX-EXCHANGE 555
SET DIAL PBX-INSIDE-PREFIX 4

Then, if we ‘‘dial boondocks’’, the number that is actually dialed is 94446789 because,
since our PBX exchange does not match the beginning of the ‘‘boondocks’’ subscriber
number, we treat it as an external call (which happens to be local, since the country code
and area code match our own). So the outside-line prefix is dialed, followed by the local
number.

But if we ‘‘dial marketing’’, we note that the exchange ‘‘555’’ matches our PBX-
EXCHANGE, so we strip the ‘‘555’’ and replace it by our PBX-INSIDE-PREFIX, which is ‘‘4’’,
resulting in an internal PBX call, ‘‘41234’’.

On the other hand, if we are dialing from outside (e.g. from home), we use:

SET PBX-OUTSIDE-PREFIX

(no prefix) to indicate we are not using a PBX (the normal case), and then ‘‘dial
marketing’’ is just like dialing any other number; it is dialed as a local, long-distance, or
international call, depending on our location.

When a PBX has multiple exchanges, matters become a bit more complicated. Columbia
University’s PBX, for example, has two exchanges: 853 and 854. Other 85x exchanges
exist on the public telephone network in the same area code. To recognize a PBX number,
we specify SET DIAL PBX-EXCHANGE 853 854. But what is the DIAL PBX-INSIDE-PREFIX?
For 853 numbers, it’s ‘‘3’’ and for 854 numbers, it’s ‘‘4’’; that is, the last digit of the ex-
change. But we can’t expect this rule to hold for all PBXs in the world. Therefore Kermit
lets you write the rule for forming the PBX-INSIDE-PREFIX. This is done with variables and
functions, concepts that are presented in Chapter 18:

\v(d$pd)
Kermit’s built-in variables are of the form \v(name); that is, backslash, the letter v,
and then the name of the variable in parentheses. This variable contains the exchange
that was matched by the DIAL command when a PBX internal call was detected. For
example, if the PBX exchange list is ‘‘853 854’’ and a call is placed to +1 (212)
854-9999, \v(d$ps) is set to 854 by the DIAL command.

Using Portable Entries 131

SET DIAL PBX-INSIDE-PREFIX \fxxx(...)
Kermit function references are of the form \fname(args); that is, backslash, the letter
f, then the name of the function followed by its argument list in parentheses. If the
PBX-INSIDE-PREFIX is defined to be a function, its evaluation is deferred until dialing
time. Normally this would be a string function having \v(d$px) as an operand, but
can be anything at all, including a constant string.

The setup for Columbia would be:

SET DIAL AREA-CODE 212
SET DIAL PBX-EXHANGE 853 854
SET DIAL PBX-OUTSIDE-PREFIX 93
SET DIAL PBX-INSIDE-PREFIX \fRight(\v(d$px),1)

Ths PBX-INSIDE-PREFIX is the rightmost character of the PBX exchange. The
\fRight(s,n) function returns the rightmost n characters of its argument string, s.

On LANs or multiuser computers that use PBXs for dialing out, the following environ-
ment variables can be set to ensure that Kermit does the right thing for all users by default:

Environment Variable SET DIAL Parameter
K_PBX_INSIDE PBX-INSIDE-PREFIX
K_PBX_OUTSIDE PBX-OUTSIDE-PREFIX
K_PBX_EXCHANGE PBX-EXCHANGE

Having the Final Word
When obtaining a phone number from the directory, Kermit performs various transfor-
mations prior to dialing, which you have just read about. But the result might not be ex-
actly what is needed. In cases where Kermit is likely to err, you can ask it to display the
phone number before it dials, and give you a chance to change it:

SET DIAL CONFIRMATION { ON, OFF }
Requests confirmation of the phone number before dialing. Normally OFF. When ON,
Kermit displays the number, exactly as it is about to be dialed, and you may respond
Yes or No. If you respond No, Kermit prompts you for a replacement number. You
may also enter Ctrl-C to cancel dialing altogether and return to the C-Kermit prompt.

Checking Portable Entries
If you want to see the effect that the various SET DIAL settings have on telephone numbers,
make a test dialing directory containing many entries with the same name (say ‘‘test’’), but
with different country and area codes.

Set different DIAL COUNTRY-CODEs and DIAL AREA-CODEs (and PREFIXes, and SUFFIXes,
and PBX items, and TOLL-FREE items, etc etc), then issue a LOOKUP command on the test
name.

132 The Dialing Directory / Chapter 5

Here’s an example in which we have set our country code to 1 and our area code to 212
(all phone numbers are fictional):

7 telephone numbers found for "test":
1. Test +1 (212) 555 1234 => 7 1234 (0)
2. Test +1 (800) 555 4321 => 1800555 4321 (1)
3. Test +1 (888) 555 4321 => 1888555 4321 (1)
4. Test +1 (212) 555 5432 => 555 5432 (2)
5. Test 5559924 => 5559924 (3)
6. Test +1 (201) 555-6543 => 1201555-6543 (4)
7. Test +49 (551) 7654321 => 011495517654321 (5)

All the matching entries are listed in the order they will be dialed, showing the name, the
number from the directory entry and then, after the arrow (=>), the number that actually
will be dialed, and finally the type of call (local, long-distance, international, etc; see
Table 5-1 on page 119).

If the ordering is not what you desire, tell Kermit to SET DIAL SORT OFF and do the
LOOKUP again. This forces Kermit to dial the numbers in the same order they were en-
countered in the directory or directories. Or else rearrange the order of the entries in your
dialing directories.

Long-Distance Carriers and Calling-Card Numbers
Thanks, at least in the USA, to deregulation, it is now possible to use different companies
to make long-distance and international calls from the same telephone. Each phone has a
default long-distance company, which is used if you make these calls in the normal way,
but you can also choose a different long-distance company on a per-call basis by dialing
the phone number in a different way. Furthermore, you can charge calls made on other
phones to your own account by dialing in perhaps another special way and then specifying
your account number.

The easy case involves specification of an alternative long-distance prefix. For example,
to use New Jersey Bell in the USA, the prefix is ‘‘10-NJB’’ (i.e. ‘‘10652’’) rather than the
customary ‘‘1’’. Everything works exactly as described previously, except your
long-distance bill comes from a different company:

SET DIAL LD-PREFIX 10652

Now suppose you also need to supply a credit-card number, but only on long-distance
calls. We assume that this must come either before the area code or after the phone num-
ber (rather than imbedded in the phone number), so therefore it can be part of the
LD-PREFIX or it can be a suffix. Not the DIAL SUFFIX, which is always applied (if defined),
but rather:

Using Portable Entries 133

SET DIAL LD-SUFFIX [text]
The text, if any, is appended to the phone number prior to dialing if Kermit has deter-
mined the call is long distance and not toll free.

For example, suppose that to have a long-distance call billed to your credit card, you must
dial 0, the area code, the number, and then pause for several seconds, and then enter your
credit-card number:

SET DIAL LD-PREFIX 0
SET DIAL LD-SUFFIX ,,xxxxxxxxxxxxxxxxxx

where the x’s represent your card number, possibly followed by ‘‘#’’. Depending on the
capabilities of your modem and the behavior of the long-distance carrier, you might be
able to replace the comma(s) by a ‘‘wait for bong’’ character (normally ‘‘$’’).

In another scenario, you might be using your default long-distance carrier to call another
long-distance carrier, and then calling the desired number from there, also supplying a
credit- or calling-card number. Here you are really making a phone-call-within-a-
phone-call. For example, you dial:

1 800 nnnnnnn

(where the n’s are replaced by the second carrier’s number), wait for a ‘‘quiet answer’’ (no
carrier), then enter 0, the area code, the subscriber number, then wait for a bong, then
enter the credit card number. The appropriate commands would be:

SET LD-PREFIX 1,800,nnnnnnn@0
SET LD-SUFFIX $xxxxxxxxxxxxxxxxxx

Finally, allowing for the possibility that the billing method for international calls might be
different from long-distance calls within one’s country, we also have:

SET DIAL INTL-PREFIX [text]
SET DIAL INTL-SUFFIX [text]

OBVIOUSLY, you do not want to put credit-card or account information in the dialing
directory or any other file, as that is a classic security risk. Therefore, you are going to
have to provide this information to Kermit each time you run it and you know that you
will be making toll calls. In Chapters 17 through 19, you can find out how to do this
easily with command files, macros, or script programs.

Traveling Tips
If you’ve read this far, you know that to have a portable dialing directory, it’s important to
separate the concepts related to the number to be dialed from those relating to the location
where dialing occurs and the method of dialing. So the dialing directory contains no in-
formation at all about your locale. You have also learned the commands for setting up
your dialing locale and method. All that’s left to be said is that the process need not be

134 The Dialing Directory / Chapter 5

painful and laborious. Kermit’s command-file and macro capabilities, explained in Chap-
ter 17, let you assign complicated configurations to friendly words of your choice. For ex-
ample, suppose you carry a laptop around to various locations:

DEFINE USA {
SET DIAL COUNTRY-CODE 1
SET DIAL LD-PREFIX 1
SET DIAL INTL-PREFIX 011

}

DEFINE GERMANY {
SET DIAL COUNTRY-CODE 49
SET DIAL LD-PREFIX 0
SET DIAL INTL-PREFIX 00

}

DEFINE MANHATTAN USA, SET DIAL AREA-CODE 212
DEFINE LONG-ISLAND USA, SET DIAL AREA-CODE 516
DEFINE HANNOVER GERMANY, SET DIAL AREA-CODE 511
DEFINE MARBURG GERMANY, SET DIAL AREA-CODE 6421

And when at work in Manhattan where you have a PBX:

DEFINE WORK {
MANHATTAN
SET DIAL PBX-OUT 93, SET DIAL PBX-EXT 987, SET DIAL PBX-IN 7

}

And then for Hoboken, New Jersey, where you need to dial using a particular long-dis-
tance carrier:

DEFINE HOBOKEN {
USA
SET DIAL AREA-CODE 201
SET DIAL LD-PREFIX 10652

}

These macro definitions would be kept in your Kermit customization file. And then,
whenever you start up Kermit to make a call, just enter one word: MANHATTAN,

HOBOKEN, HANNOVER, WORK, etc, to declare your location. Then DIAL away.

A macro library of such ‘‘rule sets’’ can be built up over time and included in your Kermit
customization file, so these macros will be available to you whenever you use Kermit.
You can create and modify macro definitions easily, since they are plain text and not part
of the binary executable Kermit program or any particular kind of database. For the same
reason, you can send them by email, print them, edit them, and use them on any platform
where C-Kermit or Kermit 95 runs.

Command Summary 135

Command Summary

The following commands and variables are used with C-Kermit’s dialing directory:

DIAL [text]
LOOKUP name
SET DIAL AREA-CODE [text]
SET DIAL CONFIRMATION { ON, OFF }
SET DIAL CONVERT-DIRECTORY { ASK, OFF, ON }
SET DIAL COUNTRY-CODE number
SET DIAL DIRECTORY [file1 [file2 [file3 [...]]]]
SET DIAL INTL-PREFIX [text]
SET DIAL INTL-SUFFIX [text]
SET DIAL LD-SUFFIX [text]
SET DIAL PBX-EXCHANGE [number]
SET DIAL PBX-INSIDE-PREFIX [number]
SET DIAL PBX-OUTSIDE-PREFIX [number]
SET DIAL PREFIX [text]
SET DIAL RESTRICT { INTERNATIONAL,LOCAL,LONG-DISTANCE,NONE }
SET DIAL SORT { OFF, ON }
SET DIAL SUFFIX [text]
SET DIAL TOLL-FREE-AREA-CODE [number [number [...]]]
SET DIAL TOLL-FREE-PREFIX [number]

Variables:

\v(d$ac) DIAL AREA-CODE value
\v(d$cc) DIAL COUNTRY-CODE value
\v(d$lp) DIAL LD-PREFIX value
\v(d$ip) DIAL INTL-PREFIX value
\v(dialnumber) Number or name most recently dialed
\v(dialresult) Dial result message or code from modem
\v(dialstatus) Numeric code expressing dial result, Table 5-3, next page

136 The Dialing Directory / Chapter 5

Table 5-3 C-Kermit Dial Status Codes

Code Meaning

-1 No DIAL command given yet

0 DIAL succeeded

1 Modem type not specified

2 Communication device not specified

3 Device can’t be opened

4 Communication speed not specified

5 Hangup failure

6 Internal error (memory allocation, etc)

7 Device input/output error

8 DIAL TIMEOUT expired

9 Dialing interrupted by user

10 Modem not ready

11 Partial DIAL command OK

12 Dialing directory error

13 Modem was hung up OK

14 through 19 (reserved)

20 Modem command error

21 Failure to initialize modem

22 Busy

23 No carrier

24 No dialtone

25 Ring (incoming call)

26 No answer

27 Disconnected

28 Answered by voice

29 Access denied, forbidden call

30 Blacklisted

31 Delayed

32 Fax connection

33 Digital line

34 TAPI dialing failure (Windows only)

98 Unknown error

99 Unspecified failure detected by modem

137

Chapter 6

Network Connections

Almost any version of Kermit can be used on the ‘‘far end’’ of a network connection, and
many versions of Kermit — C-Kermit included — can also make network connections
themselves. When you use Kermit software on a network connection, the underlying net-
work protocol and services take the place of a serial connection.

While it is beyond the scope of this book to explain computer networks in any depth, it is
important to note that, in the context of Kermit software, network connections differ from
serial connections in several important ways:

• Network connections are usually inherently error free; the underlying network
protocol includes error detection and correction. This means that all communication,
even terminal sessions, should be free of noise and data loss.

• Network protocols include their own flow control methods. You rarely have to worry
about buffer overflows on a network connection.

• Network protocols are sometimes more reliable than RS-232 signals as indicators of
whether a connection is open or closed.

Network connections might be faster than serial connections or they might be slower.
Large shared networks, such as the worldwide Internet, can become bogged down and
sluggish during periods of heavy traffic. Serial connections, by contrast, are point-
to-point, dedicated connections that never become overloaded except when error-correct-
ing or compressing modems are involved, or the end systems (or the local nets they are
on) become overloaded.

138 Network Connections / Chapter 6

C-Kermit can be used in several ways in a computer network. You can use a network to
access C-Kermit on a remote host and transfer files or you can have C-Kermit establish
network connections itself. C-Kermit has certain advantages over other network virtual
terminal and file transfer software, such as TCP/IP Telnet and FTP, including:

• Files can be transferred over Telnet, Rlogin, X.25, DECnet, LAT, and other network
terminal connections.

• The Kermit file transfer protocol can be more flexible than network file transfer. It in-
cludes update and recovery features not usually found in network FTP programs. It is
more adept at converting text files into useful form when transferring them between
unlike computers. In particular, Kermit protocol is unique in its ability to translate na-
tional and international character sets during file transfer (Chapter 16).

• C-Kermit’s terminal connection includes features not found in most network virtual
terminal programs, including character-set translation, key mapping, session logging,
and support for Shift-In/Shift-Out for transmitting 8-bit characters across 7-bit connec-
tions (Chapters 8 and 16), as well as VT320, ANSI, Wyse, and other terminal emula-
tions in the Windows and OS/2 versions.

• Kermit’s built-in script programming language can be used to automate network file
transfers and to set up unattended or repeated operations (Chapters 17–19).

• Kermit’s logging facilities can be used in combination with its script programming
language for network monitoring and reporting.

• If you have already learned Kermit for serial communications, then you already know
it for network connections too, and vice versa.

Making Network Connections

Setting up a network connection from C-Kermit to another network host is similar to set-
ting up a dialed connection, but with different commands. C-Kermit presently supports
several network types, TCP/IP [20], X.25 [14], NETBIOS, DECnet (PATHWORKS),
Meridian Technology SuperLAT, and Named Pipes. Other networking methods might
also have been added since this writing. The selection of networking methods available
on your particular version of C-Kermit might include none, one, or several of these. To
find out which ones are available to you, use the SHOW NETWORK command:

C-Kermit> show network
...
Supported networks:
SunLink X.25
TCP/IP
...

Making Network Connections 139

As of this writing, TCP/IP support is available in the UNIX, VMS, VOS, OS/2, Windows
NT, Windows 95, OS-9, and AOS/VS II versions that have TCP/IP installed. X.25 sup-
port is currently available for Stratus VOS and for Sun computers equipped with the Sun-
Link X.25 product. DECnet, NETBIOS, and Named Pipe support is available only for
suitably equipped OS/2 systems; SuperLAT is available for Windows 95 and NT systems
that have this product installed. The list is sure to grow.

SET CARRIER-WATCH, SET SPEED, and other serial-device commands have no effect on net-
work connections. The basic commands needed to set up a network connection are:

SET NETWORK TYPE { TCP/IP, X.25, NETBIOS, . . . }
This command tells C-Kermit which type of network to use when making subsequent
SET HOST connections. SET NETWORK TYPE is analogous to SET MODEM TYPE, which is
used on dialed serial connections to tell Kermit which kind of modem to use for the
next DIAL command. The available network types depend on your computer, operat-
ing system, and which, if any, networking protocols or products are installed, and of
course, whether your computer is attached to a network at all:

C-Kermit>set network type ? One of the following:
tcp/ip x.25
C-Kermit>set network type tcp

The SHOW NETWORK command shows the types of network connections and protocols
available, plus information about the currently active network type and connection, if any.

SET HOST [host [network-specific-info]]
This command tells C-Kermit to make a network connection to the given host name or
address, on the type of network specified in the most recent SET NETWORK command.
When making network connections, SET HOST takes the place of SET LINE and DIAL on
serial connections. The SET HOST command closes any currently open connection
(network or serial) and then attempts to open a connection to the specified host im-
mediately. If the connection cannot be established, an error message is printed and the
command fails. If no host name is given, the currently open network connection (if
any) is simply closed and Kermit reverts to its default communication device.

If you give a SET HOST command without a prior SET NETWORK command, the default net-
work type is used, which is usually TCP/IP — use SHOW NETWORK to display the current
network type if you are in doubt.

HANGUP
When the current connection is via TCP/IP, X.25, or some other type of network, the
HANGUP command closes the network connection.

The remainder of this chapter discusses the considerations for each type of network and
then introduces the network directory — a simplified way of making network connections.

140 Network Connections / Chapter 6

TCP/IP Networks

TCP/IP is the protocol used by the worldwide Internet. TCP/IP network hosts address
each other using a protocol called IP (Internet Protocol). Each computer on a TCP/IP net-
work has a 32-bit IP address, written as four decimal numbers separated by periods, with
each number between 0 and 255 (inclusive), for example:

128.59.39.2

The IP address is like the address on a letter; it lets an IP message travel through a compli-
cated network to its destination.

People aren’t particularly good at remembering long numbers, so IP hosts can also have
names that stand for their numeric addresses. An IP hostname is usually a series of words
separated by periods, for example:

watsun.cc.columbia.edu

The fields in the name don’t have any particular relationship to the fields in the numeric
address. The dotted name fields represent a hierarchy from left to right, called a domain
name. The example identifies the computer called ‘‘watsun’’ on the Computer Center (cc)
network, which has many computers; at Columbia University (columbia), which has many
local area networks; on the educational portion of the Internet (edu), which also includes
many other educational institutions. The Internet has other major subdivisions besides
‘‘edu,’’ including ‘‘com’’ for the commercial portion, ‘‘gov’’ for the government portion,
‘‘it’’ for the Italian portion, and so on.

Host names are translated to numeric IP addresses by network servers called domain name
servers, or, more simply, name servers. The name server can be on your own computer,
on some other computer on your network, or even on a distant computer outside your
organization.

People tend to prefer short names to long ones. Therefore IP hosts can have nicknames,
like ‘‘watsun’’ or ‘‘w’’ for watsun.cc.columbia.edu. Nicknames are generally valid only
within an organization’s local network and are translated to IP numbers by a local name
server from a local host table.

C-Kermit’s SET HOST command accepts any of these forms, and it also can look up addres-
ses in its network directory, discussed later in this chapter.

If you give a host name (or a host name is fetched from the network directory), C-Kermit
attempts to find a name server that will supply the corresponding address. If you give a
numeric address, C-Kermit uses it directly, without attempting to contact a name server.
So, if you have trouble making a TCP/IP connection to a host by name, try its IP address
instead if you know it. Here are some examples showing how to establish connections
with the SET HOST command:

TCP/IP Networks 141

C-Kermit>set net type tcp (Choose network type)
C-Kermit>set host ? IP host name or number,
or carriage return to close an open connection
C-Kermit>set host watsun (Unknown nickname)
Can’t get address for watsun
C-Kermit>set host watsun.cc.columbia.edu (Full domain name)
C-Kermit>set host 128.59.39.2 (IP address)
C-Kermit>set host (Close the connection)
Closing Connection
C-Kermit>

You should use names rather than numbers when possible, because numbers can change
without your knowledge. The name server, however, is supposed to have a current num-
ber for each name.

TCP Service Ports
C-Kermit connects to the TELNET server (TCP port 23) on the remote host by default, but
you can specify any desired TCP port or service after the IP host name or address (see
Table 6-1 for a sampling):

SET HOST host service

or you can append it to the host field with a colon (no spaces):

SET HOST host:service

As with addresses, Kermit asks the operating system to translate a service name (like tel-
net) into a TCP port number. If you give a port number, it is used as is. Examples:

C-Kermit>set host watsun (Default port is 23)
C-Kermit>set host watsun 23 (Port 23 specified)
C-Kermit>set host 128.59.39.2 telnet (TELNET is port 23)
C-Kermit>set host federal.bbs.gpo.gov 3001 (Port 3001)
C-Kermit>set host martini.eecs.umich.edu:3000 (Port 3000)

Table 6-1 Commonly Used Assigned TCP Port Numbers

Port Name Description

7 ECHO Echoes back whatever is sent to it.

13 DAYTIME Prints time of day.

19 CHARGEN Character generator, sends characters continuously.

23 TELNET Telnet server.

37 TIME Time server.

70 GOPHER Information retrieval.

79 FINGER Shows who is logged in.

513 LOGIN Rlogin server.

142 Network Connections / Chapter 6

The SET HOST command displays the translation from IP host name to numeric IP address:

C-Kermit>set host callsign.cs.buffalo.edu:2000
Trying 128.205.32.4...

and then tries to establish the connection. If the connection cannot be made, you are given
an informative error message. Examples:

C-Kermit>set host 123.123.123.123
Trying 123.123.123.123...
Sorry, can’t open connection: Network is unreachable
C-Kermit>set host watsun oofa
Trying 128.59.39.2...
Sorry, can’t open connection: Cannot find port for service oofa
C-Kermit>set host watsun 2345
Trying 128.59.39.2...
Sorry, can’t open connection: Connection refused

The first message means that either there is no such IP address or the network implied by
the IP address cannot be located or reached. The second message means that the TCP
service-name database did not contain an entry for a service called oofa. The last message
indicates that there is no server on TCP port 2345 at host watsun.

Use the SHOW NETWORK command to display the name, address, service, network, and
protocol of an active connection:

C-Kermit>sho net
...
Active network connection:
callsign.cs.buffalo.edu:3000 [128.205.32.2] via: tcp/ip
TELNET protocol
Echoing is currently remote

C-Kermit>

Fine-Tuning the TCP Connection
C-Kermit’s SET TCP command lets you tune TCP networking performance on a
per-connection basis by adjusting parameters that you normally would not have access to.
You should use these commands only if you feel that the TCP/IP protocol stack that Ker-
mit is using is giving you inadequate performance, and then only if you understand the
concepts (see, for example, [20]), and then at your own risk. The SET TCP settings are dis-
played by SHOW NETWORK. Not all SET TCP options are necessarily available in all
C-Kermit versions; they depend on the underlying TCP/IP services.

SET TCP { RECVBUF, SENDBUF } number
Overrides the system default TCP receive and send buffer sizes.

SET TCP KEEPALIVE { ON, OFF }
Setting this ON might help to detect broken connections more quickly. It works when
both ends of the TCP connection support the TCP Keepalive feature. Default is ON.

TCP/IP Networks 143

SET TCP LINGER { ON [timeout], OFF }
Setting this ON ensures that a connection doesn’t close before all outstanding data has
been transferred and acknowledged. The optional timeout specifies how many 10ths
of a millisecond TCP should wait for a ‘‘close’’ to succeed. 0 means no timeout, wait
forever. Default is OFF, meaning don’t wait — just assume that no data will be lost.

SET TCP NODELAY { ON, OFF }
ON means send short TCP packets immediately rather than waiting to accumulate a
bunch of them before transmitting (Nagle algorithm). Default is OFF. Turning this ON

can significantly degrade overall network performance, but might be necessary if you
experience slow echoing on TELNET connections.

The RLOGIN Command
The RLOGIN command combines the functions of SET NETWORK TYPE TCP/IP, SET HOST,
and CONNECT (explained in Chapter 8), as well as automatically specifying the special
‘‘login’’ (513) service port. The RLOGIN command might not be available in your version
of C-Kermit, especially on systems (including most variations of UNIX) where RLOGIN is
a privileged service.

Rlogin is like Telnet (next page), but simpler and less widely available. It is supposed to
always provides a transparent 8-bit communication path, and it automatically and trans-
parently communicates any change in screen dimensions.

Rlogin protocol [51] also sends your user ID as part of the login sequence, so C-Kermit’s
RLOGIN command lets you include it:

RLOGIN [host [user-ID]]
Closes any currently open connection. If a host is included, a connection is opened to
port 513 on the the specified IP host. If a user ID is included, it is sent in advance to
the host so you won’t have to type it as part of the login process.

If a user ID is included, it also becomes the value of the \v(userid) variable (Chapter
17). If a user ID is not included but you have previously used a SET LOGIN USERID com-
mand to specify a user ID, then that is used; otherwise if a your local username, if any, is
used; if you don’t have a local username, the USER environment variable is used. If none
of these is fruitful, you are asked to supply a user ID, since the Rlogin server requires one.

Typically when you give a successful RLOGIN command, C-Kermit enters its terminal
screen (Chapter 8) and you see a Password: prompt. Just type in your password and
you’re online.

On the other hand, if the host does not support RLOGIN protocol, or your client process
lacks the needed privilege, then your connection will not be accepted.

144 Network Connections / Chapter 6

The TELNET Command
The TELNET command combines the functions of SET NETWORK TYPE TCP/IP, SET HOST,
and CONNECT (explained in Chapter 8) into one convenient command:

TELNET [host [service]]
Opens a connection to the specified IP host on the designated TCP port (23 = TELNET

by default). If successful, C-Kermit enters CONNECT mode automatically, otherwise it
issues an appropriate error message and remains at the prompt. If a host is not
specified, the currently active TCP/IP connection, if any, is resumed. Examples:

C-Kermit>telnet ? IP host name or number,
or carriage return to resume an open connection
C-Kermit>telnet watsun ? TCP service name or number,
or carriage return for telnet (23)
C-Kermit>telnet watsun 2000 (Specify port 2000)
C-Kermit>telnet watsun:2000 (Ditto)
C-Kermit>telnet (Resume an open connection)

TELNET Protocol Negotiations
C-Kermit performs TELNET option negotiation protocol [58] automatically. These negoti-
ations are used primarily to inform the remote host of your terminal type and to determine
which side does the echoing. If the TCP service port is TELNET (23), Kermit sends the in-
itial negotiations. Otherwise, Kermit sends no TELNET negotiations but is prepared to
handle them should they arrive from the remote host. Negotiations can take place at any
time during the connection: in CONNECT mode (for example, to turn echoing off and on
around password entry), during script program execution, and so on. The SET TELNET

command can be used to alter C-Kermit’s initial TELNET configuration:

SET TELNET ECHO { REMOTE, LOCAL }
In accordance with the TELNET Network Virtual Terminal (NVT) specification [58],
C-Kermit begins a TELNET connection in local-echo mode, meaning C-Kermit itself
echoes the characters that you type on the keyboard. In the rare cases where this
causes problems (for example with a remote server that does its own echoing without
negotiating this first, contrary to the TELNET protocol), you can use this command to
change C-Kermit’s initial echoing state for TELNET connections.

SET TELNET BINARY-MODE { ACCEPTED, REFUSED, REQUESTED }
TELNET connections are normally in NVT (ASCII) mode, but there is also a binary
mode that can or should be used for certain purposes. Unfortunately, TELNET server
implementations are inconsistent in this area, and so you might have to use this com-
mand to adapt. Normally, Kermit refuses to enter binary mode. If you find that you
can’t display or send 8-bit characters or you experience other kinds of strange be-
havior, try disconnecting, telling Kermit to SET TELNET BINARY ACCEPTED or
REQUESTED, and then starting a new connection.

TCP/IP Networks 145

SET TELNET NEWLINE-MODE { BINARY, NVT } { ON, OFF, RAW }
The TELNET specification also states that while the connection is in NVT mode, the
Return or Enter key should normally be transmitted to the TELNET server as a carriage-
return and linefeed pair (CRLF). If the connection is in binary mode, then carriage
return is sent as-is. This is how C-Kermit behaves unless you use this command to
change things. You can control Kermit’s behavior separately for NVT and binary
mode. The options for each mode are: ON (send CR as CRLF), OFF (send CR as CR
followed by NUL), and RAW (send CR by itself, the default for binary mode). Use this
command if your TELNET session doesn’t behave as expected without it.

SET TELNET TERMINAL-TYPE text
The remote TELNET server might request C-Kermit to send your local terminal type.
Unless you say otherwise, C-Kermit sends what it believes your terminal type to be,
based, for example, on the value of the TERM environment variable, in uppercase (as
required by the TELNET specification). In OS/2 and Windows, it is your actual ter-
minal emulation type. But if the remote system does not support your terminal type or
recognize its name, it won’t be able to set your terminal type automatically. Use this
command to tell C-Kermit the terminal name to use in TELNET negotiations; case is
preserved. Example:

C-Kermit>set telnet term VT100

This command does not affect your local terminal type.

Here is an example showing how to use C-Kermit to connect from a TCP/IP host to the
Internet Network Information Center, a source of information about the Internet.

$ kermit (Start Kermit)
C-Kermit 7.1.199 29 Apr 2001, Solaris 2.5
Type ? or HELP for help
C-Kermit>telnet internic.net (Connect to host)
Trying 198.41.0.5...
Connecting to host internic.net:23
The escape character is Ctrl-\ (ASCII 28, FS).
Type the escape character followed by C to get back,
or followed by ? to see other options.

SunOS UNIX 4.1 (rs0) (ttyp9)

Please be advised that use constitutes consent to monitoring
(Elec Comm Priv Act, 18 USC 2701-2711)

[vt320] InterNIC > ?
Command, one of the following
DATE FINGER HELP KERMIT LOGOUT
STATUS WHOIS GOPHER WAIS X500WHOIS
[vt320] InterNIC > logout
Communication disconnect (Back at Local System)
C-Kermit>exit (Leave Kermit)
$ (Back where we started)

146 Network Connections / Chapter 6

Testing and Managing Your TCP/IP Connection
Several special features are available for testing and managing your TCP/IP connection.
At the C-Kermit prompt, you can use the PING command:

PING [host]

to send an IP message to see if the host is reachable and responsive. If a host is not
specified, the message is sent to the current SET HOST or TELNET host, if any. This com-
mand simply runs your system’s PING command, so the response depends on your system:

C-Kermit>set host spacelink.msfc.nasa.gov
C-Kermit>ping
spacelink.msfc.nasa.gov is alive
C-Kermit>

The other special features are available as CONNECT-mode escape commands and are
described in Chapter 8, but they are also listed here for completeness:

A Send a TELNET ‘‘Are You There?’’ command.

B Send a TELNET Break command.

I Send a TELNET Interrupt Process command.

For example, typing Ctrl-\ (hold down the Ctrl key and press the backslash key,
C-Kermit’s normal CONNECT-mode escape character) followed by the letter A sends a Tel-
net ‘‘Are You There?’’ protocol message, to which the Telnet server should respond with
something like ‘‘[yes]’’ if you have a working Telnet connection.

How to Dial Using a TCP/IP Modem Server
If your site maintains a pool of dialout modems on a ‘‘reverse terminal server’’ that is on
your TCP/IP network, you can use C-Kermit to dial out by following these steps in the or-
der given:

1. Give a SET HOST (not TELNET) command, specifying the IP host name or numeric ad-
dress of the terminal server. In most cases, a special port number is also required,
such as 2000.

2. Give a SET MODEM TYPE command to specify the type of modem.

3. Issue any necessary SET DIAL or SET MODEM commands.

4. Give a DIAL command for the desired phone number.

If the connection succeeds but echoing is incorrect, you can try giving a SET TELNET ECHO

REMOTE (or LOCAL) command as a first step, or else give a SET TERMINAL ECHO REMOTE

(or LOCAL) command after the connection is made.

TCP/IP Networks 147

Receiving TCP/IP Connections
Some versions of C-Kermit can not only make TCP/IP connections, but also can receive
them. To receive TCP/IP connections, give the following commands:

C-Kermit>set network type tcp/ip
C-Kermit>set host *:2000

That is, use ‘‘*’’ in place of the hostname, and specify a non-TELNET non-privileged
port. C-Kermit waits until a connection comes in, or until you interrupt it with Ctrl-C, be-
fore giving its next prompt and accepting another command.

Once a connection comes in, you can enter CONNECT mode for a chat session, or SERVER

mode to be a Kermit file transfer and management server, or you can run a custom script
to conduct an interactive dialog with the client (as explained in subsequent chapters).

It is important to note that when receiving incoming connections, C-Kermit is not a TEL-
NET server. It does not give the client a login prompt, an interactive shell, or even a Ker-
mit prompt. Sometimes, however, especially when executing scripts, it is desirable —
even necessary — to control certain TELNET protocol options. This requires a basic un-
derstanding of the TELNET protocol, which is beyond the scope of this publication (see,
for example, [20], or the TELNET RFCs).

Very briefly, however, the TELNET protocol calls for control messages to be mixed in
with ordinary data. TELNET messages begin with the special character IAC (Interpret As
Command), which is a byte consisting of eight 1’s; that is, a decimal value of 255. The
messages determine which side echoes characters, how various characters are interpreted,
and so on.

As a TELNET client, C-Kermit takes care of this for you automatically, using built-in
defaults, or else the values you have given in any SET TELNET commands. But when
receiving a connection, it might sometimes be necessary to initiate TELNET negotiations
explicitly.

Forcing TELNET Options
The following command can be used to send TELNET negotations to force, or attempt to
force, certain known or desired states:

TELOPT {DO, DONT, WILL, WONT } {BINARY, ECHO, NAWS, SGA, TTYPE }
Sends the TELNET command, DO, DONT, WILL, or WONT, for the given protocol op-
tion, BINARY, ECHO, NAWS, SGA, or TTYPE.

DO requests that the TELNET client or server on the other end of the connection do the
given option; DONT requests it not to do the option. WILL informs it that C-Kermit will do
the option; WONT tells it that C-Kermit will not do the option.

148 Network Connections / Chapter 6

The options are:

BINARY
Binary mode, in which all data except IAC may be sent ‘‘raw’’ without any form of
quoting or escaping.

ECHO
This parameter determines which party performs the echoing of characters.

NAWS
Negotiate About Window Size. If both parties agree to this option, then they can send
messages to inform each other of their screen dimensions.

SGA
Suppress Go Ahead. This one is also used in echo control, and generally must be
negotiated for remote echoing.

TTYPE
Terminal Type. If both parties agree to this option, they can inform each other of their
terminal type.

Making LAT Connections

Digital Equipment Corporation LAT (Local Area Transport) is a protocol designed for use
on local area networks and, when VAX or Alpha computers are involved, is similar to
TELNET in that it allows logging in to the VMS or UNIX computer and having an inter-
active terminal session.

LAT networking is provided either by Digital as part of its PATHWORKS product or by
its licensee, Meridian Technology, as SuperLAT. As of this writing, PATHWORKS is
supported by Kermit/2 on OS/2 and SuperLAT is supported by Kermit 95 on Windows 95
and NT. For PATHWORKS, the commands are:

SET NETWORK TYPE DECNET
Specifies DECnet PATHWORKS LAT as the networking method.

SET HOST nodename
Makes a LAT connection to the specified DECnet node on the local network.

Once these two commands are executed successfully, you can use all of Kermit’s com-
munication features — terminal emulation, file transfer, scripting, etc — in the same way
you would on a serial or TCP/IP connection. Similarly, for SuperLAT:

SET NETWORK TYPE SUPERLAT
Specifies Meridian Technology SuperLAT as the networking method.

X.25 Networks 149

SET HOST service-name [password]
Makes a LAT connection to the specified DECnet node on the local network.
service-name is normally the DECnet host (node) name of the system you are connect-
ing to. It can also be a node/port combination (no spaces), with a a (forward) slash
separating the node and port designations, for example to access a specific modem
port on a DECserver. If the service is password-protected, you must also include a
password after the service-name or node/port. Examples:

C-Kermit> set network type superlat (Network type)
C-Kermit> set host myvax (Service name)
C-Kermit> set host myvax secret (Service name with password)
C-Kermit> set host latbox/3 (Serial Port 3 on LATBOX)
C-Kermit> set host latbox/3 secret (Ditto, with password)

Note: Uploading files (see Chapter 9) on a LAT connection is problematic due to intrinsic
limitations of LAT buffering. Using 90-byte packets and 1 window slot seems to work in
most cases (tell the host Kermit to ‘‘set receive packet-length 90’’); greater lengths tend to
hang the VMS session. Downloads can usually use any packet length or window size.

Warning: When accessing a VMS host, do not tell VMS or VMS C-Kermit to disable
flow control. VMS C-Kermit must have ‘‘set flow xon/xoff’’.

X.25 Networks

X.25 is a wide-area networking method predating TCP/IP by some years, typically used
for terminal-to-host connections (similar to TELNET) or host-to-host connections. As of
this writing, X.25 connections are supported for Stratus VOS and for Sun computers that
have the SunLink X.25 package and a connection to an X.25 network, such as the public
data networks found in many countries (SprintNet or Tymnet in the US, Datapac in
Canada, for example). Use the SHOW NETWORK command to find out if X.25 support is
available in your version of C-Kermit.

For X.25 connections, an X.121 [17] address is used in the SET HOST command; this is a
many-digit number usually consisting of a 1-digit prefix, a 4-digit DNIC (Data Network
Identification Code) followed by an NTN (Network Terminal Number) up to 10 digits in
length, or a 3-digit DCC (Data Country Code) followed by a country-dependent NN (Na-
tional Number) up to 11 digits in length. For example, the following sequence might set
up a connection to a hypothetical host in Brazil (Country Code 724):

C-Kermit>set parity mark
C-Kermit>set net type x.25
C-Kermit>set host 07240987654321

In most cases, you should SET PARITY to MARK (or some other value besides NONE) before
attempting to transfer files over an X.25 connection.

150 Network Connections / Chapter 6

Before giving a SET HOST command for an X.25 connection, you can issue the following
commands to specify how the connection is to be made:

SET X.25 CALL-USER-DATA { OFF, ON text }
Lets you specify up to 12 characters of ‘‘call user data,’’ usually an identifier or
password required by the host you are calling. Consult the instructions from your ser-
vice provider to see if you need to send call user data and what it should be.

SET X.25 CLOSED-USER-GROUP { OFF, ON n }
Membership in a closed user group gives you access to addresses that otherwise might
be off limits. C-Kermit assumes no user group. If you need to access a service that is
in a closed user group, use SET X.25 CLOSED-USER-GROUP ON n to specify a closed user
group number, 0 to 99.

SET X.25 REVERSE-CHARGE { OFF, ON }
Normally, the caller pays for an X.25 call. If the remote host or service is willing to
pay for your call, use SET X.25 REVERSE-CHARGE ON. The default is OFF.

An X.25 terminal connection goes through a PAD (Packet Assembler Disassembler),
which is something like an autodial modem or a terminal server. You can converse with it
directly (in command mode) or have it pass your data through to the selected host (data
mode). When your local host is connected directly to the X.25 network (as opposed to
dialing up a PAD), it takes the place of the PAD, and you have to use C-Kermit com-
mands to control the simulated PAD:

PAD CLEAR
Clears the X.25 virtual circuit. Discards any information that might be in transit.

PAD INTERRUPT
Sends an X.25 interrupt packet.

PAD RESET
Resets the X.25 virtual circuit.

PAD STATUS
Requests a status report from the PAD.

C-Kermit also sets the PAD parameters itself. Each of these commands controls a dif-
ferent PAD parameter. The numbers correspond to CCITT X.3 parameters [13]. X.3
parameter numbers higher than 12 are not necessarily available on all X.25 networks.

SET PAD BREAK-ACTION n
X.3 Parameter 7, or what the PAD should do if it receives a BREAK signal
(escape-character followed by B) from C-Kermit. n is the sum of the following digits:
0 means nothing, 1 means send an X.25 Interrupt packet, 2 means reset the connec-

X.25 Networks 151

tion, 4 means send an Indication of Break message, 8 means escape back to the PAD,
16 means discard pending output. The default is 21 (= 16 + 4 + 1).

SET PAD CHARACTER-DELETE n
X.3 Parameter 16. n = 0–127, the ASCII value of the character to be used for erasing
a character during terminal emulation. The default is 8 (Ctrl-H, Backspace).

SET PAD CR-PADDING n
X.3 Parameter 9, Padding After Carriage Return (CR). n = 0–255, the number of pad-
ding characters the PAD should send to C-Kermit after sending a CR, default 0.

SET PAD DISCARD-OUTPUT { 0, 1 }
X.3 Parameter 8. 0 means normal data delivery, 1 means discard output, default 0.

SET PAD ECHO { 0, 1 }
X.3 Parameter 2. 0 means the PAD will not echo, 1 means the PAD will echo. The
default is 1 (Kermit assumes the PAD will echo). This command also changes
Kermit’s DUPLEX setting.

SET PAD EDITING { 0, 1 }
X.3 Parameter 15. 0 means you can’t edit the lines you type at the PAD before it
sends them to the host, 1 means editing is allowed. The default is 1.

SET PAD ESCAPE { 0, 1 }
X.3 Parameter 1. 0 means escaping back to the PAD is not possible, 1 means you can
use (DLE) Ctrl-P to escape to the PAD. 32–126 is the ASCII value of a character to
use as the escape character. The default is 1.

SET PAD FORWARD n
X.3 Parameter 3, Data Forwarding Characters. The PAD forwards the characters it
has received to the remote host as soon as it sees the packet forwarding character.
n = 0 means none, 2 means carriage return. The default is 2, to make X.25 packets
correspond as much as possible with Kermit packets. Other possible values are 1 (any
alphanumeric character); 4 (ESC, BEL, ENQ, ACK); 8 (DEL, CAN, DC2); 16 (EXT,
EOT); 32 (HT, LF, VT, FF); 64 (any other control character).

SET PAD LF-PADDING n
X.3 Parameter 14. n = 0–255, the number of padding characters to be sent by the PAD
after it sends a linefeed. The default is 0.

SET PAD LF-INSERT n
X.3 Parameter 13, Linefeed (LF) Insertion after Carriage Return (CR). n = 0 means
no LF insertion, 1 means the PAD inserts a LF after each CR sent to C-Kermit, 2
means the PAD inserts a LF after each CR received from C-Kermit, 4 means the PAD
echoes LF as CRLF. The default is 0.

152 Network Connections / Chapter 6

SET PAD LINE-DELETE n
X.3 Parameter 17. n = 0–127, the ASCII value of the character to be used for erasing
a line when PAD EDIT is 1. The default is 21 (Ctrl-U).

SET PAD LINE-DISPLAY n
X.3 Parameter 18. n = 0–127, the ASCII value of the character you can type to
redisplay an edited line when PAD EDIT is 1. The default is 18 (Ctrl-R).

SET PAD LINE-FOLD n
X.3 Parameter 10, Line Folding, or what to do when a line is too long to fit on your
screen. n = 0 means no line folding, 1–255 specifies the number of graphic characters
per line after which the PAD should insert folding characters. The default is 0, and
should be kept at 0 during file transfer to prevent damage to Kermit’s file transfer
packets.

SET PAD PAD-FLOW-CONTROL { 0, 1 }
X.3 Parameter 5. 0 means no flow control by the PAD, 1 means the PAD may send
Xon/Xoff flow control to C-Kermit during data transfer; 2 means the PAD may send
Xon/Xoff flow control to C-Kermit during data transfer and in PAD command mode.
The default is 0, which allows Xon/Xoff flow control to work end-to-end.

SET PAD SERVICE-SIGNALS { 0, 1 }
X.3 Parameter 6, PAD Service and Command Signals. 0 means PAD service signals
are not sent to C-Kermit, 1 means PAD service signals sent. The default is 1. Other
options, 4–48, select different classes of service signals.

SET PAD TIMEOUT n
X.3 Parameter 4, Data Forwarding Timeout. n = 0–255 (twentieths of a second), how
long the PAD should wait for its packet buffer to fill up or for a forwarding character
to appear before it times out and transmits what it has so far. The default is 0, no data
forwarding on timeout is required.

SET PAD USER-FLOW-CONTROL { 0, 1 }
X.3 Parameter 12. 0 means the PAD should ignore any flow control characters sent by
C-Kermit, 1 means the PAD should pay attention to them. The default is 0.

During CONNECT mode, the following X.25-specific keyboard escape options are avail-
able. Type these letters in after typing the CONNECT-mode escape character (normally
Control-Backslash):

I Send an X.25 Interrupt packet. Equivalent to PAD INTERRUPT.

R (X.25 only) Reset the X.25 connection. Equivalent to PAD RESET.

Named Pipes 153

Named Pipes

Named pipes, normally used as an interprocess communication mechanism, can also be
used on a LAN as a networking method. Unlike TCP/IP, LAT, and X.25 networking,
however, one cannot normally use named pipe connections for interactive login sessions
to UNIX, VMS, or other hosts. Rather, it is a ‘‘peer-to-peer’’ protocol, in this case used
directly between two Kermit programs. As of this writing, Named Pipe sessions are avail-
able in the OS/2 version of C-Kermit.

In order to use named pipes to communicate across a local area network, both computers
must have installed named pipe network support software. Each computer may be a client,
a server or both. Each server on a particular network has a unique named pipe server
name assigned as part of the Named Pipe software installation.

To have a named pipe connection between two Kermit programs, one of the Kermit
programs must the ‘‘server’’ and the other must be the ‘‘client’’. The server is the one that
is started first, and that waits for a connection to come in from the client. The server is
started this way:

C-Kermit> set network type named-pipe pipename
C-Kermit> set host *

If the pipename is omitted, ‘‘kermit’’ is used. ‘‘SET HOST *’’ means to wait for a connec-
tion to come in from another Kermit program.

Then the client makes a connection to the server:

C-Kermit> set network type named-pipe pipename
C-Kermit> set host servername

where pipename is the pipename used by the server you want to communicate with
(default ‘‘kermit’’), and servername is the name of the server on the network. If you
specify a servername of "." (period), this means your own computer; e.g. between two
copies of C-Kermit running in different windows. Both pipename and servername are
case-independent, and can contain spaces.

Here are some useful scenarios for named-pipe connections:

1. The named-pipe server is in Kermit SERVER mode (Chapter 11). Clients can perform
SEND, GET, REMOTE, FINISH, and similar commands.

2. Both Kermit programs are in CONNECT mode, allowing two network users to ‘‘chat’’
interactively with each other. Each user should give the following commands:

154 Network Connections / Chapter 6

C-Kermit> set terminal echo local
C-Kermit> set terminal cr-display crlf
C-Kermit> connect

To close a named-pipe connection, give the HANGUP command (or the SET HOST com-
mand, specifying no hostname) to either the client or the server.

After the client disconnects, the connection will be reset to await the next client. This al-
lows for the use of kermit server as a pseudo-FTP site for those without TCP/IP.

Note: when using named pipes with LAN Server or LAN Manager, only the machine
which has the Network Server software is capable of successfully using the SET HOST *

command. This is because the client network requesters do not implement the server side
of the named-pipe network redirection.

NETBIOS

NETBIOS connections are similar to named pipe connections but use a different underlying
networking method. As with named pipes, usually only peer-to-peer connections are
available, meaning no login sessions to UNIX, VMS, or similar hosts. However, NETBIOS

connections are sometimes available to IBM SNA LU6.2 mainframe systems.

Just as with named pipes, to have a NETBIOS connection connection between two Kermit
programs, one Kermit program must the ‘‘server’’ and the other must be the ‘‘client.’’ The
server is the one that is started first and that waits for a connection to come in from the
client. The server is started this way:

C-Kermit> set network type netbios localname
C-Kermit> set host *

If the localname is omitted from the SET TYPE NETWORK NETBIOS command and a
HOSTNAME environment variable is defined, that is used; otherwise if a SYSTEMNAME en-
vironment variable is defined, that is used; otherwise ‘‘kermit’’ is used. The localname
must be unique on the NETBIOS network; if not, the SET NETWORK command will fail.

‘‘SET HOST *’’ means to wait for a connection to come in from another Kermit program.

Then the client makes a connection to the server:

C-Kermit> set network type netbios localname
C-Kermit> set host servername

where localname is the new name used to identify the client Kermit session, and
servername is the localname of the server’s Kermit session. The localname and
servername are case-dependent (alphabetic case matters) and can contain spaces, and can
be up to 16 characters in length.

Using the Network Directory 155

Using the Network Directory

C-Kermit’s network directory works like the dialing directory described in Chapter 5, but
for networks. You can have zero, one, or more network directory files, and the rules are
the same as for dialing directories. For example, you can have multiple entries with the
same name, and so on. Please review Chapter 5 for details.

The command to tell Kermit what your network directory files are is:

SET NETWORK DIRECTORY [file1 [file2 [file3 [. . .]]]]
Selects zero, one, or more network directories. If you do not include any filenames,
then the network directory feature is disabled and host names or addresses must be
given directly to the SET HOST or TELNET command. If you include one or more file-
names, then SET HOST and TELNET commands look in each network directory file and
collect all the matching entries, if any, prior to dialing.

If you installed C-Kermit according to instructions and you are using the standard in-
itialization file, then the default network directory name is:

.knd (UNIX, OS-9)
CKERMIT.KND (Elsewhere)

and if such a file exists, it it used. In the absence of an initialization file, C-Kermit uses
the file(s) given by the environment variable K_NET_DIRECTORY, if it is defined, for ex-
ample (in UNIX ksh):

export K_NET_DIRECTORY="/usr/local/ckermit.knd $HOME/.knd"

As with the dialing directory, you can use the LOOKUP command to look things up in the
network directory, without actually making a connection, and you can force a name to be
used literally, without directory lookup, by prefixing it with an equals sign (=).

Then to actually make a connection, just use the name of a directory entry in place of a
host name or address in your SET HOST or TELNET command. The advantages include:

• For TCP/IP hosts, you can make up your own abbreviations that the name servers
might not know about.

• For X.25 hosts, you can use names instead of numbers.

• If your version of Kermit supports multiple networks, you don’t have to remember to
give a SET NETWORK TYPE command when switching network types, because the net-
work type is recorded in the directory.

• Additional information, like the TCP socket number, can also be picked up from the
network directory.

156 Network Connections / Chapter 6

The format of the network directory is:

entry-name network-type hostname-or-address other-stuff ; comment

where:

entry-name
Is the name of the entry. It must start with a letter and contain no spaces or tabs.

network-type
Is one of the network-type keywords acceptable to the SET NETWORK TYPE command,
such as TCP/IP, X.25, NETBIOS, etc.

host-name-or-address
Is the host name or address for this entry, in the format acceptable to the SET HOST

command when used with the indicated network type.

other-stuff
Is optional additional material specific to the network type, described in the following
sections.

comment
Trailing comments are optional. When present, they must begin with a semicolon that
is preceded by at least one space or tab. Full-line comments are also allowed, in
which case the semicolon is the first non-space, non-tab character on the line.

TCP/IP Entries
For TCP/IP networks, you can follow the host-name-or-address with a TCP port (service)
name or number, and you can follow that with a user ID. If you include a user ID, it sets
the \v(userid) variable (Chapter 17) and, if the service is ‘‘login’’ or 513, the RLOGIN

port, it is also automatically sent as part of the contact information. Examples:

internic tcp/ip internic.net
weather tcp/ip madlab.sprl.umich.edu 3000
myhost tcp/ip myhost.cmgcorp.com 513 olga

Field 4 is the service port, TELNET (23) by default, and so 23 is used for the ‘‘internic’’
entry, 3000 for the ‘‘weather’’ entry, and 513 for the ‘‘myhost’’ entry. Field 5 is the user-
name field, used only by the ‘‘myhost’’ entry because the service port is 513 (rlogin).

LAT and SuperLAT Entries
DECNET (PATHWORKS) entries have only the required three fields, but SuperLAT
entries can also include a password as the fourth field. Of course, this is not recom-
mended, since it is a security risk to record passwords in a file:

myvax decnet myvax
dialout3 superlat latbox/3 secret

Using the Network Directory 157

Table 6-2 X.3 Numeric PAD Parameters and Values

Parameter SET PAD Command, Values

1 ESCAPE, 0 (none), 1 (DLE), or ASCII value 32–126.

2 ECHO, 0 (PAD doesn’t echo) or 1 (PAD echoes).

3 FORWARD, bit-masked option, 0–63, normally 2 (CR).

4 TIMEOUT, twentieths of seconds, 0–255, normally 0.

5 FLOW-CONTROL (by PAD), 0 (none), 1 (online), or 2 (online and command),
normally 0.

6 SERVICE-SIGNALS, 0–48, normally 1.

7 BREAK-ACTION, 0–31, normally 21.

8 DISCARD-OUTPUT, 0 (don’t discard) or 1 (discard), normally 0.

9 CR-PADDING, 0–255, normally 0 (none).

10 LINE-FOLD, 0–255, normally 0 (don’t).

11 Binary speed, not used by Kermit.

12 USER-FLOW-CONTROL, 0 (none) or 1 (Xon/Xoff), normally 0.

13 LF-INSERT, 0–4, normally 0.

14 LF-PADDING, 0–255, normally 0.

15 EDITING, 0 (no editing) or 1 (editing allowed).

16 CHARACTER-DELETE, ASCII value, 0–127, normally 8 (BS).

17 LINE-DELETE, ASCII value, 0–127, normally 21 (Ctrl-U).

18 LINE-DISPLAY, 0–127, normally 18 (Ctrl-R).

X.25 Entries
After the third field (host address), X.25 entries have ‘‘keyword parameters’’ to allow you
to supply any combination of parameters without being forced to supply others that are ir-
relevant or inappropriate. The form of a keyword parameter is keyword=value (no
spaces). The parameters available for X.25 entries are:

cug Closed User Group number (0 through 99), if any.

rev Reverse Call. Values are ON (to reverse the charges) or OFF (to pay for the call).

cud Call User Data, a string up to 12 characters long to be supplied with the call.

pad PAD profile, a series of X.3 parameter-number : value combinations separated by
commas, containing no spaces, such as 12:1,15:0,16:127,1:1,3:2,5:1. Include any
PAD parameters that you want to change from their defaults or from your normal
SET PAD configuration. Refer to Table 6-2 and to the SET PAD command.

158 Network Connections / Chapter 6

Here are some sample X.25 entries:

myhost x.25 012345678
yourhost x.25 876543210 rev=on
privatehost x.25 987654321 cug=21 cud=secret
pickyhost x.25 123456789 pad=5:1,12:1,0:33,39:0

The first entry simply lets you use a name instead of a long number. The second entry in-
cludes the reverse-call parameter. The third specifies a closed user group and some ‘‘call
user data’’ to go along with it, and the fourth sets a series of PAD parameters.

NETBIOS and Named Pipe Entries
NETBIOS entries consist of just the three required fields: entry name, network type, and ad-
dress. Named Pipe entries also need the pipename field: Here are some examples:

hosta netbios aristotle
hostx named-pipe archimedes whocares

Command-Line Options for Network Connections

C-Kermit command-line options provide a way to set certain parameters or initiate certain
actions as part of the system command that starts C-Kermit. For example:

$ kermit -l /dev/tty04 -b 38400

starts C-Kermit with ‘‘/dev/tty04’’ as its communication device (‘‘-l’’), with the speed
(‘‘-b’’) set to 38400 bits per second. Alphabetic case is significant in command-line op-
tions: -a is not the same as -A. C-Kermit’s command-line options are described in Ap-
pendix I, but for completeness, those used for network connections are listed here too:

-j host [service]
Equivalent to SET NETWORK TYPE TCP/IP, SET HOST host. The HOST is an IP host name
or address. The default service is 23 (Telnet). The service name or number can be
separated from the host by a space, or appended to the host with a colon. Examples:

$ kermit -j 128.59.39.2
$ kermit -j kermit.columbia.edu
$ kermit -j kermit.columbia.edu 2000
$ kermit -j kermit.columbia.edu:2000

-J host [service]
Similar to -j. Equivalent to SET NETWORK TCP/IP, TELNET host; allows repeated es-
caping back and reconnecting, and causes C-Kermit to exit automatically when the
connection is closed. Just like a Telnet program.

-F number
Like -j, but interprets the number as the numeric file descriptor of an already-open
TCP/IP connection.

Command Summary 159

-M username
Equivalent to SET LOGIN USERID, primarily for use with RLOGIN connections, e.g.:

$ kermit -j kermit.columbia.edu 513 -M olga

-X address
Equivalent to SET NETWORK TYPE X.25, SET HOST address.

-Z number
Like -X, but interprets the number as the numeric file descriptor of a connection that
is already open, rather than as a numeric X.25 address.

-U text
Call User Data for an X.25 connection.

-o number
X.25 closed user group.

-u X.25 reverse charge call

-N number
NETBIOS adapter number, 0–4.

For example, suppose you want to use Kermit 95 as the Telnet program in Netscape. Fill
in the Netscape’s blank for ‘‘Telnet application’’ (in the Options menu) like so:

c:\k95\k95 -J

where ‘‘c:\k95\’’ is Kermit 95’s disk and directory.

Command Summary

The following network-related commands were discussed in this chapter:

HANGUP
LOOKUP name
PAD { CLEAR, INTERRUPT, RESET, STATUS }
PING [host]
RLOGIN [host [user-id]]
SET HOST [host [additional-data]]
SET NETWORK DIRECTORY [file1 [file2 [...]]]
SET NETWORK TYPE { DECNET,NAMED-PIPE,NETBIOS,SUPERLAT,TCP/IP,X.25 }
SET PAD many-things
SET TCP { KEEPALIVE, LINGER, NODELAY, RECVBUF, SENDBUF } ...
SET TELNET { ECHO, BINARY-MODE, NEWLINE-MODE, TERMINAL-TYPE } ...
SET X.25 { CALL-USER-DATA, CLOSED-USER-GROUP, REVERSE-CHARGE } ...
SHOW NETWORK
TELNET [host [port]]
TELOPT { DO, DONT, WILL, WONT } { BINARY, ECHO, NAWS, SGA, TTYPE }

Variable: \v(connection) shows the network type.

160

161

Chapter 7

The Services Directory

❍ ❍ ❍ ❍

This chapter can be skipped by users of Kermit for Windows 95, Windows NT,
or OS/2, since these programs include their own built-in graphical connections
database, explained in the appropriate user manual.

The services directory is a step up from the dialing and network directories. Like them, it
makes the physical connection, but unlike them it can use any of C-Kermit’s communica-
tion methods — direct serial, dialed serial, TCP/IP, X.25, LAT, and so on — which is why
we have postponed discussion of it until this point. And having made the connection, it
also can log you in to the host or service it has connected you to automatically.

The services directory is a plain-text file containing one line, or ‘‘entry,’’ for each service
that you want to access. The name of the services directory file is .ksd in UNIX and
OS-9, ckermit.ksd in Stratus VOS, and CKERMIT.KSD in Windows, OS/2, VMS,
AOS/VS, and elsewhere. It can be used only if you are also using the standard C-Kermit
initialization file, because that is where the relevant macros are defined (macros, and the
mechanisms underlying the services directory, are presented in Chapters 17 through 19).

Each line in the services directory has the following parts:

name-of-entry login-macro-name username connection-details

For example:

HP9000 unixlogin olga net tcp/ip hp.xyzcorp.com

162 The Services Directory / Chapter 7

where HP9000 is the entry name, ‘‘unixlogin’’ is the login macro name, ‘‘olga’’ is the
username, and ‘‘net tcp/ip hp.xyzcorp.com’’ are the connection details.

To use this entry, you would give the following command at the C-Kermit prompt:

C-Kermit>access hp9000

or:

C-Kermit>access hp9000 xxxxxx

where ‘‘xxxxxx’’ is your password on the computer you will be accessing. C-Kermit’s
ACCESS macro handles the connection details: ‘‘net’’ means it’s a network connection;
‘‘tcp/ip’’ tells which type of network, and ‘‘hp.xyzcorp.com’’ tells the name or address (in
this case, the name) of the computer or service on the network. If you don’t supply a
password to the ACCESS command, you are prompted for it. You do not (can not, and
should not) include passwords in your services directory file.

Here’s another example, in which the connection is made by dialing a modem:

COMPUSERVE cislogin 765,4321 call usr /dev/cua 38400 compuserve

Here, ‘‘COMPUSERVE’’ is the entry name, ‘‘cislogin’’ is the name of the login macro,
‘‘765,4321’’ is your CompuServe user ID, and the connection details are: "call usr
/dev/cua 38400 compuserve". ‘‘Call’’ means we will be making a phone call; ‘‘usr’’ is the
modem type (US Robotics), ‘‘/dev/cua’’ is the name of the SET LINE device, ‘‘38400’’ is
the communication speed, and ‘‘compuserve’’ is the name of a dialing directory entry. Of
course an actual telephone number could also be used.

Login Macros

Each login macro looks for the appropriate prompts and responds accordingly with your
username, password, and/or other information, and then waits until it sees the main
prompt of the host or service, or other indication that you have been logged in success-
fully. The following login macros are included in the standard C-Kermit initialization file:

UNIXLOGIN

For logging in to all types of UNIX systems: Solaris, HP-UX, Linux, IRIX, DG/UX,
NeXTSTEP, OSF/1, SunOS, etc etc. The default system prompt (explained on the
next page) is ‘‘\10$\32’’; that is, linefeed, dollar sign, space.

VMSLOGIN

For logging in to DEC VAX or Alpha VMS systems. The default system prompt is
‘‘\13$\32’’; that is, carriage return, dollar sign, space. This macro can also be used
for logging in to DG AOS/VS systems if you specify a different prompt ("\10)\32").

Login Macros 163

VMLINELOGIN

For logging into IBM mainframes with VM/CMS over linemode connections.

VMFULLOGIN

For logging into IBM mainframes with VM/CMS over fullscreen connections.

CISLOGIN

For logging in to CompuServe.

DOWLOGIN

For logging in to Dow Jones News/Retrieval.

DJNRSPRINT

For logging in to Dow Jones News/Retrieval over SprintNet.

NOLOGIN

For accessing computers or services that do not require logging in.

Each login macro name must be followed by a username, even NOLOGIN. For NOLOGIN,
just include a fake name, like ‘‘xxxx’’, as a place-filler that will not be used. Other login
macros can be easily constructed, modeled on those above, as described in Chapters
17–19. If you add or modify login macros, you should put their definitions in your
C-Kermit customization file.

Suppose the main prompt of the system or service you are logging in to does not match
the default prompt assumed by the login macro? You can override the default with the
SET LOGIN PROMPT command:

C-Kermit>set login prompt {\10%\32}
C-Kermit>access cshell

or you can include a specific prompt in your services directory by grouping it together in
curly braces with the login macro name:

{macroname prompt}

For example:

CSHELL {unixlogin \10%\32} olga net tcp/ip bsd.xyzcorp.com
CHEMISTRY {vmslogin \13CHEM$} OLGA net tcp/ip chem.xyzcorp.com
DG {vmslogin \13\10)\32} olga net tcp/ip aos.xyzcorp.com

The first example specifies the C-Shell prompt, ‘‘% ’’, rather than the default UNIX
(Bourne Shell, K-Shell) prompt of ‘‘$ ’’. The second example accesses a system that has a
custom prompt. The third uses the VMSLOGIN macro to access an AOS/VS system by
specifying the AOS/VS prompt, ‘‘) ’’, since otherwise the Username: and Password:
prompts are the same as for VMS. The ‘‘backslash-number’’ notation is a way of includ-
ing special (usually nonprintable) characters in C-Kermit commands and files, explained
back on page 19. The number is the ASCII character number, such as 10 for linefeed, 13
for carriage return, 32 for space (ASCII codes are listed in Table VII-1 on page 593).

164 The Services Directory / Chapter 7

Connection Details

The connection details part of a services directory entry starts with one of the following
words, which are names of macros defined in the C-Kermit initialization file:

CALL The connection is made with a phone call through a modem.

SERIAL The connection is a direct (dedicated) serial connection.

NET The connection is made on a network.

TCPCALL The connection is made by dialing a modem that is connected to a TCP/IP
‘‘reverse terminal server.’’

The subsequent information depends on the type of connection.

CALL must be followed by the following information, in this order:

1. The modem type (a valid SET MODEM TYPE value).

2. The name of the device on your computer to which the modem is connected.

3. The speed, in bits per second, at which to use the device.

4. The telephone number to dial. This can also be the name of an entry in your dialing
directory.

SERIAL must be followed by the following information, in this order:

1. The serial device name.

2. The communication speed.

NET must be followed by:

1. The network type: TCP/IP, X.25, DECNET, etc (a valid SET NET value).

2. The name or address of the host or service you want to connect to, or the name of a
network directory entry.

3. Additional network-specific information, like a service or socket number. This same
information is also obtained from the network directory, so if you include it here too, it
takes precedence over whatever was found in the directory.

Sample Services Directory 165

TCPCALL is followed by the terminal server IP host name or address, the modem type, and
the phone number. If a special TCP port number is to be used, it is appended to the IP
name or address by a colon, e.g. ‘‘dialout.xyzcorp.com:2000’’.

For TCP/IP network connections, you can include a socket number by appending it to the
IP name or address with a colon, for example:

WEATHER nologin xxxx net tcp/ip madlab.sprl.umich.edu:3000

Create your services directory file with a text editor as a plain-text (ASCII) file. If you are
using a word processor, be sure to save your services directory as a plain text file.

To use your services directory, just type ‘‘access’’ and the service name at the C-Kermit
prompt, for example:

C-Kermit>access hp9000
olga’s password: secret

(The password does not actually echo when you type it in response to a password prompt.)

To list your services directory, type ‘‘list’’ at the C-Kermit prompt. To look up a par-
ticular services directory entry, type ‘‘list’’ and then the name, for example ‘‘list hp9000’’.

Sample Services Directory

Here is a short example of a services directory. The first entry is for a straightforward
TCP/IP connection. The next two show how to specify nonstandard system prompts to
the login macro.

The next two, GEOGRAPHY and WEATHER, illustrate public Telnet services on the Internet
that are on special TCP service ports, and that do not require a login.

The last one is for a direct null-modem connection between two computers, and the two
before that are for modem calls. The CIS entry references a dialing directory entry called
‘‘compuserve’’.

KERMIT unixlogin olaf net tcp/ip kermit.columbia.edu
DG {vmslogin \10)} olaf net tcp/ip dg.xyzcorp.com
NETBSD {unixlogin %} olaf net tcp/ip foo.bar.gov
GEOGRAPHY nologin xxxx net tcp/ip martini.eecs.umich.edu:3000
WEATHER nologin xxxx net tcp/ip madlab.sprl.umich.edu:3000
CONGRESS nologin xxxx net tcp/ip dra.com
CIS cislogin 000,0000 call hayes /dev/cua 2400 compuserve
DJNR djnr xxxx call rolm /dev/rolm 9600 93,741-8100
DIRECT unixlogin olaf serial /dev/tty0 19200

166 The Services Directory / Chapter 7

The formatting is arbitrary. The only requirements are: one entry per line, and at least one
space or tab between each field.

To use the services directory, remember that the standard C-Kermit initialization file must
have been executed; otherwise the ACCESS, UNIXLOGIN, LIST, and other necessary macros
will not have been defined. To check:

C-Kermit> access (Try it)
?No keywords match - "access" (Not defined)
C-Kermit> access
Access what? (ACCESS is defined)
C-Kermit>

Now let’s try one of the entries:

C-Kermit> list geography
GEOGRAPHY nologin xxxx net tcp/ip martini.eecs.umich.edu:3000

C-Kermit> access geography
Opening /w/u/si/fdc/.knd...
Trying 141.213.11.44...
Connection successful.
Connecting to host martini.eecs.umich.edu:3000.
The escape character is Ctrl-\ (ASCII 28, FS)
Type the escape character followed by C to get back,
or followed by ? to see other options.
Geographic Name Server,
Copyright 1992 Regents of the University of Michigan.
Version 8/19/92. Use "help" or "?" for assistance.
.
. New York, NY
0 New York
1 36061 New York
2 NY New York
3 US United States
R County Seat
F 45 Populated place
L 40 42 51 N 74 00 23 W
P 7071639
.quit
C-Kermit>

If you type the ACCESS command at the C-Kermit prompt and the connection is made suc-
cessfully, C-Kermit goes online automatically as shown in the example. If the ACCESS

command is executed from a command file or macro, C-Kermit does not go online auto-
matically but, rather, continues executing commands from the command file or macro.
This allows easy construction of scripts that automatically make connections and then
transfer information, unattended. More about scripts in Chapter 19.

Please note that you do not have to have or use a services directory, a dialing directory, or
a network directory. They are conveniences that you can use if you want to, but C-Kermit
functions perfectly well without any of them.

Sample Services Directory 167

Finally, if you are using the standard initialization file, which defines the macros
described in this chapter, but you don’t plan to use the ACCESS macro in a particular ses-
sion, you can use the ‘‘-R’’ (uppercase) command-line option to have C-Kermit skip over
all the directory-related material, and this makes the program start up faster.

168

169

Chapter 8

Terminal Connection

❍ ❍ ❍ ❍

If you will not be using C-Kermit in local mode to establish connections to other
computers, skip this chapter and proceed to Chapter 9 on page 193 to learn how
to transfer files.

Most versions of C-Kermit — UNIX, VMS, AOS/VS, VOS, etc. — provide terminal con-
nection without emulation. These versions act as a ‘‘semitransparent pipe’’ between the
remote computer and your terminal, terminal emulator, console driver, or window, which
in turn emulates (or is) a specific kind of terminal.

Other versions, such the ones for Windows NT, Windows 95, or OS/2, include full-fea-
tured terminal emulators with numerous special features that are covered in separate user
manuals.

This chapter covers the fundamentals of terminal connection as they apply to all C-Kermit
versions — UNIX, VMS, AOS/VS, VOS, and the rest.

C-Kermit’s CONNECT command lets you carry on an interactive dialog with a remote com-
puter or service. It works in both the 7-bit and 8-bit communication environments, on
both full and half duplex connections. It includes a mechanism for shifting back and forth
between the remote and local computer, a way to record the remote session, various
mechanisms for automated host control of your session, character-set conversion, and a
key mapping feature.

170 Terminal Connection / Chapter 8

Figure 8-1 Terminal Connection

When you use C-Kermit in local mode, no matter what your connection method—dialup,
direct, or network—the method of shifting back and forth between the two computers is
the same: use the CONNECT command at the C-Kermit prompt to go to the remote com-
puter, and type a special key sequence to get back to C-Kermit.

The CONNECT Command

CONNECT [/QUIETLY]
The CONNECT command makes C-Kermit act like a terminal to the remote computer.
The characters you type on your keyboard are sent to the remote computer, and the
characters that arrive from the remote computer are sent to your screen, as shown in
Figure 8-1. Once the CONNECT command is given, C-Kermit remains CONNECTed un-
til you ‘‘escape back’’, or the connection is broken, or under certain other conditions
explained later. Note:

• The CONNECT command can be abbreviated by a single letter, C, even though it is
not the only C-Kermit command begins with C.

• Whenever Kermit enters CONNECT mode, it prints a message several lines long in-
forming you about the connection and telling you how to get back to the C-Kermit
prompt. You can surpress this message by including the ‘‘QUIETLY’’ switch:

C-Kermit> connect /quietly

or simply ‘‘c /q’’.

• If you type a successful DIAL or ACCESS command at the C-Kermit prompt,
C-Kermit goes into CONNECT mode automatically.

The CONNECT Command 171

Remember: In UNIX, (Open)VMS, VOS, AOS/VS, OS-9, AmigaDOS, and GEMDOS,
C-Kermit is not a terminal emulator — it is a communications conduit between the remote
host and your console, terminal, or emulator. In particular, this means:

• C-Kermit does not interpret (most) escape sequences sent by the host. This includes
any kind of terminal identification or status query. When C-Kermit is in CONNECT

mode, these sequence are passed through to your terminal or emulator, which should
react accordingly.

• C-Kermit does not know anything about the special keys on your keyboard. It can’t
even ‘‘see’’ them — F-keys, arrow keys, editing keys, and so on, are visible to
C-Kermit only insofar as your terminal or emulator has programmed them to send
characters or character sequences. If, for example, your up-arrow key sends
<ESC>[O, C-Kermit can not tell whether this sequence of characters came from an
arrow key or three separate keystrokes.

The Escape Character
Typing the escape character regains the attention of the local C-Kermit program during a
CONNECT session. When you give the CONNECT command, C-Kermit tells you what its
escape character is:

C-Kermit>connect (Begin terminal connection)
Connecting to TXA0:, speed 19200. (Messages from C-Kermit...)
The escape character is Ctrl-\ (ASCII 28, FS).
Type the escape character followed by C to get back,
or followed by ? to see other options.

Ctrl-\ (Control-Backslash) is C-Kermit’s normal escape character. It is produced by hold-
ing down the Ctrl (or Control) key and pressing the backslash (\) key.10 When C-Kermit
reads the escape character from the keyboard, then instead of sending it to the other com-
puter, it waits for you to type a second ‘‘command’’ character, such as the letter C to
return to the C-Kermit prompt without breaking the connection. You can change the es-
cape character with the SET ESCAPE command:

SET ESCAPE control-character
Changes the escape character to the control character of your choice; see page 28 for
how to enter a control character in a command. Example:

C-Kermit>set esc 2
C-Kermit>show escape
CONNECT-mode escape character: Ctrl-B (ASCII 2, STX)

10The keyboards on most NeXT workstations do not generate the Control-Backslash character. The
NeXT version of C-Kermit uses Control-Rightbracket as its escape character. The OS/2 and Windows
versions also use Ctrl-Rightbracket, and they also allow Alt-key equivalents, such as Alt-X.

172 Terminal Connection / Chapter 8

This changes your CONNECT-mode escape characer to Control-B (ASCII character
number 2, called STX). Only 7-bit control characters (codes 0 through 31 and 127)
may be used for this purpose. You should select a character that you are unlikely to
use at the remote host and that you can generate on your local keyboard. You can use
SHOW ESCAPE or SHOW TERMINAL to find out the current escape character.

The mechanics of terminal connection are easy after a few minutes of practice. Use
CONNECT to go to the remote host and use Ctrl-Backslash C (hold down the Ctrl key, press
the backslash (\) key, then let go of both these keys, then press the C key) to escape back
to C-Kermit. If your escape character isn’t Ctrl-Backslash, make the appropriate substitu-
tion. Now practice going back and forth a few times. In this example, we have a direct
connection from a VAX workstation to a central computer:

C-Kermit>set line txa0: (Direct connection)
C-Kermit>set speed 19200 (Set the speed)
C-Kermit>connect (Begin terminal connection)
Connecting to ttxa0:, speed 19200.
The escape character is Ctrl-\ (ASCII 28, FS).
Type the escape character followed by C to get back,
or followed by ? to see other options.

WELCOME TO RALPH’S ACADEMY OF BRAIN SURGERY
EARN WHILE YOU LEARN!

Username: olaf (Log in)
Password: (Supply your password)
$ Ctrl-\c (Escape back)
C-Kermit>pwd (Give a C-Kermit command)

$DUA0:[OLAF]
C-Kermit>set esc 22 (Change the escape character)
C-Kermit>c (Connect again)
Connecting to ttxa0:, speed 19200.
The escape character is Ctrl-V (ASCII 22, SYN).
Type the escape character followed by C to get back,
or followed by ? to see other options.
$ (Back at Ralph’s)
$ show time (Give a command)

11-JUN-86 11:44:00
$ Ctrl-Vc (Escape back again)
C-Kermit>run fortune (Give a C-Kermit command)
The brain is a wonderful organ; it starts working the moment you
get up in the morning and does not stop until you get to school.
C-Kermit>c (Connect again)

You can connect and escape back as often as you like. Escaping back does not break the
connection. If characters arrive from the remote computer or service while you are not
CONNECTed, they are buffered to the capacity of the underlying operating system and dis-
played next time you CONNECT. If the operating system’s buffer becomes too full, flow
control, if in effect, should prevent any loss of characters.

Closing the Connection 173

Before we leave this topic, let us emphasize that C-Kermit’s escape character is the only
keyboard character that is treated specially in CONNECT mode. Every other character is
simply passed on to the remote computer or service.

Suppose, however, that for some reason you did not want any characters to be treated spe-
cially, and you wanted all keyboard characters transmitted immediately, exactly as typed.
There is a command for this:

SET TERMINAL ESCAPE { DISABLED, ENABLED }
SET TERMINAL ESCAPE DISABLED makes C-Kermit totally transparent to all characters
that are entered at the keyboard, sending them straight to the host without further ado.
In the Windows and OS/2 versions, you can still get back to the C-Kermit prompt with
Alt-key combinations such as Alt-X. In the other versions, there is no way to get back
to the prompt except (maybe) by logging out from the remote host or service and
hoping that C-Kermit notices that the connection dropped and returns to its prompt.

More about this in a few pages . . .

Closing the Connection

When you’re finished using the remote computer, you should close the connection. There
are several ways to do this. You should try them in this order:

1. If you were logged in to the remote computer or service, log out from it. This should
pop you back to the C-Kermit prompt automatically. Example:

$ logout
Communications disconnect (Back at local system)
C-Kermit>

2. If you’re not back at the C-Kermit prompt yet, type Ctrl-\U (your CONNECT-mode
escape character followed by the letter U) to hang ‘‘Up’’ the connection:

Ctrl-\u
Communications disconnect (Back at local system)
C-Kermit>

3. If you’re still not back at the C-Kermit prompt yet, type Ctrl-\C to return to the
C-Kermit prompt and give the SET LINE command to close the communication device:

Ctrl-\c
(Back at local system)
C-Kermit>set line
C-Kermit>

If you EXIT or QUIT from C-Kermit, that will also close the communication device and
any other open devices or files.

174 Terminal Connection / Chapter 8

CONNECT-Mode Keyboard Escape Commands

When the CONNECT command is active and TERMINAL ESCAPE is ENABLED, C-Kermit
monitors the keyboard for its CONNECT-mode escape character. When you type the escape
character, C-Kermit interprets the next character from the keyboard as a CONNECT-mode
command. If you press a key that is not a valid CONNECT-mode command, Kermit beeps,
ignores the key, and remains in CONNECT mode.

If you type the escape character and then decide you didn’t mean to do it, just press the
space bar. C-Kermit ignores the escape character and the space bar, and does not beep at
you. No characters are transmitted to the remote computer, and Kermit remains in
CONNECT mode.

Table 8-1 C-Kermit CONNECT-Mode Escapes

Character Description

? or H Help—prints the available CONNECT-mode escape options.

! or @ Enters the local system command processor. EXIT (DOS, UNIX), LOGOUT (VMS),
BYE (AOS/VS) to return to C-Kermit CONNECT mode.

0 (the digit zero) Transmits a NUL (ASCII 0).

A Sends ‘‘Are You There?’’ (TELNET only).

B Transmits a BREAK signal.

C Returns to the C-Kermit prompt without breaking the connection.

I Sends a network Interrupt request.

L Transmits a Long BREAK signal.

Q Hangs up, closes the connection, and Quits from C-Kermit.

R (X.25 only) Resets an X.25 connection.

S Shows the status of the connection: device name, speed, parity, etc.

U Hangs Up the phone or network connection.

Z (UNIX only) Suspends Kermit. Use the UNIX fg command to continue Kermit’s
CONNECT session.

SP (Space) Sends nothing, stays in CONNECT mode.

\ (Backslash) Introduces a backslash code that translates into a single character, for
example \127 or \xff.

Ctrl-\ (or whatever your escape character is) Type the escape character twice to send one
copy of it to the remote computer.

CONNECT-Mode Keyboard Escape Commands 175

C-Kermit’s escape-character commands are listed in Table 8-1. and are described in the
following sections. Letters are shown in uppercase, but they may be entered in either
upper- or lowercase. Each command must be preceded by Kermit’s CONNECT-mode es-
cape character.

Getting Help: ?, H
Typing the escape character followed by question mark or the letter H lists the available
CONNECT-mode escape options. These can vary depending on the C-Kermit version and
the features it was built with. This message tells you which ones are available in your ver-
sion. Example:

Ctrl-\?
Press C to return to the C-Kermit prompt, or:
? for this message
0 (zero) to send a null
B to send a BREAK
L to send a Long BREAK
U to hangup and close the connection
Q to hangup and quit Kermit
S for status
! to push to local shell
Z to suspend
\ backslash code:
\nnn decimal character code
\Onnn octal character code
\Xhh hexadecimal character code
terminate with carriage return.

Type the escape character again to send the escape character, or
press the space-bar to resume the CONNECT command.
Command>

After printing the help text, C-Kermit prints a prompt, Command>, and waits for you to
enter one of the options just listed.

Returning to the C-Kermit Prompt: C
Typing the escape character followed by the letter C returns you to the C-Kermit prompt
without breaking the connection to the remote computer. This is called escaping back.
After escaping back, you can give commands to C-Kermit to change its settings, transfer
files, and so forth. Give another CONNECT command to get back to the remote computer.
Example:

C-Kermit>connect (Connect to remote computer)
$ (Remote computer’s prompt)
$ ^\c (Escape back to C-Kermit)
C-Kermit> (C-Kermit’s prompt)
C-Kermit>connect (Return to remote computer)
$ (Remote computer’s prompt)

Here we start out at the local C-Kermit prompt, CONNECT to the remote computer, escape
back to the C-Kermit prompt, and CONNECT again.

176 Terminal Connection / Chapter 8

Status Inquiry: S
Typing the escape character followed by the letter S tells Kermit to print a brief message
showing the status of the connection and then resume the CONNECT session. Example:

C-Kermit>connect
$
$ ^\s
Connected through /dev/ttyh8, speed 9600
Terminal bytesize: 7, Command bytesize: 7, Parity: none
Terminal echo: remote
Carrier Detect (CD): On
Dataset Ready (DSR): Off
Clear To Send (CTS): Off
Ring Indicator (RI): Off
Data Terminal Ready (DTR): On
Request to Send (RTS): On
$

The report includes the communication device name and relevant parameters, plus (for
serial devices only, and only if your system supports it) a report of the RS-232 modem
signals (listed and explained briefly in Table II-1 on page 514). The status report is useful
if you have trouble communicating during CONNECT mode. The information shown here
might indicate the cause: wrong device, wrong speed, a missing modem signal, and so on.

Escape to Local System: !, @, Z
Typing the escape character followed by an exclamation mark (!) or at-sign (@) tells
C-Kermit to start an ‘‘inferior’’ copy of your system’s command processor, such as the
UNIX shell or VMS or AOS/VS command line interpreter, leaving your Kermit connec-
tion open.11 This is similar to putting a telephone call on hold. You can have an inter-
active dialog with your system for as long as you like without disturbing your Kermit con-
nection. To return to your Kermit CONNECT session, use the appropriate command to exit
from the system command processor (EXIT in UNIX, Windows, or OS/2; LOGOUT in
VMS; POP in AOS/VS, and so on). Example:

$ kermit (Start Kermit)
C-Kermit>set line /dev/tty1 (Select communication device)
C-Kermit>set speed 19200 (and speed)
C-Kermit>connect (Start CONNECT session)
Connecting to /dev/tty1:, speed 19200, etc...

login: olga (Log in)
Password: (Enter password)
%
% send ivan Hi, are you ordering pizza today?

11If this feature is missing from your version of C-Kermit, then it has been built with the NOPUSH option
to prevent users from directly accessing the system from within Kermit.

CONNECT-Mode Keyboard Escape Commands 177

% message from ivan: Yes, but I need the phone number.
% send ivan OK, wait a second...
%
% ^\! (Escape to local shell)
$ (Note different prompt)
$ grep "Yummy Pizza" phones.txt (Look up phone number)
Yummy Pizza: 765-4321
$ exit (Exit local shell)
% (Resume CONNECT session)
% send ivan It’s 765-4321.
%

In UNIX only, you can also follow the escape character by the letter Z to suspend Kermit,
if SUSPEND is SET to ON. See Appendix III for details.

While Kermit is ‘‘pushed from’’ or suspended, any data that arrives on the communication
connection is saved for you in an operating-system buffer. If the buffer becomes full,
C-Kermit’s flow-control option (if not NONE) should prevent any data loss; on network
connections, the network protocols serve the same function.

Sending BREAK Signals: B and L
Typing the escape character followed by the letter B tells C-Kermit to transmit a BREAK
signal. On serial (terminal device or modem) connections, BREAK is a spacing (0) con-
dition lasting about 275 milliseconds (slightly more than a quarter of a second), required
by some hosts, services, and communication processors for transmission speed recog-
nition, to get their attention, or to interrupt a runaway or stuck process. Here’s an example
showing how to log in to an IBM VM/CMS mainframe over a linemode connection, in
which you are instructed to ‘‘press BREAK key.’’ The setup and connection details are
omitted.

C-Kermit>connect
Connecting to /dev/cua, speed 9600...

VIRTUAL MACHINE/SYSTEM PRODUCT--CUVMB --PRESS BREAK KEY
^\b
!
Enter one of the following commands:

LOGON userid (Example: LOGON VMUSER1)
LOGOFF

.logon olga
Enter password:
.

Typing the letter L instead of B after the escape character tells C-Kermit to transmit a
Long BREAK signal. On serial connections, this is a spacing condition lasting about 1.5
seconds that is used to get the attention of certain communication devices.

178 Terminal Connection / Chapter 8

Network Functions
On network connections, some of the CONNECT-mode escapes behave differently and
some additional ones are available. Type the escape character followed by:

A (TELNET only) Send a TELNET ‘‘Are You There’’ message. If the remote TELNET serv-
er is active, it will send back a message like ‘‘[Yes].’’ This usually works only on true
port-23 TELNET connections, not when you TELNET to non-TELNET ports.

I Send an Interrupt message (X.25 Interrupt or TELNET Interrupt Process). The action
taken depends on the network and the remote host. Sending a TELNET interrupt is
usually equivalent to typing the remote host’s interrupt character.

B Send a network BREAK. Again, the interpretation depends on the network and the
remote host. On TELNET connections, a TELNET protocol Break message is sent,
which might be interpreted by the remote TELNET server as a stand-in for the BREAK
signal as it is used on serial connections, or as an interruption command.

L On network connections, L is treated exactly like B.

Sending Special Characters
Several methods are provided for sending special characters to the remote host during a
CONNECT session. Type the CONNECT-mode escape character followed by:

0 (the digit zero) Transmit a NUL (ASCII 0). This is useful if your remote computer or
application wants you to send a NUL character, but your keyboard doesn’t give you a
way to type it.

^\ (Ctrl-Backslash, or whatever you have set the escape character to be) Type the escape
character twice in a row to send one copy of it to the remote computer. (This is not
necessary if you SET TERMINAL ESCAPE DISABLED.)

A more general technique lets you transmit any character at all. If you follow the
CONNECT-mode escape character with a Backslash (\) (not Control-Backslash) character,
then you can enter a number representing any 7- or 8-bit code for Kermit to send.

The backslash is followed by an optional base indicator: d for decimal, o for octal, or x for
hexadecimal, and then a 1-, 2-, or 3-digit number in the indicated base (hexadecimal num-
bers must be exactly two characters long), which Kermit interprets as a character code be-
tween 0 and 255 inclusive. If there is no base indicator, base 10 is assumed.

Terminate the code by pressing the Return or Enter key, and Kermit sends the character
represented by the code. The carriage return itself is not sent. If you type an ungrammati-
cal backslash code, Kermit beeps and sends nothing. In all cases, Kermit leaves you in
CONNECT mode after processing the backslash code.

Setting Terminal Parameters 179

Suppose your keyboard has a broken A key. The ASCII code for uppercase A is 65
decimal, 101 octal, or 41 hexadecimal (see Table VII-1). During a CONNECT session, you
can transmit it in any of these ways:

^\\65 ^\\d65 ^\\o101 ^\\x41

For example:

I wish my ^\\65
key worked.

The host will receive:

I wish my A key worked.

Hanging Up and Quitting: U and Q
Typing the escape character followed by the letter U tells C-Kermit to hang up. On dialed
serial connections when DIAL MODEM-HANGUP is ON, Kermit attempts to put the modem
in command mode and then gives it the command to hang up the phone. If MODEM-
HANGUP is OFF, or if it doesn’t work, or if the modem type is DIRECT, Kermit turns off the
Data Terminal Ready (DTR) signal for about half a second. If your serial communication
device is connected to a modem, this is supposed to signal the modem to hang up the
phone connection. Network connections are simply closed. If you are running C-Kermit
in interactive mode, a successful hangup should return you automatically to the C-Kermit
prompt. If you started C-Kermit with the -c, -n, or -j command-line option, hanging up
should return you to the system prompt (see Appendix I). Typing Q instead of U after the
escape character tells C-Kermit to hang up and then quit (exit), returning you to the sys-
tem prompt no matter how you started C-Kermit.

Setting Terminal Parameters

The following commands control the number of data bits used during C-Kermit’s
CONNECT command and other terminal-oriented operations.

SET COMMAND BYTESIZE { 7, 8 }
Tells whether to use 7 or 8 data bits per character on the connection between C-Kermit
and your keyboard and screen, shown in Figure 8-2 (next page) as (A). In Windows
and OS/2, the default is to use 8 data bits; in UNIX, VMS, and the other versions, it is
to use 7 data bits and ignore the 8th bit. This setting applies to both command mode
(when you see the C-Kermit prompt) and CONNECT mode.

SET TERMINAL BYTESIZE { 7, 8 }
Tells whether the CONNECT command should use 7 or 8 data bits per character on the
connection between C-Kermit and the other computer, (B) in Figure 8-2. The default
in all C-Kermit versions is to use 7 data bits. If you give a value of 8, then 8-bit
characters are used if PARITY is set to NONE, otherwise 7-bit characters are still used.

180 Terminal Connection / Chapter 8

Figure 8-2 Command and Terminal Bytesize

SET PARITY { EVEN, ODD, MARK, SPACE, NONE }
Tells which kind of parity to use on the connection between C-Kermit and the remote
computer, (B). The default parity is NONE. A PARITY setting of EVEN, ODD, MARK, or
SPACE causes C-Kermit to use 7 data bits per character, regardless of the TERMINAL

BYTESIZE setting. A PARITY setting of NONE allows the TERMINAL BYTESIZE setting to
determine the number of data bits per character.

Remember, the default setting for PARITY is NONE, and the default setting for TERMINAL

BYTESIZE is 7. This is because it is common for remote hosts or services, or the devices
that connect you to them, to use (add or strip) parity bits. And it is just as common for
users to be unaware of it.

If the terminal bytesize bytesize were set to 8 rather than 7 by default, parity bits on
characters arriving from the remote host or service would change them into other charac-
ters and you would see gibberish on your screen. If C-Kermit’s default parity was not
NONE, this could prevent non-parity connections from working.

The default settings allow the initial connection to be made successfully in most cases. If
your connection needs parity, then SET the appropriate kind. If you are using a VT220 or
higher emulator to access a VMS system, you must either tell Kermit to SET TERM BYTE 8

or tell VMS to SET TERM /NOEIGHT. If you need to use 8-bit accented or non-Roman
characters, be sure to read Chapter 16.

SET TERMINAL CHARACTER-SET remote-cset [local-cset]
Specifies the remote and local character sets so C-Kermit can translate between them
during CONNECT sessions. The default terminal character-set is TRANSPARENT, which
means that characters are not translated during terminal connection. This command
and character sets in general are discussed in Chapter 16.

SET TERMINAL ECHO { LOCAL, REMOTE }
Tells whether C-Kermit should echo the characters you type locally (LOCAL) or let the
remote computer echo them (REMOTE). The default is REMOTE except for TELNET net-
work connections, where it is LOCAL until and unless renegotiated by TELNET protocol
or overriden by a SET TELNET ECHO command (see Chapter 3). If characters don’t

Setting Terminal Parameters 181

echo when you type them, you should SET TERMINAL ECHO LOCAL. If characters echo
twice when you type them, then SET TERMINAL ECHO REMOTE. The SET DUPLEX and
SET LOCAL-ECHO commands perform the same functions as this command.

SET TERMINAL LOCKING-SHIFT { ON, OFF }
Tells whether C-Kermit should use Shift-In and Shift-Out control characters (Ctrl-N
and Ctrl-O) for transmitting 8-bit characters on a 7-bit connection between C-Kermit
and the remote computer during a CONNECT session (see Chapter 16 for a fuller dis-
cussion of this feature). This setting applies in both directions: to characters you type
at the keyboard and to characters arriving from the remote computer or service.

SET TERMINAL NEWLINE-MODE { ON, OFF }
Tells whether C-Kermit should automatically convert carriage return (CR, ASCII 13)
characters typed at the keyboard into carriage-return-linefeed combinations (CRLF,
ASCII 13 and ASCII 10) before transmission. Normally OFF. Don’t use this one un-
less the remote host or service seems to ignore your commands, or your commands
seem to overwrite one another or stay on the same line.

SET TERMINAL CR-DISPLAY { CRLF, NORMAL }
This is like SET TERMINAL NEWLINE-MODE, but in the opposite direction. It tells
whether carriage return characters received from the communication device should be
displayed as carriage return only (NORMAL, the default) or as carriage return and
linefeed (CRLF). Use the CRLF option when connected to a device that terminates its
output lines with bare carriage returns.

SHOW TERMINAL
Displays your current terminal settings:

C-Kermit>sho term
Terminal parameters:

Bytesize: Command: 7 bits Terminal: 7 bits
Type: vt320
Echo: remote Locking-shift: off

Newline-mode: off Cr-display: normal
APC: off Autodownload: off

Height: 24 Width: 80
Debug: off Session log: (none)

CONNECT-mode escape character: 28 (Ctrl-\, FS): enabled
Terminal character-set: transparent

In the Windows and OS/2 versions (which also have a much longer SHOW TERMINAL

display), the ‘‘Type:’’ is your current terminal emulation. In the UNIX, VMS, and
other versions that do not include terminal emulators, the terminal type is obtained by
asking the underlying operating system system what it thinks your terminal type is.

182 Terminal Connection / Chapter 8

Coordinating Screen Dimensions

The SHOW TERMINAL display includes C-Kermit’s idea of your screen size:

Height: 24 Width: 80

When using C-Kermit’s CONNECT command to access full-screen applications on the host,
it is important that the host and C-Kermit (or the terminal or emulator from which you are
controlling C-Kermit) agree about your screen dimensions, especially when your screen is
not the standard 24×80 size. If SHOW TERMINAL displays an incorrect number of rows or
columns (including -1, which means ‘‘I don’t know’’), that means that C-Kermit was un-
able to obtain the correct information from the underlying operating system. In that case,
you can use the following commands to inform C-Kermit about your terminal dimensions:

SET TERMINAL HEIGHT number
This command tells C-Kermit the number of rows (lines) on the command screen.

SET TERMINAL WIDTH number
This command tells C-Kermit the number of columns (characters) across the com-
mand screen. NOTE: In Kermit 95 and Kermit/2, these commands also change the
size of your terminal screen.

C-Kermit uses this information to inform the remote host about your screen size during
TELNET or Rlogin negotiations, and it to set its built-in \v(cols) and \v(rows)
variables so you can use them in scripts.

Nevertheless, there are still numerous ways in which the remote host or service can fail to
learn your true screen dimensions automatically. In such cases, there is usually a com-
mand you can use to inform the system of your screen dimensions. For example, most
UNIX systems allow something like:

stty rows 55 cols 80

In VMS it would be:

set term /page=55 /width=80

Once you have entered CONNECT mode and logged into the remote computer, you should
use the appropriate command to check its idea of your screen dimensions, such as the
stty -a (or similar) command in UNIX, SHOW TERMINAL in VMS, etc.

Some hosts offer commands that send escape sequences to query your terminal emulator
about its dimensions. In UNIX it is usually:

‘eval resize‘

(with the ‘‘backquotes’’) and in recent VMS versions the SET TERMINAL /INQUIRE com-
mand has incorporated this function.

Key Mapping 183

Key Mapping

C-Kermit can substitute any character or character string for keys that you press during a
CONNECT session. For keys that produce 7- or 8-bit codes, the default assignment for each
key is itself, that is, the key transmits the code that it produces when you press it. You can
use the following commands to change the default assignments.

SHOW KEY
Tells Kermit to ask you to press a key. When you do, Kermit shows you the code
value of the key and the key’s current definition. Here is an example using a NeXT
workstation:

C-Kermit>set command bytesize 8
C-Kermit>show key
Press key: Alt-s
Key code \251 => Character: ß \251 (self, no translation)

The user types Alt-s (holds down the Alternate key and presses the s key). On the
NeXT, this produces ‘‘German sharp s’’ (ß, Ess-Zet). 251 is the key code. It is shown
in decimal. In most C-Kermit versions, only 7-bit or 8-bit code values are accessible.
In the Windows and OS/2 versions, any key or key combination can be mapped.

SET KEY key-code [definition]
Assigns the given definition to any (and all) key(s) that produce the given key code.
The key-code may be a simple decimal number or a backslash code used to express the
number in decimal, octal, or hexadecimal notation (Table 2-4). Normally you would
use the same notation for the key as SHOW KEY displays for it. The definition can be a
single character, expressed literally (if possible) or in backslash notation, or a string of
characters (possibly containing backslash codes). If the definition is omitted, the
key’s default definition is restored. Here are some examples, in which we assign
various values to the NeXT Alt-s key:

C-Kermit>set key \251 \28 (Ctrl-Backslash)
C-Kermit>set key \251 x (The single character ’x’)
C-Kermit>set key \251 ss (Double ’s’)
C-Kermit>set key \251 Oh my, this is a wordy keystroke!\13
C-Kermit>set key \251 (Restore default value)

SET KEY CLEAR
This command erases all key definitions.

SAVE KEYMAP filename
Saves the current key settings in a file that can be TAKEn.

C-Kermit’s SET KEY command has several restrictions:

• If you use SET KEY to assign CONNECT-mode escape commands to single keys, the
characters assigned to the key are transmitted, rather than treated as escapes.

184 Terminal Connection / Chapter 8

• If you include a NUL (ASCII 0, \0) value in a key definition, it terminates the defini-
tion, and the NUL character itself is not transmitted when you press the key.

• In C-Kermit versions that do not include built-in terminal emulation, you can’t use SET

KEY with function, arrow, editing, or other special keys that produce a multibyte value
or a scan code greater than 255.

• To use 8-bit key codes, you must first SET COMMAND BYTESIZE 8. The method for
entering 8-bit characters depends on your computer, operating system, terminal
emulator (if any), keyboard, and keyboard driver.

A common use for the SET KEY command is to relocate inconveniently placed keys for
easy typing. For example, some keyboards have the Esc (Escape) key far off in right
field, out of reach, and the accent-grave (backquote) key where you want the Esc key to
be. Use SET KEY to swap them:

C-Kermit>set key \96 \27
C-Kermit>set key \27 \96

Another common use of SET KEY is to change what is sent by your BACKSPACE key. Some
hosts expect DEL (Delete, ASCII 127), others expect BS (Backspace, Ctrl-H, ASCII 8).
This example assigns ASCII BS to the NeXT’s backspace key, whose key code (and
therefore default assignment) is 127:

C-Kermit>set key \127 \8
C-Kermit>set key \8 \127

In the non-terminal emulating versions of C-Kermit (for UNIX, VMS, etc), SET KEY as-
signments are effective only while the CONNECT command is active. When you press a
key that has been given a definition with SET KEY, all terminal and communication set-
tings are applied to the characters in its definition before they are sent, just as if you had
typed the definition characters on the keyboard during CONNECT mode.

C-Kermit in the Middle

Let’s say you have a PC at home with Windows 95, and you use Kermit 95 to dial up the
VMS (or UNIX, etc) computer at your job, and from there you use C-Kermit to dial or
TELNET out to some distant place — the situation shown in Figure -LOCAL2FIG back in
Chapter 3. Let’s call your home PC Computer A, the computer you have dialed Computer
B, and the most distant one Computer C. C-Kermit on Computer B is in the middle.

There are several interesting wrinkles to this situation. First, let’s assume that Kermit’s
escape character on both computers A and B is the same, Ctrl-Backslash, and that the Ker-
mits on both A and B are in CONNECT mode, so you are having an online dialog with

C-Kermit in the Middle 185

Computer C. What happens when you type Ctrl-Backslash C? (Try it and see.) Right,
you come back to Computer A’s Kermit prompt. But what if you want to come back to
Computer B’s Kermit prompt? Hint: Look at the last item in Table 8-1, page 174. So you
have to type two Ctrl-Backslashes. Why? Because Computer B’s Kermit needs to see one
Ctrl-Backslash, and typing two Ctrl-Backslashes to Computer A is the way to send one of
them to Computer B.

Now suppose you use C-Kermit on Computer C to make make a connection to a fourth
host, Computer D, and again, the escape character for C-Kermit on Computer C is
Ctrl-Backslash. How would you escape back to Computer C?

Optional exercise for the mathematically inclined: If Computer Xn is n hops
away, how would you escape back to Computer Xn-1? (To find the answer, turn
to page 191 at the end of this chapter :-)

Knowing the answer to this question might be important some day when you need to
transfer a file between two different computers at arbitrary points along the chain. You
need to escape back to the right one!

But that’s not all you need to know. There is also the issue of transparency. By default,
when C-Kermit is in CONNECT mode, it gives you a seven-bit connection, so 8-bit data
will not pass through it. This includes 8-bit character sets as well as binary data, and so
can prevent all sorts of operations that require a clear 8-bit path, including VT320 emula-
tion, XYZMODEM (but not Kermit) file transfer, and the use of Latin-1, Latin-2, Russian,
Hebrew, Japanese, or other character sets that use the 8th bit. To make the connection
transparent to all eight bits, give these commands to C-Kermit on Computer B prior to
entering CONNECT mode:

C-Kermit> set parity none
C-Kermit> set command bytesize 8
C-Kermit> set terminal bytesize 8

Now suppose Computer C offers only the XMODEM protocol for transferring files. Kermit
95 supports XMODEM too, but all attempts at using it between computers A and C fail, be-
cause there is another component to transparency: transparency to all control characters.
Protocols such as XMODEM use every possible bit pattern, including all control characters.
But C-Kermit on computer B has reserved one control character, Ctrl-Backslash in our ex-
ample, as its escape character. As soon as XMODEM on Computer A sends its first Ctrl-
Backslash character, this causes C-Kermit on Computer B to enter its escape-character
processing procedure, and what it does next depends entirely on the next character to ar-
rive. In any case, it will not do what is needed, namely pass the escape character through
as ordinary data. To achieve transparency to the escape character, give the following
command to C-Kermit on Computer B prior to entering CONNECT mode:

C-Kermit> set terminal escape off

186 Terminal Connection / Chapter 8

(Remember that you never will be able to escape back to Computer B’s Kermit prompt
after giving this command, so you should test first whether the automatic pop-back on loss
of connection works here.)

But there’s more. If C-Kermit on Computer B is using Xon/Xoff flow control, it won’t be
transparent to Ctrl-Q and Xoff Ctrl-S characters. So:

C-Kermit> set flow none

(or SET FLOW RTS/CTS, as appropriate). Also, if C-Kermit on Computer B had been told to
SET TERMINAL LOCKING-SHIFT ON, it will not be transparent to Ctrl-N and Ctrl-O charac-
ters, so:

C-Kermit> set terminal locking-shift off

Finally, C-Kermit on Computer B will not be not transparent even to ordinary printable
characters if you have instructed it to do character-set translation. So also be sure to:

C-Kermit> set terminal character-set transparent

Now, with just two more commands, explained in the next section, we can achieve total
transparency:

C-Kermit> set terminal autodownload off
C-Kermit> set terminal apc off

Let’s find out what these are...

Automatic Actions While in CONNECT Mode

We haven’t explained file transfer yet, but in the spirit of collecting all the information
about CONNECT mode in one place, this might be a good time to mention that most ver-
sions of C-Kermit, when in CONNECT mode, can detect when a Kermit (and in some cases
also ZMODEM) file transfer has been been initiated by the remote host or service; C-Kermit
automatically activates the appropriate file-transfer protocol, transfers the file, and then
automatically puts you back in CONNECT mode when the transfer is done. More about this
in Chapter 13, after we have discussed file transfer.

If you are using a version of C-Kermit, such as Kermit 95, that is at the local end of the
connection — not ‘‘in the middle,’’ as described in the previous section — then automatic
transfer is usually a convenient and desirable feature. But if you are also going through a
copy of C-Kermit that is in the middle, you would not want automatic transfers enabled in
both your local Kermit program and the one in the middle; if they were, then both Kermits
would go into protocol mode at the same time, Very Confusing!

Logging and Debugging Your Terminal Session 187

To minimize the confusion, the Windows and OS/2 versions, and any other version that is
used only in local mode, have automatic transfers permitted by default, but in the other
versions (VMS, UNIX, VOS, AOS/VS — the ones that can find themselves in the mid-
dle), automatic transfers are disabled unless you enable them. The command to control
automatic transfers is:

SET TERMINAL AUTODOWNLOAD { ON, OFF }

If you are using Kermit software to make a multihop connection, use the SET TERMINAL

AUTODOWNLOAD command to enable automatic transfers on the desired computer and to
disable it on the other(s).

Similarly, the remote computer can send an escape sequence that causes your local Kermit
program to execute commands. This is called the Application Program Command (APC)
sequence; it is discussed in Chapter 13. For purposes of this chapter, you should know the
command for enabling and disabling APCs:

SET TERMINAL APC { ON, OFF, UNCHECKED }

The default setting is OFF, and should remain so until you have read Chapter 13.

Logging and Debugging Your Terminal Session

You can have C-Kermit copy all the characters that appear on your screen during a
CONNECT session to a file called the session log. You can also make C-Kermit display
control and 8-bit characters graphically rather than passing them directly to your terminal
emulator or console driver. Here are the commands:

LOG SESSION [filename [{ APPEND, NEW }]]
This command tells C-Kermit to copy the characters that are sent to your screen into
the file whose name is given, as well as displaying them on the screen in the normal
way. If no filename is given, Kermit creates a new file called SESSION.LOG in your
current directory. The trailing keyword, APPEND or NEW, tells whether to append the
session log to the end of an existing file or to create a new file. The default is NEW.

Characters are recorded in their 8-bit form if PARITY is NONE and TERMINAL BYTESIZE

is 8. Otherwise only 7-bit characters are logged. If the terminal character set is not
TRANSPARENT, the characters are recorded after translation.

The SHOW FILE command displays the name of your current session log file. It is also
shown in the CONNECT message and by the CONNECT-mode status-display request:

C-Kermit>log ses (Start a session log)
C-Kermit>connect (Begin terminal connection)
Connecting to /dev/ttyh8, speed 9600

188 Terminal Connection / Chapter 8

...
(Session logged to /usr/olga/session.log, text)
login: Ctrl-\S (Status request)
...
Logging to: /usr/olga/session.log

CLOSE SESSION
Terminates session logging and closes your session log file. The log file is also closed
automatically when you EXIT from C-Kermit.

SET SESSION-LOG { BINARY, TEXT }
(UNIX, AOS/VS, and OS-9 only) A binary-mode session log contains every character
that is received from the remote computer, including NUL and DEL padding charac-
ters, Xon and Xoff (if they are passed through by the terminal driver), as well as car-
riage returns.

When the session-log type is TEXT, C-Kermit discards NUL, DEL, and CR characters,
so the result is more likely to be usable as a UNIX or AOS/VS text file; in OS-9, car-
riage returns are kept and linefeeds are discarded. This command has no effect in
VMS, Windows, OS/2, or C-Kermit’s other operating systems. TEXT is the default
type of session log.

SET TERMINAL DEBUG { ON, OFF }
This command changes your CONNECT-mode screen into a kind of data analyzer.
Control and 8-bit characters are displayed graphically12. For example, Ctrl-A is dis-
played as ^A, ESC is displayed as ^[, etc. (see Table VII-2). An 8-bit character is
shown as a tilde (~) followed by the 7-bit version of the character, for example the bit
pattern 11000001 is displayed as ~A. On a TELNET connection, TELNET protocol
negotiations are displayed on the screen.

Terminal character sets are not translated when TERMINAL DEBUG is ON. The 8-bit
character indication (~) is not shown if PARITY is anything besides NONE or if the
TERMINAL BYTESIZE is 7.

TERMINAL DEBUG is OFF by default.

Here is an example of a debugging display on a TELNET connection, in which both TELNET

negotiations and control characters are displayed symbolically:

C-Kermit>set terminal debug on
C-Kermit>telnet kermit

12The OS/2 and Windows versions use a more sophisticated debugging display; see the appropriate
manuals for further information.

Logging and Debugging Your Terminal Session 189

[WILL TERMINAL TYPE][DO SUPPRESS GO AHEAD]<DO TERMINAL TYPE><WIL
L SUPPRESS GO AHEAD><SB TERMINAL TYPE 01 IAC SE>[SB TERMINAL TYP
E 00 VT300 IAC SE]<WILL ECHO>[DO ECHO]<DO ECHO>^M^J^M^JSunOS UNI
X (kermit)^M^J^M^@^M^J^M^@login: olaf^M^JPassword:^M^JLast login
: Sat Jul 4 16:20:45 from thorn.^M^JSunOS Release 4.1.1 (KERMIT
) #1: Mon Sep 23 20:11:19 EDT 1994^M^J^M^J^[[1;24r^[[24;1H^M^@We
lcome to /dev/ttyp6^M^J$ exit^M^J[WONT ECHO]<DONT ECHO>

The TELNET options that Kermit sends are enclosed in square brackets and the ones it
receives are enclosed in angle brackets. ^[[1;24r^[[24;1H is a screen setup command
for a VT terminal. ^M^J is a carriage return and linefeed sequence, and ^@ is a NUL.

Using the terminal debug display, you can pinpoint misbehaving TELNET negotiotions so
you can correct them with the appropriate SET TELNET commands, as explained in Chapter
6. You can also use it to find control characters or escape sequences that might be causing
trouble, so you can get an idea of what sort of remedy needs to be applied.

Finally, the debugging display lets you see exactly what characters arrive — including
ones that you normally could not see — which might be that essential bit of information
needed to get a script program working. More about scripts in Chapters 17–19.

190 Terminal Connection / Chapter 8

Command Summary

Here is a concise list of C-Kermit’s CONNECT-related commands. Recall that each
keyword can be shortened to any length that still distinguishes the keyword from any other
keyword that can appear in the same position. Also note that the Windows and OS/2 ver-
sions have numerous additional SET TERMINAL commands affecting their specific terminal
emulation features.

CLOSE SESSION
CONNECT [/QUIETLY]
LOG SESSION [filename [{ APPEND, NEW }]]
SET COMMAND BYTESIZE { 7, 8 }
SET ESCAPE number
SET KEY key-code [definition]
SET PARITY { EVEN, ODD, MARK, SPACE, NONE }
SET SESSION-LOG { BINARY, TEXT }
SET TERMINAL APC { ON, OFF, UNCHECKED }
SET TERMINAL AUTODOWNLOAD { ON, OFF }
SET TERMINAL BYTESIZE { 7, 8 }
SET TERMINAL CHARACTER-SET remote-cset [local-cset]
SET TERMINAL CR-DISPLAY { CRLF, NORMAL }
SET TERMINAL DEBUG { ON, OFF }
SET TERMINAL ECHO { LOCAL, REMOTE }
SET TERMINAL ESCAPE { DISABLED, ENABLED }
SET TERMINAL HEIGHT number
SET TERMINAL LOCKING-SHIFT { ON, OFF }
SET TERMINAL NEWLINE-MODE { ON, OFF }
SET TERMINAL WIDTH number
SHOW KEY
SHOW TERMINAL

To make a CONNECT session totally transparent:

SET PARITY NONE
SET FLOW NONE or RTS/CTS
SET COMMAND BYTESIZE 8
SET TERMINAL APC OFF
SET TERMINAL AUTODOWNLOAD OFF
SET TERMINAL BYTESIZE 8
SET TERMINAL CHARACTER-SET TRANSPARENT
SET TERMINAL ESCAPE OFF
SET TERMINAL LOCKING-SHIFT OFF

Variables:

\v(cols) Number of columns (characters) across the screen.
\v(rows) Number of rows (lines) on the screen.
\v(terminal) Terminal type.

Command Summary 191

Copyright 1984 by ACM, Inc. Reproduced by permission. See full copyright notice on page 637.

192 Terminal Connection / Chapter 8

193

Chapter 9

The Basics of File Transfer

❍ ❍ ❍ ❍

This chapter explains the basic method for transferring files from one computer
to another using the Kermit protocol. The next several chapters discuss selected
aspects of file transfer in greater depth: how to solve file-transfer problems,
how to use Kermit software in a client/server setting, how to maximize file-
transfer performance, and how to incorporate character-set translation into the
file transfer process. VMS users should also read Appendix IV for special
procedures used for VMS file transfer.

Getting Started

The Kermit protocol transfers files from one computer to another and it requires Kermit
software on both computers. Kermit programs communicate with each other using for-
matted messages called packets (see Chapter 12 for more detail about packets). If packets
are lost, duplicated, or damaged during transmission, the receiving Kermit notifies the
sending Kermit and corrective action is taken automatically to ensure your files are trans-
ferred without error. For a detailed description of the Kermit protocol, see the book
Kermit, A File Transfer Protocol [21].

We assume you understand the terms ‘‘local computer’’ and ‘‘remote computer,’’ and you
are able to connect your local computer to the remote one with Kermit communications
software. If necessary, please review Chapter 3 or consult the documentation for your lo-
cal Kermit program if it is not C-Kermit.

194 The Basics of File Transfer / Chapter 9

Automation and How to Stifle It
Kermit file transfers can be done The Old Fashioned Way, in which you instruct each Ker-
mit program what to do, or using the more convenient ‘‘client/server’’ arrangement
presented in Chapter 11, or in most modern Kermit programs, automatically when the ter-
minal emulator recognizes a Kermit packet. We have already alluded to the latter method
in Chapter 8, a few pages back.

To recapitulate, if C-Kermit (or MS-DOS Kermit, or Kermit 95, or Kermit/2) is in
CONNECT mode and it ‘‘sees’’ a Kermit protocol packet on its screen and if its TERMINAL

AUTODOWNLOAD setting is ON, it automatically engages the other Kermit program in the
type of file transfer indicated by the observed packet — no hands!

But before you can use the ultra-convenient automatic method without mishap, you need
to understand the basics, so until we say otherwise, please issue the following command to
your local Kermit program (the one whose CONNECT command you are using) before fol-
lowing any of the examples in this chapter:

SET TERMINAL AUTODOWNLOAD OFF

This is like learning to drive with a manual transmission before being allowed to use an
automatic one. It helps you understand what is going on under the hood so you can make
better use of your car. But perhaps more important, some day you might really have to
drive a stick-shift. Not all Kermit implementations are automatic!

Basic File Transfer Commands

The basic file transfer commands are SEND and RECEIVE. One computer’s Kermit must be
told to send a file and the other computer’s Kermit program must be told to receive it.

The SEND Command

SEND filespec
Sends the file or files denoted by filespec to the Kermit program on the other com-
puter, which must be given a RECEIVE command.

The filespec is allowed to contain ‘‘wildcard’’ characters, allowing multiple files to be
sent. A wildcard is a special character used in a filename to denote a group of files whose
names match a given pattern. Wildcards are also called metacharacters (in UNIX) or
templates (in AOS/VS).

Wildcard syntax varies from system to system. Table 9-1 gives a summary of special
characters that can be used in filenames on systems where C-Kermit runs (the DOS

Basic File Transfer Commands 195

Table 9-1 Special Characters in C-Kermit File Specifications

Field or Pattern UNIX VMS AOS/VS DOS OS-9 Amiga Atari

Username ~ ~ ~

The directory separator / [.] : \ or / / / \

The current directory . [] = . . .

The superior directory .. - ^ / ..

* Inferior directories ... #

* Any string of characters * + * *

* Any string not containing "." * - * *

* Any single character ? ? ?

* Any character but "." % * ? ?

* Any character from a set [abc]
[a-z]

* Any string from a set {foo,bar}

* Exception string \

column is for all DOS-like operating systems, including OS/2 and Windows); the items
marked by asterisk (*) in the first column are considered wildcards. Consult the
system-specific appendices of this book, or the supplemental manuals, or the online notes,
for details.

The name of each file is transmitted to the receiving Kermit program so the file can be
stored with its own name automatically when it arrives. SEND can be abbreviated to the
single letter S, even though other C-Kermit commands begin with S. Examples:

C-Kermit>send oofa.txt (A single file)
C-Kermit>sen oofa.+ (All AOS/VS oofa files)
C-Kermit>sen oofa.* (All oofa files, other systems)
C-Kermit>s \?\? (UNIX files with 2-char names)
C-Kermit>s %% (VMS files with 2-char names)

The default directory for filenames is the one where you started C-Kermit or the one given
in the most recent CD command. You can include disk and/or directory information in the
filespec for files that are not in your current directory. During transmission, filenames are
stripped of any device, directory, or version information (unless you say otherwise). For
example, when the following file is sent by VMS C-Kermit:

C-Kermit>send $disk1:[olga]login.com;5

the receiver is told that its name is simply LOGIN.COM.

196 The Basics of File Transfer / Chapter 9

The RECEIVE Command

RECEIVE [as-name]
Tells C-Kermit to wait for one or more files to arrive from the other Kermit program,
which must be given a SEND command. By default, incoming files are stored in the
current directory.

Incoming filenames are converted to the format of C-Kermit’s underlying operating sys-
tem; for example, UNIX C-Kermit converts all-uppercase names to lowercase. The
RECEIVE command can be abbreviated by the single letter R. Examples:

C-Kermit>receive (Receive one or more files)
C-Kermit>r (Receive one or more files)

If the optional as-name is included, the arriving file is stored under that name rather than
the name it arrived with:

C-Kermit>receive oofa.txt (Store incoming file as oofa.txt)

The ‘‘as-name’’ can include disk and directory information so you can store the incoming
file somewhere other than your current directory, and it can also denote a device such as a
printer if your operating system allows.

The as-name may not contain wildcard characters. If the as-name is a filename, as op-
posed to a device or directory name, and more than one file arrives, then only the first file
is renamed; the subsequent files are stored under their own names. The as-name is con-
verted to uppercase if the underlying file system does not support lowercase letters in file-
names.

The RECEIVE command requires that you have write access to the device and directory in
which the arriving file is to be stored. C-Kermit will not create files for you that you
could not otherwise create yourself.

Most versions of C-Kermit (UNIX, VMS, OS/2, Windows, OS-9, etc.13) accept a device
or directory name in place of the as-name to specify that all incoming files (not just the
first one) should go into the specified device or directory under the names they were sent
with. Here is an example in which Kermit/2 is downloading files from an IBM main-
frame:

Kermit-CMS>send oofa * c (Send all oofa files from C disk)
Alt-x (Escape back to OS/2)
C-Kermit>receive d: (Receive all files onto disk D:)

13You can check yours with C-Kermit’s SHOW FEATURES command. Look for CK_TMPDIR in the list of
compilation options.

Basic File Transfer Commands 197

Other Commands for Sending Files
A variation on the SEND command lets you send a single file under an assumed name:

SEND filename [remote-filename]
Sends the file specified by filename, which must not contain wildcards, transmitting it
under the name remote-filename (‘‘as-name’’). Example:

C-Kermit>send night.txt day.txt

This sends the file night.txt but tells the receiving Kermit that its name is
day.txt. The remote-filename field should be a filename in the syntax of the remote
computer. It can contain any printable characters, even spaces. C-Kermit does not
(and can not) check it for syntax, and does not convert it in any way. If you do not
supply a remote-filename field, the file is sent with its own name.

Another variation on the SEND command lets you supply a list of files to be sent, rather
than just one file specification:

MSEND filespec [filespec [...]]
Multiple Send. This command sends all the files in the list in a single operation, so
you have to give only one RECEIVE command to the other Kermit. The names are
separated by spaces (not commas). The maximum length of this command is the same
as for any C-Kermit command, usually about 4000 characters (use SHOW COMMAND to
obtain a precise figure). Each file is sent under its own name. Each item in the list
can be the name of a single file or a wildcard file-group specification. The files can be
on different devices and in different directories. Note that there is no way to give
‘‘as-names’’ in the MSEND command (but keep reading). Examples:

C-Kermit>msend oofa.txt oofa.new (Two files or...)
C-Kermit>mse ~olga/*.c ~olaf/*.h (from different directories)
C-Kermit>ms [olga]*.c [ivan]*.h (Ditto, VMS)
C-Kermit>ms ckc*.c cku*.c ckw*.c ck*.h makefile

The MSEND command is equivalent to the -s command-line option (Appendix I).

Sometimes it is desirable to delete files after they have been successfully sent, in effect
moving, rather than copying, them from one computer to another. The commands are:

MOVE filespec [remote-filename]
This command is exactly like the SEND command, except it automatically deletes
(removes, erases) each file that is sent successfully. Any files that are not sent suc-
cessfully are preserved.

MMOVE filespec [filespec [...]]
Multiple Move. This command is exactly like the MSEND except it automatically
deletes each file that is sent successfully.

198 The Basics of File Transfer / Chapter 9

Figure 9-1 Upload and Download

Figure 9-2 Uploading a File

Easy File Transfer Examples 199

Easy File Transfer Examples

Let’s introduce two new words, illustrated in Figure 9-1: upload and download. Upload
means to send a file from your local computer to the remote computer. Download means
to transfer a file from the remote computer to your local computer.

Most Kermit programs are set up to transfer ordinary 7-bit US ASCII text files unless you
say otherwise, so let’s begin by doing that. The procedure for uploading is:

1. Start Kermit on your local computer.

2. Make a connection to the remote computer.

3. CONNECT to the remote computer and log in.

4. Start Kermit on the remote computer and tell it to RECEIVE the desired file.

5. If necessary, escape back to Kermit on the local computer.

6. Tell the local Kermit to SEND the file.

7. Watch the file transfer display.

8. Wait for the beep or message that says the transfer is complete.

9. CONNECT back to the remote computer, conduct any further business you might have
there, and then log out from it when you’re finished.

10. Escape back to your local Kermit (if necessary) and exit from it.

In our first example, shown in Figure 9-2, you are sitting at a PC equipped with MS-DOS
Kermit. You will connect to a VAX computer over a direct line and upload a file to
C-Kermit on the VAX.

C:\>kermit (Start Kermit on the PC)
MS-Kermit>set port com1 (Select the communication port)
MS-Kermit>set speed 19200 (Set the desired speed)
MS-Kermit>connect (Begin terminal emulation)

Username: olga (Log in on the VAX)
Password: (Type your password)

$ kermit (Start Kermit on the VAX)
C-Kermit 7.1.199, 29 Apr 2001, for OpenVMS VAX
Type ? or HELP for help
C-Kermit>receive (C-Kermit receives the file)
Return to your local Kermit and give a SEND command.

KERMIT READY TO RECEIVE...
Alt-X (Escape back to the PC)

(Hold down Alt key and press X)
MS-Kermit>send autoexec.bat (Tell the PC to send the file)

200 The Basics of File Transfer / Chapter 9

(The file is transferred...)

MS-Kermit> (Beep, all done)

Presto, the file is transferred. Notice that the name of the file to be send is given only to
the Kermit program that is sending the file. The sending Kermit sends the filename to the
receiving Kermit so the file is automatically stored with the right name. For complete-
ness, let’s go back to the VAX and properly finish our session:

MS-Kermit>connect (Connect back to the VAX)
C-Kermit>dir /size/date autoexec (Is the file really there?)
Directory $DISK1:[OLGA]
AUTOEXEC.BAT;1 3 22-DEC-95 11:23:02
C-Kermit>exit (Exit from C-Kermit on the VAX)
$ logout (Log out from the VAX)
Alt-X (Escape back to the PC)
MS-Kermit>exit (Exit from MS-DOS Kermit)
C:\> (Back to the DOS prompt)

Now you’re back where you started.

HINT: If the file transfer didn’t work, it’s probably because of a communication
parameter called parity (defined in Appendix II). Try giving the command:

C-Kermit>set parity space

(or, if that didn’t help, SET PARITY EVEN) to C-Kermit before you give the
RECEIVE command, escape back, and give the same SET command to your local
Kermit before giving the SEND command. We’ll cover parity and other difficul-
ties in Chapter 10.

Downloading
Downloading is just like uploading, except with the SEND and RECEIVE commands ex-
changed. In this example, illustrated in Figure 9-3, we connect from a desktop CP/M
microcomputer (remember CP/M?) to a remote Data General MV AOS/VS system. The
micro is the local computer, the MV is the remote, and they have a direct connection:

B>a:kermit (Start Kermit on the micro)
Kermit-80 v4.11
Kermit-80>set speed 9600 (Set the desired speed)
Kermit-80>connect (Begin terminal emulation)
Username: ivan (Log in to the MV system)
Password: (Type your password)
) kermit (Start Kermit on the MV system)
C-Kermit 7.1.199, 29 Apr 2001, for AOS/VS
Type ? or HELP for help
C-Kermit> (AOS/VS C-Kermit prompt)
C-Kermit>send login.cli (C-Kermit sends the file)
Return to your local Kermit and give a RECEIVE command.

KERMIT READY TO SEND...

Easy File Transfer Examples 201

Figure 9-3 Downloading a File

Ctrl-]C (Escape back to the micro)
Kermit-80>rec (The micro receives the file)

(The file is transferred...)

Kermit-80> (Beep, finished)
Kermit-80>dir login (Check it)
LOGIN CLI 3
Kermit-80>

See, the file is really on your micro’s disk, stored automatically under the correct name.
Now connect back to the remote computer, finish your session, and log out:

Kermit-80>c (Connect back)
C-Kermit>exit (Exit from C-Kermit)
) bye (Log out from AOS/VS)
Ctrl-]C (Escape back)
Kermit-80>

What Are Those Squiggles?
When you give the SEND command to the remote Kermit, as in the previous example, it
waits for a few seconds to give you time to escape back to the local Kermit program and
issue a RECEIVE command. Then it sends its first file transfer packet. The normal waiting
time is about 5 seconds. If you fail to escape back quickly enough, you will see the first

202 The Basics of File Transfer / Chapter 9

packet on your screen, as in the following example:14

C-Kermit>send oofa.txt
Return to your local Kermit and give a RECEIVE command.

KERMIT READY TO SEND...
^A8 S~* @-#Y3~^4K*0___D"U1.

No harm is done; you have about a full minute to escape back and engage the receiving
Kermit before the remote Kermit loses patience and returns to its prompt. But if you are
disconcerted by the appearance of this packet on your screen, you may lengthen the delay:

SET DELAY number
Tells C-Kermit how many seconds to wait before sending its first packet after it has
been given a SEND command, when it is in remote mode. Example:

C-Kermit>set delay 5

Once you have become highly dextrous and proficient at escaping back and typing
RECEIVE, the normal 5-second delay can be surprisingly annoying, so you can also shorten
the waiting time:

C-Kermit>set delay 1

Or even SET DELAY 0 for no delay at all (which is appropriate when you have TERMINAL

AUTODOWNLOAD enabled; explained in Chapter 13). The SET DELAY command has no ef-
fect on C-Kermit when it is receiving files or when you are uploading files from C-Kermit
on your local computer.

Regaining Control of Your Keyboard
When you put the remote C-Kermit program into packet mode by giving it a file transfer
command like SEND or RECEIVE, it is no longer responsive to your keystrokes. It wants to
see valid only Kermit protocol packets. But suppose (for example) you have mistakenly
put C-Kermit into protocol mode, and you want to get back to the prompt?

Just type three Ctrl-C characters in a row: hold down the Ctrl key and press the C key
three times:

$ kermit
C-Kermit> receive
Ctrl-c Ctrl-c Ctrl-c ^C...
C-Kermit>

When Kermit’s packet reader sees the three Ctrl-C’s, it echoes ‘‘^C...’’, breaks C-Kermit
out of protocol mode, and returns you to the C-Kermit prompt or the system prompt,
depending on how C-Kermit was started.

14If you have given a RECEIVE command and did not escape back fast enough, you will see a packet that
looks like this: ‘‘# N3’’.

Easy File Transfer Examples 203

The danger of this escape mechanism is that three Ctrl-C’s might appear as noise on the
connection. So of course there is a command to let you change the sequence to anything
you like, or disable it altogether:

SET TRANSFER CANCELLATION { OFF, ON [code [number]] }
OFF turns off the protocol-mode cancellation feature, preventing escape from packet
mode except by normal protocol operations: completion, timeout, error packet, etc.
Use with caution. ON (the default) enables this feature. The optional code is the AS-
CII code for the control character (0 through 31 or 127) to be used for interruption (the
default is 3 = Ctrl-C), and the optional number is the number of consecutive copies of
the character required to cause interruption; we recommend you never use a number
less than 3. Synonym: SET XFER CANCELLATION.

For example, SET XFER CANCEL ON 6 5 tells C-Kermit to break out of protocol mode upon
receipt of 5 consecutive Ctrl-F (ASCII 6) characters. Note that the parity bit is ignored for
this purpose, so (for example) 3 and 131 are treated the same.

If you SET TRANSFER CANCELLATION OFF, you might still need a manual method of getting
remote-mode C-Kermit out of packet mode. This can be accomplished by escaping back
to your local Kermit and giving a RECEIVE command, then typing E (or Ctrl-E) to send an
error packet.

Network File Transfer
If you are accessing the remote computer with a true high-speed network connection,
C-Kermit works the same as in the previous examples but (usually) much faster. In this
example we access a UNIX host computer via a TCP/IP Ethernet connection from
MS-DOS Kermit on a PC and download a file:

MS-Kermit>set port tcp kermit.columbia.edu
MS-Kermit>connect

login: olaf
Password:

$ kermit (Start UNIX Kermit)
C-Kermit 7.1.199, 29 Apr 2001, for SunOS 4.1
Type ? or HELP for help
C-Kermit>send mailing.lst (Send a file)
Alt-X (Escape back to the PC)
MS-Kermit>r (Receive the file)

(The file is transferred...)

MS-Kermit>c (Connect back to UNIX)
C-Kermit>exit (Exit from C-Kermit)
$ exit (Log out from UNIX)

If the file transfer failed, SET PARITY to SPACE and start the file transfer again.

204 The Basics of File Transfer / Chapter 9

Local-Mode File Transfer

In this example, you are running C-Kermit on your local computer, a UNIX workstation
or timesharing system, and you are dialing up a remote computer to download some files.
Note the use of the wildcard character * to denote a file group.

$ kermit (Start Kermit on UNIX)
C-Kermit 7.1.199, 29 Apr 2001, for SunOS 4.1
Type ? or HELP for help
C-Kermit>set modem type usrobotics (Specify modem type)
C-Kermit>set line /dev/ttyh8 (and communication device)
C-Kermit>set speed 57600 (and speed)
C-Kermit>dial 5551234 (Dial the number)
Connection completed. (Call completed)
C-Kermit>connect (Begin terminal emulation)

Connecting through /dev/ttyh8, speed 57600.
The escape character is Ctrl-\ (ASCII 28, FS).
Type the escape character followed by C to get back,
or followed by ? to see other options.

ELECTRO-BRAIN 9000
LOGIN: olaf (Type your username)
PASSWORD: (and your password)

WELCOME. CHOOSE:
1. Chess
2. World Domination
3. Kermit
4. Logout

YOUR CHOICE? 3 (Kermit, of course)
Electro-Kermit>send plan*.txt (Send some files)
Ctrl-\c (Escape back to C-Kermit)
C-Kermit>receive (Receive the files)

(The files are transferred...)

C-Kermit>connect (Go back to remote computer)
Electro-Kermit>exit (Exit from the remote Kermit)
YOUR CHOICE? 4 (Log out)
ELECTRO-BRAIN 9000 HAS TERMINATED YOUR SESSION.
GOOD BYE.
Communications disconnect (back at local system)
C-Kermit>dir plan*.txt (List the received files)

-rw-rw---- 1 olaf 42378 Aug 8 19:21 plan1.txt
-rw-rw---- 1 olaf 5986 Aug 8 19:21 plan2.txt
-rw-rw---- 1 olaf 12873 Aug 8 19:21 plan3.txt

C-Kermit>exit (Exit from C-Kermit)
$

Local-Mode File Transfer 205

Here is another example, in which you use C-Kermit to make a TCP/IP TELNET connec-
tion to an Internet host and upload some files to it (something you can’t do with a regular
TELNET program). Both computers have C-Kermit, so you take advantage of the SET

PROMPT command to keep yourself oriented:

C-Kermit>set prompt Local> (Prompt for local Kermit)
Local>telnet hq (Go to the remote host)

login: olaf (Log in)
Password: (Enter your password)

$ kermit (Start Kermit on remote computer)
C-Kermit 7.1.199, 29 Apr 2001, for HP-UX 10.0
Type ? or HELP for help
C-Kermit>set prompt Remote> (Prompt for remote Kermit)
Remote>r (Receive some files)
Ctrl-\c (Escape back to local C-Kermit)
Local>s /usr/include/t*.h (Send some files)

(The files are transferred...)

Local>c (Connect back to remote computer)
Remote>exit (Exit from remote Kermit)
$ exit (Log out from remote computer)
Communications disconnect (back at local system)
Local>

The File Transfer Display
When C-Kermit is used in local mode, it displays the progress of the file transfer on your
screen in one of several formats: fullscreen, serial, crt, or none at all. The command to
select the display style is:

SET TRANSFER DISPLAY { CRT, FULLSCREEN, NONE, SERIAL }

The default type of display is FULLSCREEN if your version of C-Kermit supports it, other-
wise it is CRT. The SHOW FILE command displays the current transfer display type; use
SET TRANSFER DISPLAY to change it.

The FULLSCREEN display, available in VMS, OS/2, Windows, OS-9, Amiga, and most
UNIX C-Kermit versions, produces a formatted report on a 24-line by 80-column screen
as shown in Figure 9-4. The fields on the right are updated continuously to keep you in-
formed of the progress of the transfer. The top line shows the Kermit version number,
release date, and the name of your local computer (if known). The estimated time remain-
ing to transfer the current file is updated continuously and can fluctuate as the speed of the
transfer changes. ‘‘CPS’’ means characters per second, an indication of the efficiency of
the file transfer (discussed more fully in Chapter 12).

206 The Basics of File Transfer / Chapter 9

__

C-Kermit 7.1.199, 29 Apr 2001, MYVAX

Current Directory: $DISK1:[OLAF.TMP]
Network Host: XYZCORP.COM:23 (UNIX)
Network Type: TCP/IP

Parity: none
RTT/Timeout: 03/04

Sending: OOFA.TMP;6 => OOFA.TMP => /usr/olaf/oofa.tmp
File Type: TEXT (no translation)
File Size: 5608489

Percent Done: 25 ////////////-
..10..20..30..40..50..60..70..80..90..100

Estimated Time Left: 00:01:39
Transfer Rate, CPS: 39664

Window Slots: 3 of 4
Packet Type: D
Packet Count: 731
Packet Length: 2000
Error Count: 0
Last Error:

Last Message:

X to cancel file, Z to cancel group, <CR> to resend last packet,
E to send Error packet, ^C to quit immediately, ^L to refresh screen.
__

Figure 9-4 C-Kermit’s Fullscreen File Transfer Display

The ‘‘Sending’’ line shows the local filename, the name used in the packet, and the name
used on the remote computer. Various other interesting facts are displayed to reassure you
that the desired file is being transfered in the desired mode to the desired place. The type,
size, and number of each packet is shown, along with some protocol information like the
current window size (explained in Chapter 12) and the current round-trip time (RTT) and
timeout. At the end of a successful transfer, the Last Message field changes to a summary
report, a beep is sounded (unless you have told C-Kermit to SET TRANSFER BELL OFF), and
the C-Kermit prompt reappears:
__

Last Error:
Last Message: Files: 4, Bytes: 18529024, 43520 CPS

C-Kermit>
__

To check whether the FULLSCREEN display is available:

C-Kermit>check fullscreen
Available
C-Kermit>

Even when available, the fullscreen display won’t work right in UNIX or VMS if your ter-
minal type is set incorrectly or is not supported.

Local-Mode File Transfer 207

The SERIAL file transfer display, works with all kinds of display devices, including video
and hardcopy terminals as well as Braille and speech units. It looks like this:
__

SF
X to cancel file, CR to resend current packet
Z to cancel group, A for status report
E to send Error packet, Ctrl-C to quit immediately:
A
Receiving: PLAN1.TXT => plan1.txt
Size: 8113, Type: text
........Z [OK]
F A
Receiving: PLAN2.TXT => plan2.txt
Size: 12341, Type: text
..........T%..N%..Z [OK]
F A
Receiving: PLAN3.TXT => plan3.txt
Size: 10001, Type: text
..........Z [OK]
B
__

The single letters like S, F, A, Z, and B are Kermit protocol packet types, listed in Table
9-2 on the next page. If there is any information to report, it is shown after the packet let-
ter. For example, after the A packet, C-Kermit reports the file name, such as PLAN1.TXT,
and its size. => plan1.txt shows the local name for file.

When the file’s contents start to arrive, C-Kermit prints a period for every K (1024 charac-
ters) of data successfully received. If an expected packet does not arrive within a given
timeout interval, a T is printed. If a negative acknowledgment is sent or received, an N is
printed. If a packet is retransmitted, a percent sign (%) is displayed.

If TRANSFER DISPLAY is set to CRT, the dots are replaced by a line continuously showing
the bytes (characters) transferred so far, the percentage done, the current transfer rate in
characters per second (CPS), and the length of the current packet. This line is refreshed
by simple overstriking, and so should work on any CRT (video) terminal:
__

Sending: ckuxla.h => CKUXLA.H
Size: 2875, Type: text

File Percent Packet
Bytes Done CPS Length
2599 89% 229 998

__

When TRANSFER DISPLAY is OFF, C-Kermit skips the display and transfers files silently.
The file-transfer interruption characters (X, Z, E) are disabled, but you can still get back to
the C-Kermit prompt by typing Ctrl-C. The file transfer display is turned off automatical-
ly if C-Kermit is transferring files in the background.

208 The Basics of File Transfer / Chapter 9

Table 9-2 Kermit Packet Types

Type Name Function

A Attributes Attributes of file.

B Break End of transmission.

C Command Host command for a server.

D Data Data from file.

E Error Fatal error, contains message.

F File Header Start of file, contains filename.

G Client Client command for a server.

H Retrieve Move a file from server to client.

I Information Protocol parameters sent to a server.

J Reget Asks server to recover a file.

N NAK Negative acknowledgment, requests retransmission.

R Get Asks server to send a file.

S Send Negotiates parameters and starts sending.

T Timeout (Pseudopacket) Indicates a timeout waiting for a packet.

Y ACK Acknowledgment.

X Text Header Precedes screen data.

Z End of File Tells receiver to close the file.

% Retransmission (Pseudopacket) Indicates that a packet was retransmitted.

Interrupting a File Transfer

While files are being transferred, you can interrupt the transfer or query its progress. This
is done from the local Kermit program by pressing a key, a key combination, a sequence
of keys, or in some cases a mouse button.

When C-Kermit is the local Kermit program, you usually need type only a single key,
such as X. However, if C-Kermit is running on an older version of AT&T System V
UNIX, you might have to type the CONNECT-mode escape character (normally
Ctrl-Backslash) before you type the interruption key. C-Kermit’s file transfer interruption
keys are available to you when its file transfer display is active. When the transfer begins,
C-Kermit tells you what the available interruption keys are, for example in the legend at
the bottom of the file-transfer display.

The same interruptions can be sent to a remote C-Kermit program from your local PC,
Macintosh, or other Kermit program. They work the same way, but you might have to
enter them differently; for example, programs with graphical file transfer displays have in-
terruption buttons that you can click on with your mouse. Consult the documentation for
your local Kermit program.

Interrupting a File Transfer 209

Canceling a Single File: X
The X key (or, if required, escape-character followed by X) cancels the file currently be-
ing transferred. If a group of files is being sent, Kermit skips ahead to the next one.

C-Kermit>s ckuusr.*
SF
X to cancel file, CR to resend current packet
Z to cancel group, A for status report
E to send Error packet, Ctrl-C to quit immediately:
A
Sending: ckuusr.c => CKUUSR.C,
Size: 98353, Type: text
.......X
Canceling File [incomplete]
F A
Sending: ckuusr.h => CKUUSR.H
Size: 45973, Type: text
...............Z [OK]
C-Kermit>

If C-Kermit is sending a file, it tells the remote receiver that this file is finished, but in-
complete. If C-Kermit is receiving a file, it tells the sender to cancel the transfer, then dis-
poses of the partially received file appropriately (discussed later).

Canceling a Group of Files: Z
If you type Z instead of X and more than one file is being transferred, the entire file group
is canceled and C-Kermit should return to its prompt. If only one file is being transferred,
Z works exactly like X.

Retransmitting a Packet: Carriage Return
If the file transfer appears to be stuck, you can type a carriage return (press the Return or
Enter key) to resend the most recent packet. This does no harm because packets are num-
bered and duplicates are automatically discarded.

Requesting a Status Report: S
If you type the letter S, C-Kermit prints a brief summary of how the transfer has
progressed so far, then continues with the transfer:

....................S
Status report:
file type: text block check: 1
file number: 1 compression: 1
size: 50532 8th-bit prefixing: 0
characters so far: 20761 packet length: 89
percent done: 41 window slots: 1

.............................. [OK]

The A command is ignored if you are using the FULLSCREEN file transfer display, since
most of this information is already on the screen.

210 The Basics of File Transfer / Chapter 9

Suspending C-Kermit: Ctrl-Z
On UNIX computers with job control, you can type Ctrl-Z to suspend Kermit during
local-mode file transfer in such a way that the file transfer can be continued in either the
foreground or the background. See Appendix III for details.

Interrupting C-Kermit: Ctrl-C
You can always type Ctrl-C to interrupt any file transfer. In local mode you only need to
type one Ctrl-C to get back to the prompt immediately. A remote-mode C-Kermit can be
returned to its prompt by typing three Ctrl-C’s in a row:

C-Kermit>send me.away (Send a file)
^A0 Sz* @-#Y1~* yE (See the Kermit packet)
Ctrl-C Ctrl-C Ctrl-C (Type three Control-C’s)
^C... (Kermit confirms that it got them)
C-Kermit> (and returns to its prompt)

When you interrupt a local-mode file transfer with Ctrl-C, no protocol messages are sent
to the remote Kermit (if any), so it remains in packet mode, possibly spewing many K of
packets onto your screen. Therefore, use this method only as a last resort or if you forgot
to start the Kermit program on the other end.

Sending an Error Packet: E
You can cancel any kind of transfer and put the remote Kermit back into a known state by
typing the letter E (or the escape character followed by E) while your file transfer display
screen is active. This makes C-Kermit send an error (E) packet.

This is useful, for example, if the remote Kermit does not respond to the X or Z cancel-
lation messages; most popular Kermit programs do (see Table -FEATURZ on page
-FEATURZ). If the remote Kermit was started interactively and was given a SEND or
RECEIVE command, the error packet should make it return to its prompt. If the remote
Kermit is in server mode (explained in Chapter 11), the error packet makes it ready to
receive a new command.

You can also send an error packet by issuing the following command at the C-Kermit
prompt or from a command file:

E-PACKET
Send an Error packet to the other Kermit. Example:

C-Kermit>e-packet (Send an error packet)

This command can be used to get the local and remote Kermit programs back ‘‘in sync’’
when one is command mode and the other in packet mode. If C-Kermit is not in local
mode, the error packet appears on your screen containing the text ‘‘User canceled.’’ It
does no harm.

Transferring Text Files 211

Transferring Text Files

❍ ❍ ❍ ❍

Techniques for transferring text files that contain accented letters, non-Roman
letters, or other national or international characters are presented in Chapter 16.
But please don’t skip ahead; the material from here through Chapter 12 apply to
all types of file transfer.

❍ ❍ ❍ ❍

The VMS file system is far more complex than the simple model presented here,
and VMS C-Kermit’s handling of the VMS file system is quite different. VMS
C-Kermit users should be sure to read Appendix IV in addition to this and the
next few chapters.

A text file is one that you can read on your screen without using any special kind of for-
matting software such as a word processor or electronic publishing package. If you can
display a file with your computer’s TYPE (or equivalent) command and it looks right, then
it’s most likely a text file.

Text files are made up of lines containing ordinary printable characters such as letters,
digits, spaces, and punctuation marks, without special effects like boldface and italics.
Different computers have different ways of representing text files: different codes to
represent the characters (the character set) and different ways of separating the lines (the
record format). On an ASCII-stream-based file system, for example, text files are
generally made up of ASCII (or national or international) printing characters, with lines
separated by carriage return, linefeed, or both, and containing no other control characters
or formatting codes except perhaps for tab, and maybe backspace or formfeed.

Kermit automatically converts ordinary text files into a useful and appropriate format
when you transfer them between unlike computers, just as you would expect. It uses a

Figure 9-5 Kermit Text File Conversion

212 The Basics of File Transfer / Chapter 9

standard representation for text within its file transfer packets, which is normally ASCII
(ISO 646 USA version) character codes (listed in Table VII-1 on page 593) with Carriage-
Return Linefeed (CRLF) line terminators. The sending Kermit translates from the local
computer’s text file conventions to this form, and the receiving Kermit converts back to its
own local conventions, as in the example shown in Figure 9-5.

Some C-Kermit versions transfer in text mode by default, others in binary mode. The
default transfer mode is announced when C-Kermit starts. To be certain that Kermit will
transfer files in text mode, use this command:

SET FILE TYPE TEXT
Tells Kermit to perform character set and record format conversions during file trans-
fer, storing files in conventional and useful text format on the receiving computer.
This is Kermit’s default file transfer mode. Synonyms: TEXT, ASCII.

Transferring Binary Files

Files that are not text files are called binary files. Our own peculiar definition of a binary
file is a file that is not to be converted in any way during transfer. A good example would
be an executable program image. Kermit does not know and cannot guess (except on
VMS) which files you want converted and which ones you don’t. You must tell it. The
command is:

SET FILE TYPE BINARY
Tells Kermit that no conversions of any kind are to be performed on the file during
transfer. Synonym: BINARY.

Let’s look at an example of binary file transfer in which we upload a copy of a PC ZIP ar-
chive to a UNIX computer, making it available for other people to download to their PCs:

C>kermit (Start Kermit on the PC)
MS-DOS Kermit 3.15
Type ? or HELP for help
MS-Kermit>dir oofa.zip (Check the file’s size)
OOFA ZIP 192488 2-08-95 3:28p
MS-Kermit>set modem pp14400 (Specify the modem type)
MS-Kermit>set port com2 (Select the communications port)
MS-Kermit>dial 555-1234 (Dial the UNIX computer)
MS-Kermit>connect (Begin terminal emulation)

(Press Enter to begin)
login: olaf (Type your username)
Password: (and password)

Welcome to UNIX.

$ kermit (Start C-Kermit)
C-Kermit 7.1.199, 29 Apr 2001, for UNIX System V R4

Building a Send List 213

Type ? or HELP for help
C-Kermit>set file type binary (Use BINARY mode)
C-Kermit>receive (Tell C-Kermit to receive the file)
Alt-x (Escape back to MS-DOS Kermit)
MS-Kermit>set file type binary (Use BINARY mode)
MS-Kermit>send oofa.zip (Send the file)

(The file is transferred...)

MS-Kermit>connect (Connect back to UNIX)
C-Kermit>dir oofa.zip (Check file file’s size)
-rw-rw-r-- 1 olaf 192488 Feb 8 15:28 oofa.zip
C-Kermit>

The two directory listings show that the received file on UNIX is exactly the same size as
the original, which is a good indication that no conversions have taken place.

To download the file from UNIX, follow the same procedure, but give a SEND command
to UNIX C-Kermit first and then a RECEIVE command to MS-DOS Kermit:

C-Kermit>set file type binary (Use binary mode)
C-Kermit>send oofa.zip (Tell C-Kermit to send the file)
Alt-x (Escape back to the PC)
MS-Kermit>set file type binary (Binary mode here too)
MS-Kermit>receive (Tell MS-DOS Kermit to receive)

VMS USERS PLEASE NOTE: Special procedures are required for transfer-
ring ZIP files to and from VMS. Please refer to page 570 in Appendix IV.

It is not always necessary to give the SET FILE TYPE command to both Kermit programs. It
is often sufficient to give it only to the file sender, or to the client of a server, and then the
sender (or client) informs the receiver (or server) of the file type automatically by means
of a special protocol message. However, since advanced features such as this are usually
not supported in non-Columbia Kermit protocol implementations, it is often necessary to
put both Kermit programs into binary mode prior to transferring a binary file. (The
precise rules for determining text or binary mode transfer are listed on page 258 in Chap-
ter 11.)

Building a Send List

Now that you know about text and binary transfer mode, it might have occurred to you
that — except in VMS, in which file types can be recognized from their directory entries
— none of the commands discussed so far (SEND, MOVE, MSEND, MMOVE) allow a mixture
of text and binary files to be transferred together in the same group. You also might have
noticed that when sending a list of files with MSEND or MMOVE, there is no provision for
applying ‘‘as-names’’ to them.

214 The Basics of File Transfer / Chapter 9

Requirements such as these are met with the ‘‘send list,’’ a list of files to be sent, with
separate transfer modes and optional as-names for each, that you give to C-Kermit in the
form of a series of commands. All the files in the list are sent in a single transaction; thus
the other Kermit can receive them all with a single RECEIVE command.

The commands for building and using a send list are:

CLEAR SEND-LIST
Clear the send list, remove all entries, make it empty.

ADD SEND-LIST filespec [{ TEXT, BINARY } [as-name]]
Places the file or files denoted by filespec on the send list. A transfer mode, text or bi-
nary, may be specified; if no transfer mode is specified, the current FILE TYPE setting
is used. If a transfer mode is specified, and if the filespec is not wild, an as-name may
follow the transfer mode. If no as-name is given, the file is sent under its own name.
If the filespec is wild, all files in the group are sent under their own names. Examples:

C-Kermit>clear send-list (Start a new send list)
C-Kermit>set file type text (Set global mode)
C-Kermit>add send-list oofa.txt (Global mode, no as-name)
C-Kermit>add send oofa.exe binary (Binary mode, no as-name)

C-Kermit>add send *.obj binary (Binary mode, no as-name)
C-Kermit>add s oofa.c text source.c (Text mode, with as-name)

SHOW SEND-LIST
Display the current contents of the send list; example:

oofa.txt, mode: text, alias: (none)
oofa.exe, mode: binary, alias: (none)
*.obj, mode: binary, alias: (none)
oofa.c, mode: text, alias: source.c

SEND
The SEND command, when given without any filenames, sends all the files from the
send list. If there is no send list, an error message is printed:

C-Kermit> send
?No send list - use ADD to make one.

To start a new send list, use CLEAR-SEND LIST. Use ADD to add files or file groups to it,
and SEND (by itself) to send all the files from the list.

The send list stays put after the SEND command, in case you want to send it again. To get
rid of it, use CLEAR SEND-LIST. Even when a send list is defined, you can still SEND files
in the regular ways, by specifying their name(s) in a SEND or MSEND command, etc, with-
out disturbing the send list.

File Names 215

File Names

Kermit transfers not just a file’s contents, but also its name. By default, file names are
converted to a simple standard form on the assumption that the file is being transferred to
a computer that has different file naming conventions. Kermit’s normal form for names
should be inoffensive enough to agree with all kinds of computers. You can alter
Kermit’s treatment of file names with the SET FILE NAMES command:

SET FILE NAMES CONVERTED
When sending files, C-Kermit converts the file name to uppercase if necessary and en-
sures that there is no more than one dot (period) in it. Extra dots or unusual characters
like spaces or punctuation are translated to X or underscore (_) and if a dot is the first
character, an X is placed in front of it. In addition, all device, directory, and path
names, as well as version numbers, are removed. For example:

The file: Is sent as:
oofa.txt OOFA.TXT
/usr/olga/oofa.txt OOFA.TXT
$DISK1:[OLGA]OOFA.TXT;3 OOFA.TXT
oofa.tar.Z OOFA_TAR.Z
oofa.txt.~3~ OOFA_TXT.X3X
.login X.LOGIN

When receiving a file whose name contains all uppercase letters, UNIX C-Kermit con-
verts the name to lowercase. If the incoming name is mixed case or lowercase, the
case is preserved. Other C-Kermit implementations have similar rules for converting
incoming names to normal and legal local form.

SET FILE NAMES LITERAL
Do not change the case of letters, do not remove extra dots, do not strip version num-
bers. Device and directory specifications are handled according to SET SEND/RECEIVE

PATHNAMES, discussed in the next section. This option should be used only between
like operating systems whose file specifications follow the same format.

No matter what your FILE NAMES setting, the other computer still might have to make
some changes in the name. For example, MS-DOS restricts a file name to eight characters
before the dot and three after, so, if necessary, MS-DOS Kermit shortens the incoming
name. For example, FILEWITHLONGNAME.ANDLONGTYPE becomes FILEWITH.AND.

Thus a file can have up to three names in its passage: its original name, the name it is sent
with, and the name it is stored under on the receiving system. Hence the three names
shown in the fullscreen file transfer display:

Sending: OOFA.TMP;6 => OOFA.TMP => /usr/olga/oofa.tmp

To accomplish effects not possible with SET FILE NAMES, use the ‘‘as-name’’ option of the
SEND or RECEIVE command.

216 The Basics of File Transfer / Chapter 9

Transferring Files between Similar Systems

When Kermit programs begin a file transfer, they exchange some information with each
other, possibly including the type of system they are running on. This lets them know
whether they are on systems that have the same kind of file structure and naming conven-
tions. For example, any two versions of UNIX (such as HP-UX and Solaris) would be
considered the same; DOS and OS/2 or Windows would be considered the same; any two
versions of VMS or OpenVMS on VAX or Alpha would be the same. But UNIX and
Windows would be different (because the file specifications and file records are in dif-
ferent formats); VMS and AOS/VS would be different, and so on.

When the two Kermits recognize each other’s file systems as ‘‘the same,’’ they automati-
cally enter binary file-transfer mode using literal filenames, just as if they each had been
told to SET FILE TYPE BINARY and SET FILE NAMES LITERAL; no filename or record format
conversion is needed, and indeed could prove harmful (e.g. if a binary file were sent in
text mode by mistake). In OS/2 and VMS, labeled mode is used instead of binary mode
for like-to-like transfers (see the VMS or OS/2 Kermit documentation).

In case you need to inhibit automatic transfer-mode switching — for example, when trans-
ferring text files between like systems when the character set needs to be translated (as ex-
plained in Chapter 16) — you can use this command:

SET TRANSFER MODE { AUTOMATIC, MANUAL }
AUTOMATIC enables automatic transfer-mode switching based on system type;
MANUAL disables automatic transfer-mode switching.

Figure 9-4 on page 206 illustrates how C-Kermit’s fullscreen file transfer display shows
the other computer’s system type if it known, ‘‘UNIX’’ in this case.

Directory Names

If files are sent to C-Kermit whose names include recognizable device or directory
specifications, you can use the following command to tell C-Kermit how to handle them:

SET RECEIVE PATHNAMES { ON, OFF }
Applies to incoming filenames; ON means to leave the name alone and attempt to use
it as is, OFF means to attempt to remove the path (device and/or directory) information,
and pay attention only to the filename itself.

SET RECEIVE PATHNAMES ON works only if the pathname (disk/directory) information in
the incoming file name is in the notation of the local file system, and therefore recogniz-
able. If not, the results are unpredictable; for example, if a file called:

MYVAX::DUA0:[OLAF.PICS]MONA_LISA.GIF;17

Directory Names 217

is sent to a UNIX system, UNIX C-Kermit can not be expected to distinguish the path in-
formation from the file name itself and will treat the entire string as the filename.

In VMS, UNIX, OS-9, OS/2, Windows, and VOS, SET RECEIVE PATHNAMES has an ad-
ditional meaning: If the incoming file name contains recognizable directory information,
such as [.KERMIT]OOFA.TXT in VMS, kermit/oofa.txt in UNIX, or:

C:\TEXT\LETTERS\ANGRY\OOFA.TXT

in Windows or OS/2 — either absolute or relative — then if the named directory or any of
its ancestors do not exist, Kermit attempts to create it (or them), and then creates the out-
put file in the new directory.

For example, suppose your current directory (in UNIX) is /usr/olga/budget, and a file
arrives under the name:

aaa/bbb/ccc/ddd/bankrupt.txt

and that the /usr/olga/budget/aaa directory already exists, but it does not have a bbb
subdirectory. Then Kermit creates the bbb subdirectory, and then the ccc subdirectory
under bbb, and then the ddd subdirectory under ccc, and then stores the bankrupt.txt
file in the directory:

/usr/olga/budget/aaa/bbb/ccc/ddd

In UNIX, tilde notation for usernames (like ‘‘~olga’’) is recognized, and any directories
that are created inherit the permissions of their parents, and the owner and group of the
user who is running the Kermit program. Naturally, directory creation fails if the user
lacks the appropriate permissions. Directory creation fails in OS/2 and Windows if a disk
letter is included for a nonexistent or non-writable disk.

You can also control pathnames when sending files. The command is:

SET SEND PATHNAMES { ON, OFF }
This command is effective only when FILE NAMES are LITERAL. OFF, the default,
means to strip path information ‘‘OFF’’ the outbound filename, leaving only the name
itself. ON means to leave pathnames ‘‘ON’’ outbound file names, except they are al-
ways stripped from outbound filenames when FILE NAMES are CONVERTED, and in
OS/2 and Windows, disk letters are always stripped, no matter what.

SET SEND PATHNAMES applies only to the file specification given directly to a SEND (or
MSEND, MOVE, MMOVE, or ADD SEND-LIST) command and not to the as-name, which is al-
ways sent literally, regardless of SEND PATHNAMES or FILE NAMES settings.

Use SHOW FILE to display the SEND / RECEIVE PATHNAMES settings.

218 The Basics of File Transfer / Chapter 9

Filename Collisions

What should C-Kermit do if it receives a file that has the same name as an existing file?
Should it silently overwrite the existing file? Should it make an effort to preserve the ex-
isting file? Should it reject the incoming file? These are called file collision actions, and
you have six to choose from:

SET FILE COLLISION BACKUP
This setting, which is C-Kermit’s default file collision action, allows the file to arrive
and to be stored under the name it was sent with, without destroying any previously
existing file that has the same name. The existing file is given a new, unique name
that fits within the operating system’s file naming conventions, generally by adding
digits to the name; for example, in UNIX oofa.txt becomes oofa.txt.~1~.
See the appropriate appendix for details.

SET FILE COLLISION OVERWRITE
Overwrites (replaces) the existing file. Use this setting with caution.

SET FILE COLLISION APPEND
Adds the incoming file to the end of the existing file. This option is useful for append-
ing information to a log file, but it should be used with caution to avoid, for example,
joining two files of different types (like text and binary).

SET FILE COLLISION DISCARD
Refuses and/or discards the incoming file and preserves the existing file. This option
is handy for resuming multi-file transmissions that were broken. Only those files that
do not have a counterpart on the receiving system are transferred.

SET FILE COLLISION RENAME
This is just like the BACKUP option, except that the incoming file gets the new name,
rather than the existing file. Not recommended.

SET FILE COLLISION UPDATE
Accepts the incoming file only if it is newer than the existing file, in which case the
existing file is overwritten. This feature depends on the file creation date field in the
attribute packet (explained in Chapter 12), and requires the other Kermit to support at-
tribute packets (Table -FEATURZ, p. -FEATURZ). The UPDATE option is handy for
keeping a parallel collection of files up to date on another computer; only those that
have changed since the last update are sent.

The SET FILE COLLISION command is effective only when given to the file receiver. The
VMS version of C-Kermit always creates a new version of any incoming file that is not
rejected, preserving earlier versions according to the file’s version limit, which makes the
BACKUP, OVERWRITE, and RENAME options identical in VMS.

Recovering from Interrupted File Transfers 219

Incomplete File Transfers

If a file transfer fails in the middle of a file for any reason — the connection is broken or a
disk write fails — Kermit can react in one of two ways: it can discard the partially
received file (so you won’t be misled into thinking it was fully received in case you hap-
pened to miss the error message), or it can keep it so you can resume the transfer later.
Unless you say otherwise, incompletely received files are kept, to allow subsequent
resumption. You can control this behavior with the following command:

SET FILE INCOMPLETE { KEEP, DISCARD }
Tells whether a partially received file is to be kept if the transfer is interrupted for any
reason, including intentional cancellation. To discard incomplete files:

C-Kermit>set file incomplete discard

The SET FILE INCOMPLETE command is effective only when given to the file receiver; it
has no effect when given to the file sender. Synonym: SET INCOMPLETE.

Recovering from Interrupted File Transfers

If you were transferring a file in binary mode — using Kermit or any other method (such
as XMODEM, ZMODEM, or FTP) — and the transfer was interrupted, and the partially
received file was kept, you can use Kermit’s RESEND command to complete the transfer
from the point at which it was interrupted provided the other Kermit program also sup-
ports the recovery feature15.

Imagine, for example, transferring a 10-megabyte file over a 2400-bps modem connection
when, after 9 megabytes have been sent, your call-waiting feature kicks in and drops the
modem connection. Transferring 9 megabytes at 240 cps takes about 11 hours. The
remaining megabyte would take about 1.2 hours. The recovery feature lets you complete
the failed transfer in the amount of time it takes to send the as-yet-untransmitted part of
the file, rather than sending the entire file again from the beginning — in this example, a
savings of 11 hours.

Before seeing how to use this feature, let’s look at the restrictions:

1. Recovery works only for binary-mode transfers between computers that have Kermit
programs that support this feature. It does not work with any other transfer modes, in-
cluding text, because it depends on a byte-for-byte correspondence between the source

15At this writing, recovery is supported by MS-DOS Kermit for DOS and Windows 3.x; IBM Mainframe
Kermit for VM/CMS, MVS/TSO, CICS, and MUSIC; and C-Kermit for UNIX, VMS, OS/2, Windows,
AOS/VS, Stratus VOS, OS-9, and the Commodore Amiga.

220 The Basics of File Transfer / Chapter 9

and destination files; in text-mode transfers, files often change contents or formats be-
cause of system differences16. In other words, if you want to be able to use the
recovery feature, you must tell the file sender to SET FILE TYPE BINARY.

2. The original transfer, if done by Kermit software, must have had SET FILE INCOMPLETE

KEEP in effect at the receiver, meaning that incompletely received files are kept rather
than discarded (this is the default).

3. You should never use SET FILE COLLISION RENAME if you intend to use the recovery
feature, because this will prevent proper identification of the destination file during
recovery (unless you rename it yourself by hand prior to recovery).

To recover a failed upload use the RESEND command:

RESEND filename [remote-filename]
Sends the file to the other Kermit in recovery mode. C-Kermit’s FILE TYPE must be
BINARY. If the other Kermit does not support the recovery feature (as determined in
protocol negotiations), the command fails. Otherwise, if a file of the name that the file
was sent with (filename or remote-filename) exists on the other computer, transmis-
sion is resumed at the point at which it was interrupted, except that if the file on the
remote computer is the same size as the local file, the file is not sent. If such a file
does not exist on the other computer, then the file is sent in its entirety.

To recover a failed upload: re-establish the connection, access the same account and direc-
tory to which you were sending the file previously, start Kermit there, and put it in
RECEIVE mode. Then escape back to the local Kermit program, SET FILE TYPE BINARY,
and give it a RESEND command that uses exactly the same name(s) as the SEND command
that failed. For example:

C-Kermit> set file type binary
C-Kermit> send oofa.zip

(Connection is broken -- make a new one, log in again and...)

C-Kermit> set file type binary
C-Kermit> resend oofa.zip

You can recover a failed download in the same way, but give the RESEND command to the
remote Kermit and the RECEIVE command to the local one. Again, make sure you are ac-
cessing the same directories as before and the files have (or are being sent with) the same
names as before.

16In fact, text-mode transfers can also be recovered when done between two systems that use exactly the
same record format and character set for text files, but the recovery must still be done in binary mode.

Recovering from Interrupted File Transfers 221

The RESEND command ignores your SET FILE COLLISION setting; thus you need not change
your FILE COLLISION setting when RESENDing, and you will not find it altered afterwards
either. (But please do not use SET FILE COLLISION RENAME if you ever intend to use the
RESEND command.)

Since the RESEND command does not retransmit a file that does not need to be
retransmitted, and it transmits a file in its entirety if it does not exist on the other end, it
can also be used to resume the interrupted transfer of a group of files. Suppose you
originally had done the following (sending from DOS to VMS):

Receiver Sender
CD DUA0:[OLGA.ZIPS] CD C:\ZIPFILES
SET FILE INCOMPLETE KEEP SET FILE TYPE BINARY
RECEIVE (or SERVER) SEND *.ZIP

and the phone hung up in the middle of one of the ZIP files. Just re-establish the connec-
tion, and recover by issuing all the same commands again:

Receiver Sender
CD DUA0:[OLGA.ZIPS] CD C:\ZIPFILES
SET FILE INCOMPLETE KEEP SET FILE TYPE BINARY
RECEIVE (or SERVER) RESEND *.ZIP

except the file sender is told to RESEND rather than SEND.

The files that were already sent are skipped, the file that was partially sent is recovered,
and the files that were not sent yet are sent.

Manual Recovery: The PSEND Command
The PSEND (‘‘partial send’’) command is like the SEND command, but it begins sending
from a specified position in the file:

PSEND filename position [as-name]

The filename must refer to a single file, not a file group. The position is the byte position
in (offset into) the file; 0 means the beginning (i.e. just before the first byte); 1000 means
the 1001st byte (i.e. start just after the 1000th byte). As with the SEND command, the file
is sent under its own name unless you specify an AS-NAME. Unlike RESEND, PSEND can be
used for both text and binary transfers, and no special capabilities are required of the Ker-
mit program on the receiving end. The PSEND command can be viewed as part of a
‘‘do-it-yourself’’ recovery feature to be used when the other Kermit program does not sup-
port recovery.

For example, suppose you were sending a file called CUSTOMERS when the connection
was broken, and that the receiving Kermit program had been instructed to keep incom-

222 The Basics of File Transfer / Chapter 9

pletely received files (SET FILE INCOMPLETE KEEP). If the transfer was in binary mode,
you could note the length of the partial file on the receiving end by getting a directory list-
ing; let’s say it was 123456. Then tell the file receiver to:

set file collision append
receive

and tell the sender to:

set file type binary
psend customers 123456

If the receiver does not support SET FILE COLLISION APPEND, you could use PSEND to
create a new file:

set file type binary
psend customers 123456 customers.2

and then, after the transfer is complete, join the two pieces together on the receiving end,
using a system command or utility.

With a bit more effort, you can use the same techniques to recover a broken text-mode
transfer, even when it occured between computers that have different record formats.
You’ll have to identify the location in the source file that corresponds to the end of the
partially transferred file ‘‘by inspection’’ and use this in your PSEND command.

File Attributes

The Kermit protocol has the ability to convey and process information about a file, called
the file’s attributes, along with the file’s name and contents, if both Kermit programs sup-
port this option and agree to use it. The attributes are sent in a special attribute packet
(A-packet). Attribute information includes the file’s character set (see Chapter 16), the
file’s creation date, length, type (i.e. transfer mode, text or binary), disposition, and an
identifier for the sending system. Attribute packets are supported by (at least) C-Kermit,
MS-DOS Kermit, Macintosh Kermit, IBM Mainframe Kermit, and PDP-11 Kermit for
RSX-11, RT-11, and RSTS/E (see Table -FEATURZ on page -FEATURZ).

When the file arrives at the other Kermit, it introduces itself with a capsule biography:
‘‘Hello, I am a text file with carriage return and linefeed at the end of each line; I was born
in MS-DOS on January 9, 1986, at 10:28:00am, I am 12345 bytes long, I am encoded in
Latin Alphabet 1, and I would like you to print me,’’ or, translated into Attribute-packet
language:

A.#AMJ"U8#1119860109 10:28:00!!11%12345*’CI6/100"+!P@

Based on this information, the receiver can decide whether to accept or refuse the file,
how to interpret it, and what to do with it. Here are the attributes supported by C-Kermit:

File Attributes 223

TYPE
The sending Kermit tells the receiving Kermit whether the file is being sent in text (A)
or binary (B) mode. This allows the receiving Kermit to switch between text and bi-
nary modes automatically on a per-file basis. UNIX and most other C-Kermit ver-
sions send the text or binary file type attribute according to the sender’s prevailing
transfer mode, established by the most recent SET FILE TYPE command, or by auto-
matic transfer mode determination. When receiving a file, the incoming file type at-
tribute takes precedence over the receiver’s FILE TYPE setting (but in VMS, not al-
ways; see Appendix IV).

DATE
When sending a file, C-Kermit includes its creation or last modification date and time
(given in local time) in the attribute packet. When receiving a file whose creation date
and time is given in the Attribute packet, C-Kermit stores the file with the given crea-
tion date and time (or refuses to accept it if FILE COLLISION is set to UPDATE and the
arriving file is not newer than an existing file of the same name). Time zone informa-
tion is not conveyed.

LENGTH
When sending a file, C-Kermit includes its length in the attribute packet. If the receiv-
ing computer notices that the file is bigger than its available disk space or the user’s
disk quota, it may refuse the file, which can save you a lot of wasted time and phone
charges. When the file is accepted, this information allows the receiving Kermit (if it
is in local mode) to continuously display the percent done while the file is being trans-
ferred. When receiving a file, the Windows, OS/2, VMS, Commodore Amiga, and
Atari ST versions of C-Kermit reject a file that is too large to fit in the available disk
space (in VMS, the user’s quota is not checked). The UNIX, AOS/VS, and OS-9 ver-
sions of C-Kermit currently do not check the reported file size against available disk
space, and always accept the file.

CHARACTER-SET
This is the TRANSFER CHARACTER-SET (explained in Chapter 16). When sending a file
in text mode and when the TRANSFER CHARACTER-SET is not TRANSPARENT (which
is the default), C-Kermit translates from the current FILE CHARACTER-SET to the
TRANSFER CHARACTER-SET and includes a code to identify the TRANSFER CHARACTER-

SET in the Attribute packet. Codes contain registration numbers from the ISO Register
of character sets [47]. They include:

I6/100 ISO 8859-1 Latin Alphabet 1
I6/101 ISO 8859-2 Latin Alphabet 2
I6/138 ISO 8859-8 Latin/Hebrew Alphabet
I6/144 ISO 8859-5 Latin/Cyrillic Alphabet
I14/13/87 Japanese EUC

When receiving a text file, C-Kermit learns the TRANSFER CHARACTER-SET from the
Attribute packet and translates from it into the current FILE CHARACTER-SET.

224 The Basics of File Transfer / Chapter 9

DISPOSITION
What to do with the file. Normally, transferred files are simply stored on disk. This
attribute is used by the MAIL and REMOTE PRINT commands, presented in Chapter 11,
to request that a file be sent as electronic mail or that it be printed, rather than stored
on disk, and also by RESEND.

SYSTEM-ID
The file sender includes a code identifying its computer and operating system, in case
the file receiver wants to use this information in any way. C-Kermit sends this item
when sending files and ignores it when receiving files. System IDs are listed in [21],
pages 275–278.

If the other Kermit does not support, or want to receive, attribute packets, C-Kermit does
not send them. This is settled automatically when the two Kermits first say hello to each
other with the S or I packet.

But when the two Kermits agree to exchange attribute information, you might find that the
effects are not what you desire. For example, you might not want arriving files stored
with their original dates because this causes your backup system to skip over them. Or
you may find that Kermit’s estimate of available disk space is too conservative and it
refuses a file that you believe will fit. So C-Kermit gives you the ability to turn each at-
tribute on or off:

SET ATTRIBUTE { CHARACTER-SET, DATE, DISPOSITION, LENGTH,
SYSTEM-ID, TYPE } { ON, OFF }
Turns a particular attribute on or off, leaving the others undisturbed. The individual
settings are used only if the entire attribute mechanism is on.

And if the attribute mechanism itself — as opposed to one or more particular attributes —
is causing problems, you can disable and enable it with this command:

SET ATTRIBUTE { ON, OFF }
Turns the entire attribute mechanism on or off. When it is off, C-Kermit will not en-
gage in attribute packet exchange with the other Kermit.

You can also use SET ATTRIBUTE ALL ON or OFF to turn all individual attributes on or off at
once without affecting whether the attribute mechanism itself is enabled or disabled. For
example, to turn off all attributes except type, you could:

C-Kermit>set attr all off (Turn ’em all off)
C-Kermit>set attr type on (Turn this one back on)

The SHOW ATTRIBUTES command displays C-Kermit’s current attribute-related settings.

Odds and Ends 225

Odds and Ends

Before we finish with basic file transfer techniques, let’s complete the list of SET FILE

commands:

SET FILE BYTESIZE { 7, 8 }
Normally, 8-bit input and output is used when sending and receiving files. If, for
some reason, you want to remove the 8th bit from each byte of a file that you are send-
ing or receiving, use SET FILE BYTESIZE 7.

SET FILE DESTINATION { DISK, PRINTER, SCREEN }
This applies when receiving files. Normally incoming files are stored on disk. You
can use this command to route them to the default printer (or whatever other printer,
file, or process you have specified in your most recent SET PRINTER command, if any)
or to your screen instead. If you choose SCREEN, this replaces the file transfer display.
If you choose PRINTER or SCREEN, then your FILE NAMES and PATHNAMES settings are
ignored. Synonym: SET DESTINATION.

SET FILE DOWNLOAD-DIRECTORY [directory-name]
Use this command to specify whether Kermit should place received files into a special
download directory rather than into its current directory. If you specify a directory
name, then all received files will go into that directory, no matter what your current
directory is, unless you have given a pathname in your RECEIVE command, or the file
arrives with a pathname and you have SET RECEIVE PATHNAMES ON. If you omit the
directory-name, then incoming files are placed in Kermit’s current directory in the ab-
sence of any other instructions.

SET FILE END-OF-LINE { CR, CRLF, LF }
This command applies when sending files in text mode. C-Kermit converts from the
local text-file format to the standard one, so if you are sending from UNIX or
AOS/VS, C-Kermit expects lines to be terminated by a single linefeed (LF); if you are
sending from OS-9 or a Macintosh, C-Kermit expects lines to end with a single car-
riage return (CR); if you are sending from OS/2, Windows, or GEMDOS, C-Kermit
expects lines to end with carriage return and linefeed (CRLF). However, if you have a
text file on your computer that has been stored in the wrong format (e.g. because it
was transferred to your computer from an unlike system in binary mode), you can use
this command to tell C-Kermit what the line terminator is, so it can still send the file
correctly in text mode. Synonym: SET FILE EOL.

Use the SHOW FILE command to display all your current file-related settings.

226 The Basics of File Transfer / Chapter 9

Keeping a Record of Your File Transfers

During a long multi-file transfer, you probably have better things to do than keep your
eyes glued to the screen. But then how will you know what happened? Perhaps a file was
skipped for some reason, or transferred in the wrong mode, or some other error occurred.
You can ask C-Kermit to keep a record for you in a file called the transaction log:

LOG TRANSACTIONS [filename [{ APPEND, NEW }]]
Records information about the file transfer in the given file. The default filename is
TRANSACT.LOG (lowercase on UNIX) in the current directory. C-Kermit creates a
new log file, overwriting any existing file of the same name, unless you include the
keyword APPEND after the filename. Examples:

C-Kermit>log trans (transact.log, new)
C-Kermit>log t tuesday.log new (A new daily log)
C-Kermit>log t february.log append (Add to a monthly log)

CLOSE TRANSACTIONS
Closes the current transaction log file, if any. The transaction log is also closed auto-
matically when you EXIT from C-Kermit.

Here is a sample transaction log:

Transaction Log: C-Kermit 6.0.192
Solaris 2.x

Transaction begins Fri Sep 6 23:23:00 1996
Global file mode: text
Remote system type: MS-DOS
Sending /usr/olga/mupeen.txt
as MUPEEN.TXT
mode: text
file character set US ASCII
xfer character set transparent
remote name: C:\TEMP\MUPEEN.TXT
complete, size: 94033
Sending /usr/olga/oofa.txt
as OOFA.TXT
mode: text
file character set US ASCII
xfer character set transparent
remote name: C:\TEMP\OOFA.TXT
complete, size: 95629
Transaction complete Fri Sep 6 23:23:05 1996
files transferred : 2
total file characters : 189662
communication line in : 811
communication line out : 199533
elapsed time (seconds) : 5
effective data rate : 37932
Transaction Log Closed

Summary 227

Summary

First-time Kermit users sometimes find the mechanics of file transfer confusing. But it’s
not very hard if you keep a few basic points in mind. First, establish a connection from
the Kermit program on your local computer to the remote computer (or service, or server,
or provider, or host, or BBS, etc; let’s just call it a ‘‘computer’’) and, if necessary, log in.

Second, start the Kermit program on the remote computer. A file can’t be transferred with
Kermit protocol unless there is a Kermit program on each end of the connection. Now,
just follow these three easy steps:

1. While still connected to the remote computer, tell the remote Kermit what to do: SEND

or RECEIVE.

2. Return to your local Kermit program by typing its CONNECT-mode escape sequence,
such as Ctrl-\C (usually) for C-Kermit or Alt-X for Kermit 95, OS/2 C-Kermit,
or MS-DOS Kermit. Note that some communication software programs are always in
‘‘CONNECT mode,’’ and therefore do not require you to escape back.

3. If your local program has a selection of protocols (such as Xmodem, Ymodem,
Zmodem, and Kermit), choose Kermit. At your local Kermit’s prompt, tell it what to
do: RECEIVE or SEND, or select RECEIVE (or ‘‘download’’) or SEND (or ‘‘upload’’) from
your local software’s file transfer menu. This is the opposite of what you told the
remote Kermit to do. If you told the remote Kermit to SEND, you should tell the local
Kermit to RECEIVE, and vice versa.

When you are finished using the remote computer, remember to CONNECT back to it (if
necessary) and log out. You can transfer groups of files by including wildcard characters
in the SEND-command file specification (or by giving a list of files to the MSEND com-
mand), you can record the progress of your file transfers in a transaction log, you can use
SET FILE commands to select text or binary transfers, the treatment of filenames, the han-
dling of filename collisions, and the disposition of incomplete transfers, and you can use
the RESEND and PSEND commands to resume interrupted transfers. Here is a quick sum-
mary of the SET FILE commands presented in this chapter:

SET FILE COLLISION
Options: APPEND, BACKUP, DISCARD, OVERWRTE, RENAME, UPDATE. Default:
BACKUP. Function: Specifies action to be taken when a file arrives that has the same
name as an existing file. Give this command to the file receiver.

SET TRANSFER DISPLAY
Options: CRT, FULLSCREEN, SERIAL, or NONE. Default: FULLSCREEN or CRT. Func-
tion: Selects format for file transfer display. For use when C-Kermit is in local mode.

228 The Basics of File Transfer / Chapter 9

SET FILE INCOMPLETE
Options: DISCARD, KEEP. Default: KEEP. Function: Tells what to do with a file incom-
pletely received. Give this command to the file receiver.

SET FILE NAMES
Options: CONVERTED, LITERAL. Default: CONVERTED. Function: How to handle file
names during transfer. Meaningful to both the file sender and the file receiver.

SET FILE TYPE
Options: TEXT or BINARY. Function: Selects text or binary file transfer. Give this
command to the file sender and, if necessary, also to the file receiver.

SET TRANSFER MODE { AUTOMATIC, MANUAL }
Default: AUTOMATIC. Controls whether the transfer mode (FILE TYPE and FILE

NAMES) should be switched automatically based upon recognition of system type.

SET { SEND, RECEIVE } PATHNAMES
Options: ON, OFF. Default: OFF. Function: Tells whether path (device, directory) in-
formation should be included in transmitted filenames.

Variables (explained in Chapter 17):

\v(cps) Speed of most recent transfer, characters per second
\v(crc16) 16-bit cyclic redundancy check of most recent transfer
\v(download) SET FILE DOWNLOAD-DIRECTORY value
\v(filespec) File specification used in most recent transfer
\v(fsize) Size of file most recently transferred
\v(ftype) SET FILE TYPE value
\v(tfsize) Total size of file group most recently transferred

PROBLEMS: If a file transfer fails, use the SET PARITY command and try again. If it still
fails, read Chapter 10. If file transfer works but the transferred file has the wrong format,
issue the appropriate SET FILE TYPE command and try again. If file transfers work but
seem inefficient, read Chapter 12.

Use the SHOW FILE command to display C-Kermit’s file type, collision action, file naming,
incomplete file treatment, transaction log, initialization file name, and other file-related
settings. Use SHOW PROTOCOL to display file-transfer protocol settings.

These are the ABCs of Kermit file transfer, suitable for use between any two Kermit
programs. More advanced and simpler techniques, which you can use once you have mas-
tered the basic techniques, are described in the following chapters. Capabilities, command
names, user interface, and so on, are likely to be different in non-Columbia Kermit im-
plementations; consult the appropriate documentation for details.

229

Chapter 10

Solving File Transfer Problems

❍ ❍ ❍ ❍

If you had no trouble transferring files using the basic techniques given in Chap-
ter 9, please do not feel compelled to read this chapter. But don’t tear these
pages out of the book and rip them into tiny shreds; some day you might need
them. For now, skip ahead to Chapter 11 on page 249, which shows you how to
turn C-Kermit into a file server and how to use C-Kermit as a client of another
C-Kermit server — much easier and more flexible than the SEND/RECEIVE style
of operation you have been using up till now. Then go on to Chapter 12 to learn
how to transfer files more efficiently.

Like people, computers have different languages, conflicting customs, competing ideo-
logies, quirks, idiosyncracies, and bad habits. Telecommunications systems punch holes
in our data. Sensible data on one computer becomes incomprehensible gibberish on
another. To transfer files in a diverse, and sometimes hostile, computing and communica-
tions environment, Kermit software programs use the Kermit protocol, a set of rules and
procedures for exchanging structured, error-checked messages with each other.

C-Kermit’s default settings for all kinds of communications-, file-, and protocol-related
items are based on pessimistic assumptions about the quality and capacity of the connec-
tion, and so should almost always work. But there are hundreds of different kinds of com-
puters in the world with different styles of communication and different file formats, and
there are many different ways to connect these computers. So you might encounter some
situations where the defaults are not appropriate.

230 Solving File Transfer Problems / Chapter 10

Figure 10-1 Character Formats

Because C-Kermit lets you control virtually every aspect of its operation, you can teach it
to overcome computer-related incompatibilities and communications impediments, and
you can help it achieve maximum efficiency under all sorts of conditions. Let’s begin by
looking at the effects of the communications environment on file transfer and how you can
use the SET command to adapt C-Kermit to them.

Parity

The most common cause for file transfer failure is parity. Once again, with emphasis:

The most common cause for file transfer failure is parity.

Computers store characters in 8-bit ‘‘bytes.’’ Some computers prefer to transmit these
bytes as 7 bits of data plus one bit of error-checking information, called the parity bit. The
parity bit replaces one of the data bits.17 The parity bit is set to 0 or 1 based on the values
of the remaining seven data bits. There are five kinds of parity: even, odd, mark, space,
and none. Even parity sets the parity bit to make the overall number of 1-bits in the trans-
mitted character even. Odd parity makes the overall number of 1-bits odd. Mark parity
always sets the parity bit to 1, and space parity always sets it to 0.

Parity is an unpleasant fact of life in data communications. The receiver of a transmitted
character can’t tell from looking at it whether it has 7 data bits and 1 parity bit, or 8 data
bits. (See Figure 10-1.) Can you? Parity prevents the transmission of 8-bit data bytes,
such as we find in binary files or international character codes.

During terminal emulation, C-Kermit ignores parity unless you tell it otherwise, on the as-
sumption that only 7-bit ASCII or ISO 646 characters are being transmitted and the 8th bit
carries no useful information. That is, C-Kermit assumes parity is probably in effect with-
out the user’s knowledge.

17Other arrangements are possible but occur rarely in practice. In the most common case, and the one
supported by Kermit, a byte is always transmitted as 8 bits: either 8 data bits and no parity bit, or 7 data
bits and a parity bit.

Parity 231

During file transfer, most Kermit programs normally put the communication line into 8-bit
no-parity mode so they can transmit 8-bit data, on the assumption that the other Kermit
program can do the same. Most Kermit programs can. The major exception is (usually)
IBM mainframe Kermit, due to limitations of the IBM mainframe communication ar-
chitecture.

However, it can — and often does — happen that a network or communication device be-
tween C-Kermit and the other computer might be using parity, even when both computers
are not. These devices are generally cannot be controlled or influenced by Kermit.

File transfers can fail when parity is in use but the Kermit programs do not know about it,
because Kermit might misinterpret the parity bits as data bits, and/or because useful data
bits have been chopped off.

Luckily, this situation is caught by Kermit’s own error-checking procedure so parity will
not cause files to be transferred incorrectly — it simply prevents them from being trans-
ferred at all. Usually the error message is something like ‘‘Failure to receive
acknowledgement’’ or ‘‘Too many retries.’’ If this happens to you, use the SET PARITY

command to tell the Kermit program what the parity is:

SET PARITY { EVEN, ODD, MARK, SPACE, NONE }
This command, when given with any of its options other than NONE, tells Kermit to
actually add the selected type of parity bit to all characters it sends, during both
CONNECT mode and file transfer, and to remove the 8th bit of incoming characters.

If you don’t know which kind of parity to use, don’t worry. Just pick one. EVEN is a good
first choice for serial connections; try SPACE for TCP/IP TELNET or RLOGIN connections.
Give matching SET PARITY commands to the two Kermit programs and file transfer should
work smoothly:

C-Kermit>receive (Receive a file)
Alt-x (Escape back)
MS-Kermit>set file type binary (Binary transfer mode)
MS-Kermit>send budget.wks (Send a spreadsheet file)

(Many retries, and then...)
?Too many retries

MS-Kermit>connect (Let’s try it again)
C-Kermit>set parity even (Once more, with parity)
C-Kermit>receive
Alt-x (Escape back again)
MS-Kermit>set parity even (Here too)
MS-Kermit>send budget.wks (Send it again)

(The file is transferred)

Transfer complete. (This time it works)
MS-Kermit>

232 Solving File Transfer Problems / Chapter 10

If EVEN or SPACE parity doesn’t do the trick, try MARK or ODD. MARK is used with some
mainframes and X.25 networks. ODD is rarely, if ever, used in data communications.

When PARITY is used during file transfer, data characters whose 8th bit is 1 are transmitted
as 2-character sequences: the data character itself has its 8th bit replaced by a parity bit,
and the result is preceded by an ampersand (&) character, which also has the appropriate
parity bit applied to it. The receiving Kermit removes the 8th bit from each arriving
character and converts the special 2-character sequences back to a single 8-bit character.
As you can imagine, this can add a lot of transmission overhead. But it does allow Kermit
to transfer 8-bit data through a 7-bit connection, a claim that other protocols cannot make.

HINT: Some Kermit programs, including C-Kermit and MS-DOS Kermit, attempt to
detect parity automatically during file transfer, so even if you forget to SET PARITY there is
a chance the transfer will work correctly anyway. This technique is not totally dependable
because there is no way to tell the difference between space parity and no parity at all. So
it is still better to SET PARITY explicitly, on both ends of the transfer, if your connection
does not allow 8-bit data to pass through. But in case you had your PARITY set to NONE

and found it changed to, say, EVEN after a file transfer, now you know why.

Speed and Flow Control in the Full Duplex Environment

During file transfer, Kermit programs compose a packet (see page 267) and send it as a
unit, all at once. But the receiving computer might not be able to swallow that many bytes
in one gulp, in which case the file transfer could fail. Like when your sink backs up —
the water doesn’t go down the drain as fast as it comes out of the faucet and eventually it
spills onto the floor. With computers, this condition is called a buffer overflow.

Buffer overflows rarely occur on network connections but are common on serial (direct or
dialed) connections. One way to cope with buffer overflows is to connect the two com-
puters at a lower transmission speed. The slower the data bytes arrive, the more time the
computer has to process them. However, reducing transmission speed increases the time
it takes to transfer a file, and therefore also your phone bill and your aggravation level.

If your serial transmission speed is too high, buffer overflows can result in lost characters,
which cause packet retransmissions and reduced efficiency. If the speed is too low, trans-
mission capacity is wasted. But there is no way to pick the perfect speed — speeds, like
clothes, only come in certain sizes: 1200, 2400, 4800, ... (those are speeds, not waist
sizes). And conditions change: computers can slow down and speed up depending on
what other tasks they are working on.

If you have a full duplex connection between your computers, you may be in luck. While
one computer is sending a packet, the other computer can talk back to it: ‘‘Stop!’’ ‘‘OK,

Speed and Flow Control in the Full Duplex Environment 233

Figure 10-2 Hardware Flow Control

I’m caught up, continue.’’ This is called flow control. It works if both computers know
how to do it and are told in advance that they should do it. There are two major types of
flow control:

Software flow control
is accomplished by inserting special characters into the data stream. These characters
are normally Ctrl-S (XOFF), and Ctrl-Q (Xon). The data receiver sends an Xoff to tell
the sender to stop sending, and an Xon to tell it to resume sending.

Hardware flow control
occurs between the computer and the device it is immediately connected to; for ex-
ample, between a PC and a high-speed modem. It is accomplished using separate
wires, normally the RS-232 Request To Send (RTS) and Clear To Send (CTS) circuits.
When both devices are properly configured for the same type of hardware flow con-
trol, its effect is immediate.

To illustrate, Figure 10-2 shows a modem connection between two computers. Computer
A is connected to its modem at 19200 bps, but the two modems are connected at only
1200 bps. Modem A takes care of the speed discrepancy with its speed buffering feature.
But now Computer A can send data into Modem A much faster than Modem A can send it
to Modem B. So Modem A stems the flow of data from Computer A by turning off its
CTS signal, then turns it back on when it is ready for more data. This type of flow control
is also used by error-correcting modems; if the telephone connection is noisy, the modems
might be retransmitting data between themselves and therefore must block further data ar-
riving from the computer.

Now let’s turn the tables. Suppose Computer A isn’t fast enough to keep up with the data
coming in from Modem A. Computer A turns off its RTS signal to make the modem stop
sending. But Computer B doesn’t know about this, so it continues to send data. Some-

234 Solving File Transfer Problems / Chapter 10

how Modem A has to tell Modem B to stop sending, then Modem B has to tell Computer
B. For all this to work, there must be some kind of higher-level protocol going on between
the two modems (such as MNP or V.42), and local flow control of some kind must be en-
abled between Modem B and Computer B. Thus, for hardware flow control to function ef-
fectively, it must take place at every junction along the connection path and it should
propagate rapidly from one end to the other.

When flow control is in effect and working properly, you can set the transmission speed to
the highest value supported reliably by the physical connection, and you shouldn’t have to
worry about buffer overflows. Assuming the flow control signals are delivered promptly
and correctly, the effective data rate will be as high as it could possibly be at any given
moment, adjusting itself automatically to varying conditions of load on the two computers
and the communication medium.

The command governing flow control is:

SET FLOW-CONTROL { AUTOMATIC, KEEP, NONE, RTS/CTS, XON/XOFF }
Selects the desired type of flow control: Xon/Xoff (software), RTS/CTS (hardware),
no change (KEEP), or none at all (NONE). AUTOMATIC is the default, meaning that
C-Kermit should pick the most appropriate type of flow control for the connection, the
capabilities of the underlying operating system, and the type of modem you are using,
if any. Use the question mark to see which options are offered by your version of
C-Kermit:

C-Kermit>set flow ? One of the following:
automatic none keep rts/cts xon/xoff

Xon/Xoff software flow control usually operates end to end; that is, between C-Kermit
and the computer on the other end of the connection (but you can also configure your
modem for local Xon/Xoff flow control). The Xon and Xoff characters are subject to
delay and corruption, just like any other transmitted characters. If you have a long-delay
connection, for example one where it takes a second or two for your characters to echo,
software flow control probably will not be very effective.

Hardware flow control solves these problems and should be used when available. Even
when C-Kermit’s SET FLOW-CONTROL command does not offer it, you might still be able
to use hardware flow control by issuing an operating system command before you start
C-Kermit, or by using a special device name in the SET LINE command, in conjunction
with C-Kermit’s SET FLOW-CONTROL KEEP option. See the manual or appendix for your
operating system.

On most network connections, particularly TCP/IP, it is usually beneficial to SET FLOW

NONE. The network takes care of flow control itself, so Kermit (or the underlying operat-
ing system’s terminal device driver) doesn’t need to duplicate the effort, and this can
make your file transfers go faster.

Half Duplex Communication 235

Half Duplex Communication

Half duplex communication should be familiar to anyone who has used CB radio but may
seem unnatural to the rest of us who are accustomed to blurting out whatever comes into
our heads. It works like CB: while you are talking, the other person can’t talk until you
release your talk button. When the direction of transmission is reversed, you have to wait
until the other person is finished. If you talk out of turn, your partner can’t hear you.

The talk button is the key to this process. When computers are connected with a half
duplex communication channel, they too have a talk button. It is usually a special control
character. A computer can send a message of any length at all, and the communication
line cannot turn around until this character, called a handshake, is sent.

Certain kinds of mainframes communicate with their terminals in half duplex. The person
at the terminal types a command and terminates it with the Enter key (which sends a car-
riage return character). The carriage return turns the communication channel over to the
mainframe. The mainframe responds to the command, possibly sending many lines or
screens full of who knows what, and when it is done sends its own handshake character,
such as an Xon (Control-Q) character. The carriage return is the terminal’s handshake,
and the Xon is the mainframe’s. Kermit’s commands for half duplex communication are:

SET DUPLEX HALF
Enables local echoing during terminal connection. This command does not affect file
transfer, but is listed here for completeness. Synonyms: SET LOCAL-ECHO ON,
SET TERMINAL ECHO ON.

SET FLOW-CONTROL NONE
Disables full-duplex flow control. Xon or Xoff characters sent out of turn by
C-Kermit on a half-duplex connection will probably be ignored, or they might inter-
fere with successful communication. However, it might still be possible to use
hardware flow control, such as RTS/CTS, for example, if you are using a high-speed
modem that supports it.

SET HANDSHAKE [{ BELL, CR, ESC, LF, NONE, XOFF, XON, CODE number }]
During file transfer, C-Kermit should wait for the specified character after a packet
has been received before sending the next packet, so as not to send the packet before
the other Kermit program is prepared to read it. C-Kermit’s default handshake is
NONE. The most common handshake character on half duplex connections is Xon.

If you have made a connection to a remote computer and found that you had to SET

DUPLEX HALF before you could see your characters echo during CONNECT mode, and then
you found that file transfer didn’t work and that SETting PARITY was not enough to cure
the problem, try SET HANDSHAKE XON or one of the other HANDSHAKE options. For ex-
ample, the following settings are typical for a linemode connection to an IBM mainframe:

236 Solving File Transfer Problems / Chapter 10

C-Kermit>set parity mark (Parity is mark)
C-Kermit>set duplex half (Local echo is needed)
C-Kermit>set flow none (No full-duplex flow control)
C-Kermit>set handshake xon (Handshake is xon)

How do you know what the handshake character is? One way to find out is to use
C-Kermit’s session-debugging feature, which displays control characters on your screen in
printable form during CONNECT mode. Here is an example in which we give a command
to an IBM mainframe and then observe the last character it sends after executing the com-
mand. This is most likely the handshake character:

C-Kermit>set terminal debug on
C-Kermit>connect
.query time^J^M^@TIME IS 15:28:00 EST WEDNESDAY 02/08/95^M^J^@
Ready; T=0.01/0.01 15:28:01^M^J^@.^Q

The final character is ‘‘^Q’’ — Control-Q (XON, see the ASCII chart in Table VII-1)), and
that’s your handshake character: SET HANDSHAKE XON.

The Pause that Refreshes

There are situations in which neither flow control nor handshake are available to prevent
one Kermit program from sending a packet before the other one is ready to receive it.
Sometimes there is no remedy but to pause before sending each packet, to give the net-
work or the other computer time to get ready for it. You can tell C-Kermit to do this with
the command:

SET { SEND, RECEIVE } PAUSE number
This command instructs Kermit to pause the indicated number of milliseconds
(thousandths of seconds) before sending each packet. SET SEND PAUSE and SET

RECEIVE PAUSE do exactly the same thing. Example, in which Kermit is given a
one-and-a-half-second pause time:

C-Kermit>set send pause 1500

Noise and Interference

Once you have found a common ‘‘language’’ for the two computers, you still have no
guarantee that they can communicate, any more than the fact that two people speak the
same language guarantees they can talk at a party with loud music and other people shout-
ing in their ears. If I ask you ‘‘Are you having fun?’’ and you respond ‘‘Lentils and
pasta,’’ I know you didn’t receive my message correctly and I repeat my question.

Data signals are subject to distortion, interference, and loss as they travel through the
wires. One of Kermit’s most important jobs is to detect when this happens and retransmit

Noise and Interference 237

any portions of your data that were damaged. Kermit does this by including a block check
in each Kermit packet. The packet sender computes the block check when constructing
the packet, and the packet receiver computes its own version when reading the packet. If
the two don’t agree, the packet is rejected by the receiver and retransmitted.

Block Check Options
C-Kermit supports all four types of block checks that are defined for the Kermit protocol.
The strongest one is used by default, but is not necessarily supported by the other Kermit
program18. The single-byte block check, however, is a required feature of all Kermit im-
plementations, and will be used automatically if C-Kermit fails to negotiate a higher one
with the other Kermit. In such cases, you might want to try an intermediate level. There-
fore, and also because some non-Columbia Kermit programs flub the block check negotia-
tion, C-Kermit lets you choose the among the various options explicitly:

SET BLOCK-CHECK 1
A single-character block check, the 8-bit sum of all the other characters in the packet,
folded into 6 bits.

SET BLOCK-CHECK 2
A two-character block check, the 12-bit sum of all the other characters in the packet.

SET BLOCK-CHECK BLANK-FREE-2
A two-character block check, the 12-bit sum of all the other characters in the packet,
exactly like type 2, except encoded in such a way that neither of the two characters can
be a blank. For use on connections where ‘‘trailing blanks’’ might be stripped.

SET BLOCK-CHECK 3
A three-character block check, the 16-bit cyclic redundancy check (CRC) [55] of all
the other characters in the packet. This is C-Kermit’s default block check type.

Examples:

C-Kermit>set block-check 1
C-Kermit>set block 2
C-Kermit>set blo b
C-Kermit>set bl 3

The higher the block check number, the stronger the error detection. Block check type 3
is recommended for serial connections, especially when using long packets, transferring
8-bit data, or when the connection is noisy or prone to data loss, e.g. because there is no
effective method of flow control. The penalty for using a higher-level block check is neg-
ligible, so it rarely hurts to use one unless the other Kermit does not implement it cor-
rectly.

18All four are supported by C-Kermit, MS-DOS Kermit, and IBM Mainframe Kermit.

238 Solving File Transfer Problems / Chapter 10

The Retry Limit
Damaged packets are recovered by automatic retransmission. But there is a limit to the
number of times each packet can be retransmitted. If the limit is exceeded, Kermit con-
cludes that the connection is unusable and gives up with an error message like ‘‘Too many
retries’’ or ‘‘Unable to receive acknowledgement’’. C-Kermit allows 10 retries per packet.
You can use the SET RETRY command to change this number:

SET RETRY number
Specifies the maximum number of retransmissions allowed for each packet. Example:

C-Kermit>set retry 20

The purpose of the SET RETRY command is to help Kermit decide when a connection is
unusable. Increase the retry limit if you know that the connection is very noisy and you
want Kermit to make every effort to push the file through, even if the cost in retransmis-
sions (and the size of your phone bill) is high. Reduce the number if you want Kermit to
detect and give up on a bad connection quickly.

Timeouts

C-Kermit expects to receive each packet within a reasonable amount of time, the timeout
interval. If the expected packet does not arrive within the timeout period, then depending
on the direction of transfer, the most recent packet is retransmitted or a ‘‘negative
acknowledgement’’ for the missing packet is sent to the other Kermit. This is supposed to
get the transfer back on track.

Why would an expected packet fail to arrive? Either it was delayed in transit for some
reason, or else it was destroyed completely or damaged so badly in transit that it could not
be recognized as a packet at all. In the former case, a timeout will result in an unecessary
retransmission, but in the latter a timeout is necessary to prevent a deadlock in which each
Kermit program waits forever for the other to send something. Unfortunately, when the
timeout interval has expired, there is no way to know what the reason is.

The trick is in setting the most appropriate timeout interval, so as to minimize both the
time it takes to detect a missing packet and the number of unnecessary retransmissions.
The time for a packet to arrive is determined by the length of the packet, the speed of the
physical medium, the distance between the two computers, the speed of the two com-
puters, the load on the two computers, the load on any communication or networking
equipment the packet must go through, the load on the network itself if it is a network
connection, or the quality of the modem connection. And many other factors, too. To
complicate the situation, some of these factors can vary from one moment to the next: the
load on a multiuser computer, the congestion on a network.

Transparency Problems 239

Modern Kermit programs (C-Kermit, Kermit 95, Kermit/2, MS-DOS Kermit, etc) manage
their timeout values dynamically, using statistical methods based on the packet rate. The
initial timeout is set conservatively, based on various factors including the packet length
and (on serial connections) the serial-port speed; then after several packets have been ex-
changed the statistical methods kick in, and the timeout at any instant is (approximately)
the average interval between packet arrivals, weighted to count recent history the most
heavily, plus three standard deviations [59, 54]. You can watch this, and the packet round
trip time (RTT), on the file transfer display (Figure 9-4 on page 206).

Other Kermit programs might have hardwired and/or constant timeout intervals, or no
timeout capability at all. For example, IBM Mainframe Kermit cannot time out at all due
to limitations of the underlying operating systems (VM/CMS, MVS/TSO, etc). Since it is
sufficient for only one of the Kermit partners to time out, it is usually better to let
C-Kermit do it. The commands for controlling timeouts are:

SET SEND TIMEOUT number [{ DYNAMIC [mininum [maximum]], FIXED }]
If you do not specify DYNAMIC or FIXED, DYNAMIC is used. When SEND TIMEOUTs are
DYNAMIC, the number of seconds is used as the initial timeout value (subject to adjust-
ment upward based on packet length and so on). You can include maximum and min-
imum dynamic timeout values, or you can omit them and let Kermit pick its own.
When FIXED, the given number of seconds is constant throughout the transfer. If you
do not give this command at all, dynamic timeouts are used.

SET RECEIVE TIMEOUT number
Tells C-Kermit the timeout interval to request the other Kermit to use, in seconds. If
you use 0, the other Kermit should not time out, thus allowing C-Kermit to control the
timeouts, which is usually desirable. If you send a positive number, the other Kermit
should use it unless it has been configured to do dynamic timeouts.

In most cases, you need not bother with either of these commands and C-Kermit will do
the right thing: by default it uses dynamic timeouts, and tells the other Kermit to set a
timeout interval that is so long it will be used only in case of disaster.

Transparency Problems

Kermit packets are normally framed by a Control-A character (Start of Header) at the
beginning and Carriage Return (Control-M) at the end, as shown in Figure 12-1 on page
268. In between, there are no control characters at all (unless you have ‘‘unprefixed’’
them yourself; see Chapter 12). Control characters in your file data are encoded as print-
able character sequences (for example, Control-S is encoded as #S) to prevent their inter-
ception by devices or drivers along the communication pathway (this encoding is what al-
lows Xon/Xoff flow control to work during file transfer).

240 Solving File Transfer Problems / Chapter 10

But some computers or communication processors won’t let even Control-A and Carriage
Return to pass by unscathed. For example, we have heard of at least one modem that uses
Control-A as its escape character: send your first Kermit packet and you’re back talking to
your modem dialer instead of to the other computer! For pathological cases like this,
C-Kermit lets you adjust the framing of the packets:

SET { SEND, RECEIVE } START-OF-PACKET control-character
Changes the packet-start character from Control-A to something else, which can be
any 7-bit ASCII character. A control character should be used unless the communica-
tion path refuses to allow any control characters at all to pass through. Give the
numeric ASCII code for the character (see Table VII-1, page 593); for example, 2 for
Ctrl-B, 5 for Ctrl-E. You must give corresponding commands to both Kermit
programs:

MS-Kermit>set send start-of-packet 7 (PC sends Ctrl-G)
MS-Kermit>connect (Connect to remote)
C-Kermit>set receive start 7 (C-Kermit receives Ctrl-G)
C-Kermit>send oofa.txt (Start the transfer)
Alt-x (Escape back to the PC)
MS-Kermit>receive (Receive the file)

Here we change the packet-start character only for the packets that are being sent by
the PC to C-Kermit; Control-A is still used to start the packets send by C-Kermit to
the PC. You can also change the packet-start character in the other direction or in both
directions. Just remember to give the corresponding SET SEND START-OF-PACKET and
SET RECEIVE START-OF-PACKET commands to both Kermit programs.

SET { SEND, RECEIVE } END-OF-PACKET control-character
Changes the packet-end character from Carriage Return to something else, which must
be an ASCII 7-bit control character. Give corresponding commands to both Kermits,
for example:

MS-Kermit>set send end-of-packet 10 (PC sends Ctrl-J)
MS-Kermit>connect (Connect to remote)
C-Kermit>set receive end 10 (C-Kermit looks for Ctrl-J)
C-Kermit>receive (Wait for files)
Alt-x (Escape back to the PC)
MS-Kermit>send *.txt (Send some files)

This changes the packet terminator in the PC-to-C-Kermit direction.

In addition to changing the packet start and end characters, you can also tell C-Kermit to
send additional characters between the packets:

SET { SEND, RECEIVE } PAD-CHARACTER control-character
Specifies an additional character to insert before the start-of-packet character. It must
be different from the start-of-packet character. Pad characters are ignored by the Ker-
mit protocol, but can be useful to give the receiving computer time to prepare to read

IBM Mainframe Linemode Communication 241

the packet. There is at least one case where the pad character is used to put the packet
receiver’s front end into a special ‘‘transparency mode.’’ Without this, the packet it-
self could not pass through. SET SEND PAD-CHARACTER tells C-Kermit which charac-
ter to send for padding; SET RECEIVE PAD-CHARACTER tells C-Kermit to tell the other
computer’s Kermit program which character to send as padding.

SET { SEND, RECEIVE } PADDING number
This tells how many copies of the pad character to insert before each packet.

Here, for example, is the series of commands that allows C-Kermit to transfer files with a
Cray supercomputer running the CTSS operating system and Cray Kermit:

C-Kermit>set parity even (Even parity required)
C-Kermit>set send end 23 (Packet end is Ctrl-W)
C-Kermit>set send padding 1 (Use 1 pad character)
C-Kermit>set send pad-char 26 (Pad char is Ctrl-Z)
C-Kermit>send animation.dat (Now send a file)

IBM Mainframe Linemode Communication

There are two types of connections to IBM mainframes: full-screen and linemode. A
full-screen connection goes through a device that converts between IBM 3270 EBCDIC
block-mode terminal and asynchronous ASCII character-mode terminal conventions,
called a 3270 protocol converter. It masks all the peculiarities of IBM mainframe-style
communication from the user and can be used (usually) with little extra effort.

IBM mainframe linemode connections, on the other hand, require Kermit to jump through
more than a few hoops. Nearly every communication parameter — duplex, parity, flow
control, handshake — is contrary to C-Kermit’s defaults, and so must be set explicitly.

Even though IBM linemode sessions are infrequently used nowadays, it is nevertheless in-
structive to feel our way through one to illustrate some important concepts in data com-
munications, neglected by more than a few popular communications software packages, to
the point that they are nonfuctional in this kind of environment.

Figure 10-3 on the next page shows an example of a C-Kermit local-mode file transfer
with an IBM mainframe running the VM/CMS operating system. To add a little spice, the
modem intercepts the Ctrl-A character, so Kermit’s packet-start character must be
changed (the modem name is fictional, to avoid lawsuits).

To complicate matters further, the login process reveals the connection to be very noisy,
so the user prudently adjusts communication parameters for extra noise resistance.

242 Solving File Transfer Problems / Chapter 10

$ kermit (Start Kermit on UNIX)
C-Kermit 7.1.199 29 Apr 2001, Solaris 2.5
Type ? or HELP for help
C-Kermit>set modem type xyz (Specify modem type)
C-Kermit>set line /dev/ttyh8 (and communication device)
C-Kermit>set speed 19200 (and speed)
C-Kermit>set parity mark (Mainframe needs mark parity)
C-Kermit>set duplex half (Connection is half duplex)
C-Kermit>set flow none (No full duplex flow control)
C-Kermit>set handshake xon (Use XON for line turnaround)
C-Kermit>set send start 2 (Change out-packet start to ^B)
C-Kermit>dial 5551234 (Dial the number)
Call complete. (The call is answered)
C-Kermit>connect (Connect to the mainframe)
VIRTUAL MAC~xINE/S{{TEM PRODU=T (Notice the noisy herald)
.login olga (Log in)
Enter password:XXXXXXXX
LOGON AT 22:00:52 EDT TH~~{Y 08/02/96
CMS7 VM/ESA V1.1.0 PUT 9101
Ready; T=0.07/0.11 2~~{{:55
CMS
.kermit (Run Kermit on the mainframe)
Kermit-CMS Versi%x 4.3.2
Enter ? for a ~~st of valid commands

Kermit-CMS>set retry 20 (Allow many retries)
Kermit-CMS>set block 3 (Use strongest error checking)
Kermit-CMS>set receive start 2 (Change in-packet start to ^B)
Kermit-CMS>send profile exec (Send a file)
Kermit-CMS ready to send.
Please escape to local Kermit now to RECEIVE the file(s).

KERMIT READY TO SEND...
Ctrl-\c (Escape back to C-Kermit)

C-Kermit>set xfer displ serial (Display progress with dots)
C-Kermit>set retry 20 (Allow many retries)
C-Kermit>receive (Tell it to receive the file)
SF
PROFILE.EXEC A Size: 18113
=> profile.exec ..N%N%..T%..N%..T%T%T%N%......T%..N%..Z [OK]
B
C-Kermit>connect (Connect back to the mainframe)

Kermit-CMS>exit (Leave mainframe Kermit)
Ready; T=0.02/0.08 22:01:37
.logoff (Log out)
Ctrl-\c (Escape back to C-Kermit)
C-Kermit>exit (Exit from C-Kermit)
$

Figure 10-3 IBM Mainframe Linemode Example

IBM Mainframe Full-Screen Communication 243

IBM Mainframe Full-Screen Communication

Full-screen Kermit connections to IBM mainframes go through 3270 protocol converters
or through TCP/IP tn3270 software. These devices and programs translate between nor-
mal ASCII and the IBM EBCDIC character sets, they translate IBM 3270 screen direc-
tives into escape sequences for your terminal, and they generally fool the parties on either
end of the connection into thinking they are dealing with their own familiar world.

The techniques used by C-Kermit to transfer files with an IBM mainframe through such
connections depend on whether the connection can be put into transparent mode by IBM
mainframe Kermit. Transparent means the protocol conversion functions are turned off
and the device or program passes data through without modification. Some protocol con-
verters allow this; others don’t.

A connection to a protocol converter is just like a connection to a full-duplex computer
host or service, except that even parity is usually a requirement. A connection through a
tn3270 program is usually the same as your connection to the host or terminal server
where the tn3270 software is running, except you might have to use space parity (in some
cases, 8-bit transparency is possible — try it and see!).

File Transfer with Transparent Mode
Many 3270 protocol converters and software allow transparent-mode operation, which is
preferred because it makes for simpler and more efficient file transfer. Common examples
include the IBM Series/1, 7171, 4994, 3174 AEA, and 938x ASCII subsystem, as well as
many non-IBM products, recent-model Cisco terminal servers, and some versions of the
UNIX tn3270 program. Kermit-370 on the IBM mainframe attempts to detect transpar-
ent-mode capability automatically and use it. When automatic detection doesn’t work,
IBM mainframe Kermit’s SET CONTROLLER command can be used to force a specific style
of transparency when it is available. When the protocol converter can be put into trans-
parent mode, file transfer works normally:

C-Kermit>set parity even
C-Kermit>show communications
Line: ttx4, speed 19200, parity: even
duplex: full, flow: xon/xoff, handshake: none, ...
C-Kermit>connect (Connect to the mainframe)
.
. kermit (Start mainframe Kermit)
Kermit-CMS Version 4.3.2
Enter ? for a list of valid commands
Kermit-CMS>send maketape exec (Send a file)
Please escape to local Kermit now to RECEIVE the file(s).

KERMIT READY TO SEND...
Ctrl-\c (Escape back)
C-Kermit>receive (Receive the file)

244 Solving File Transfer Problems / Chapter 10

If this example does not work for you, use IBM mainframe Kermit’s SHOW CONTROLLER

command to find out what kind of transparency, if any, is being used, and then try using
different SET CONTROLLER commands to achieve transparency:

Kermit-CMS>set controller series1
Kermit-CMS>set controller graphics
Kermit-CMS>set controller aea

and try the file transfer again. If it still doesn’t work, use shorter packets (for example, tell
the receiving Kermit to SET RECEIVE PACKET-LENGTH 40). If nothing seems to work, con-
sult the IBM mainframe Kermit documentation for further information or ask the IBM
mainframe system administrators for help. If all else fails, you can access the mainframe
in linemode (if that is possible at your site) rather than full-screen mode when you need to
transfer files. Or you can use the non-transparent technique.

File Transfer without Transparent Mode
When the protocol converter can not be put into transparent mode, it is impossible to send
a normal Kermit packet through it because all control characters are filtered out, including
Kermit’s packet-start and -end characters. Lines (packets) longer than the screen width
are broken and wrapped, blanks might be discarded, the protocol converter can engage in
screen optimizations that interfere with packets sent by the mainframe, and each packet
sent to the mainframe can be echoed once, twice, or more by the protocol converter.

By switching to a slightly modified version of the Kermit protocol, in which there are no
distinguished characters to mark the beginning and end of a packet, and with a special
type of block check that never includes blanks, even these obstacles can be overcome.
IBM mainframe Kermit version 4.2.3 or later is required.

The trick is to tell IBM mainframe Kermit to operate in fullscreen mode, rather than trans-
parent mode, then set the packet-start character to be a printable ASCII character, avoid
the use of handshake characters, and use the ‘‘blank-free-2’’ block check:

C-Kermit>set parity even (Even parity)
C-Kermit>set send start 62 (Packet start is ">")
C-Kermit>set receive start 62 (in both directions)
C-Kermit>set block-check b (Type B block check)
C-Kermit>set handshake none (No handshake)
C-Kermit>connect (Now go to the mainframe)
. kermit (Start mainframe Kermit)
Kermit-CMS Version 4.3.2
Enter ? for a list of valid commands
Kermit-CMS>set controller fullscreen (No transparent mode)
Kermit-CMS>set send start 62 (Packet start is ">")
Kermit-CMS>set receive start 62 (in both directions)
Kermit-CMS>set block-check b (Type B block check)
Kermit-CMS>set handshake 0 (Do not send handshake)
Kermit-CMS>send data sas b (Send a file...)

NOTE: All four start-of-packet characters must be the same.

For X.25 Users Only 245

The file is transferred more slowly than with transparent mode, but at least it can be done.
Short packets are used automatically to avoid ‘‘formatting assistance’’ by the protocol
converter, and various other trickery goes on behind the scenes. In some cases, main-
frame Kermit’s ASCII/EBCDIC translation tables might need to be altered, depending on
the make, model, and configuration of the protocol converter. For detailed information
about which protocol converters are transparent and which are not, and about file transfer
through non-transparent 3270 protocol converters, consult the IBM mainframe Kermit
documentation [19].

For X.25 Users Only

If you have connected to the remote computer through an X.25 network PAD, your con-
nection is probably set up for character-mode interactive operation. In the normal setup,
each character you type is sent to the remote computer in a separate X.25 packet so it can
be processed and echoed immediately. You want this to happen when you are conducting
an interactive session with the remote computer.

However, this mode of operation can be very inefficient during Kermit file transfer.
Transfers can proceed much faster if you change your network connection to make Kermit
packets correspond as much as possible with X.25 packets. A detailed discussion of X.25
networking is beyond the scope of this book,19 but you might try escaping back to the
PAD (normally by typing Ctrl-P) and issuing X.3 commands to put the PAD into a mode
suitable for Kermit packet transmission:

Kermit-11>send report.txt (Send file from remote Kermit)
Ctrl-P (Escape back to the PAD)
@PAR? (See your current PAD settings)
PAR1:1,2:1,3:0,4:80,5:0,6:1,7:0,8:0,9:0,10:80,11:3,12:0
@SET 2:0,3:0,4:0,5:1,6:0,10:0,12:1 (Change them)
@continue (Connect back to remote host)
Ctrl-\c (Escape back to C-Kermit)
C-Kermit>receive (Receive the file)

These commands tell the PAD not to echo, to forward characters sent by the terminal (that
is, your local Kermit program) only after a carriage return (Kermit’s normal packet ter-
mination character) has been received, to use no packet forwarding timeout, to enable
Xon/Xoff flow control between the terminal and the PAD (rather than end-to-end), to sup-
press network messages that might interfere with the Kermit packets, and to do no line
folding. If your local Kermit has built-in X.25 network support, you can use the cor-
responding SET PAD Kermit commands instead (see Chapter 3, page 149).

19Read the literature provided by your X.25 service provider, for example, How to Use SprintNet
Asynchronous Dial Service, or consult references [13, 14, 15, 16].

246 Solving File Transfer Problems / Chapter 10

When you connect back after the file transfer, your PAD connection will no longer be
suitable for interactive use, so you must restore the original PAD parameters, as in the fol-
lowing example:

C-Kermit>connect (Connect back to remote)
Ctrl-P (Escape back to the PAD)
@SET 2:1,3:2,4:80,5:0,6:1,10:80,12:0 (Restore old settings)
@continue (Connect back to remote host)
Kermit-11>

Hint: After you read the chapters on macros and scripts, you will be able to write macro
commands that make this procedure a lot easier and faster. Another Hint: Certain net-
works have built-in commands to condition your connection for file transfer, for example
SprintNet’s DTAPE command. See the literature from your network service provider.

If Files Are Corrupt after Transfer

Sometimes a file will appear to have been transferred correctly, but the copy on the receiv-
ing end will be incomplete or otherwise corrupted. The most common explanations are:

1. The file was not transferred completely, and Kermit’s FILE INCOMPLETE setting was
KEEP. Use Kermit’s recovery features to continue the file transfer from the point of in-
terruption (see Chapter 9).

2. The file was transferred in text mode when it should have been transferred in binary
mode, or vice versa (see Chapter 9). Usually the file transfer mode is determined by
the most recent SET FILE TYPE command given to the file sender, which automatically
informs the receiver of the transfer mode, but in case the file receiver is not a modern
Columbia University Kermit program, it might be necessary to give the appropriate
corresponding SET FILE TYPE commands to both Kermit programs prior to transfer.

3. You are using some combination of C-Kermit 5A(190) or later, MS-DOS Kermit 3.14
or later, or IBM Mainframe Kermit 4.3.1 or later in client/server mode (explained in
Chapter 11). In this case, it is the client’s file type setting, rather than the file sender’s,
that prevails. Cure: tell the client to SET FILE TYPE BINARY, or to be extra sure, tell
them both.

4. Some non-Columbia Kermit implementations simply do not work correctly, including
the ones found in certain BBS software. Typical symptoms might include corruption
of particular characters (e.g. letter Y becomes Ctrl-Y) or a change in the file size after
binary-mode transfer). The cure is to replace the offending software with a real Ker-
mit implementation from Columbia University.

Collecting the Evidence 247

5. You are sending files from VMS C-Kermit, which is unique among Kermit programs
in its ability to automatically switch between text and binary mode based on each
file’s local characteristics, but the file’s characteristics are inappropriate to its actual
type (this happens commonly with ZIP files). Please read about the SET FILE TYPE

IMAGE command in Appendix IV, page 570.

6. You are doing a text-mode transfer of a text file that contains accented or non-Roman
characters, but you have not set up the character-set translations correctly. This is the
topic of Chapter 16.

Finally, there is the possibility that the file was corrupt to begin with; perhaps uploaded in-
completely or using an inappropriate transfer mode. For example, it might be a ZIP file
that was transferred by FTP in text mode.

Collecting the Evidence

If you have file transfer problems:

1. Check your communications settings (espcially parity) with the SHOW

COMMUNICATIONS command.

2. Check your file parameters (especially your FILE TYPE setting, text or binary) with the
SHOW FILE command.

3. Check your Kermit protocol parameters with the SHOW PROTOCOL command.

Make any desired adjustments and try again. If all else fails, you can capture C-Kermit’s
(mis)behavior in two types of log files:

LOG PACKETS [filename [{ APPEND, NEW }]]
Records Kermit’s file transfer packets in the specified file. If you omit the FILENAME,
PACKET.LOG is used. A new file is created unless you include the word APPEND at the
end of the command, which means to add records to the end of the named file. Show
the packet log to a Kermit guru or decode the packets yourself if you have a copy of
Kermit, A File Transfer Protocol [21], which spells out the details of Kermit packet
format and protocol rules.

LOG DEBUG [filename [{ APPEND, NEW }]]
Records voluminous information about C-Kermit’s inner workings in the specified
file. For Kermit gurus only. Used for serious late-night marathon debugging sessions
in combination with the C-Kermit source code and gallons of coffee. Knowledge of
the C programming language [52] is a plus.

248 Solving File Transfer Problems / Chapter 10

These log files are closed automatically when you EXIT from C-Kermit. You can also
close them at any desired time with the CLOSE PACKETS or CLOSE DEBUG commands.

249

Chapter 11

Using a Kermit Server

By now you should be a wiz at Kermit file transfer. You can use SET commands to adapt
Kermit programs to all sorts of different conditions and you can send files back and forth
successfully. In this chapter, you’ll learn an easier way to transfer files, in which you
won’t have to give commands to both Kermit programs. And you’ll see that Kermit not
only transfers files but can help you manage them, too.

In Kermit’s basic mode of operation, you tell the remote Kermit what to do, then escape
back to the local Kermit and tell the local Kermit what to do. If you are transferring only
one file or one group of files, this is no major inconvenience — no more than, say, cook-
ing a simple dinner for yourself at home. But if you want to upload some files, download
some others, delete some, print some, and so on, repeated connecting and escaping back
can become tiresome. This is more like hosting a dinner party. For such occasions, you
might prefer to take your friends to a restaurant and eat out.

A Kermit server is a Kermit program running in a special way. You tell your local Kermit
program what you want and it tells the Kermit server what to do, like the waiter gives your
order to the chef. The server performs the required tasks silently, out of sight in the
kitchen, and relays the results back to your local Kermit program, just as your waiter
brings your dinner once the chef has prepared it.

The difference between using a Kermit server and eating in a restaurant is that with Ker-
mit, before you can order anything you might have to visit the kitchen and install the chef.
Once installed, your chef no longer talks to you directly, but only to the waiter, who trans-
lates your order into the colorful restaurant jargon that only the chef understands.

250 Using a Kermit Server / Chapter 11

Before you can ‘‘eat out,’’ you need two things: one Kermit program that can be a server
(the chef) and another (the waiter) that can talk to the server. The computer jargon for the
waiter is ‘‘client.’’ The Kermit client is usually the local Kermit, and the server is usually
on the remote end. But not always. C-Kermit can act as either a client or a server.

Configuring the Server

If you are in control of both ends of the connection — client and server — you can skip
ahead to the next section. The commands described in this section are primarily for set-
ting up a Kermit server for other people to use:

SET SERVER DISPLAY { ON, OFF }
If C-Kermit is in local mode and has been given a SERVER command, it normally
produces a file transfer display of whatever style was specified in your most recent
SET FILE DISPLAY command, if any, or else the default style. You can SET SERVER DIS-

PLAY OFF to suppress it if desired.

SET SERVER GET-PATH [directory [directory [. . .]]]
This command lets you tell C-Kermit where to look for files when the client gives a
GET (or REGET) command, but does not specify a full pathname. Normally the server
just looks in its current directory. There can be up to 64 directories in the SERVER

GET-PATH. If you specify one or more directories in the SERVER GET-PATH, the server
searches them in the order given. Example (for UNIX):

C-Kermit> set server get-path /usr/olga/ ~olaf /tmp

If a SERVER GET-PATH is set, then it, and only it, is used for finding files whose names
are not absolute. The filename from the GET request is appended to the first element
in the GET-PATH and C-Kermit checks to see if the file exists. If not, the process is
repeated for the second and subsequent GET-PATH element until the file is located or
the GET-PATH is exhausted. If you want to include the current directory in the
GET-PATH, you must mention it explicitly.

SET SERVER IDLE-TIMEOUT number
This command, if it is available in your version of C-Kermit, restricts the amount of
time the server will wait for a command from the client to the given number of
seconds. The default number is 0, which tells the server to wait forever. If the num-
ber is greater than 0, and no commands are received from the client within that many
seconds, C-Kermit exits from server mode.

SET SERVER LOGIN [username [password [account]]]
If you give this command prior to putting C-Kermit in server mode, no client will be
able to issue any commands to the server until it uses REMOTE LOGIN (explained later)
to supply a username (and password, if you specified one) that exactly match those

Configuring the Server 251

from SET SERVER LOGIN. Logins and logouts are recorded in the transaction log. Only
one username/password combination can be set up; there is no ‘‘password file’’ or user
list by which the Kermit server supports multiple users. The account, if any is given,
is recorded in the transaction log.

SET SERVER TIMEOUT seconds
When the server is not fulfilling a request it is waiting for a command from the client.
Normally, the waiting is ‘‘silent’’ — the server does not send any characters at all to
the client. You can use this command to make it time out and send NAK packets (see
page 268) at periodic intervals while it is waiting for a command. This is useful if the
client program is not capable of timing out. If a packet from a such a client is lost, the
client will wait forever for the reply that never comes; having the server issue periodic
NAKs will break this sort of deadlock. If seconds is 0, there are no timeouts during
server command wait. The default SERVER TIMEOUT is 0. It is rarely necessary to use
this command.

You can control access to the C-Kermit server’s services on an individual basis with the
DISABLE and ENABLE commands. All services are enabled by default.

DISABLE service
Instructs the server not to perform the named service.

ENABLE service
Reinstates a service that was previously disabled.

Here are the services that can be disabled and enabled; the services themselves are ex-
plained in the next section. The effect of disabling each service is described. Enabling a
service removes all restrictions that were imposed when you DISABLEd it. If you want to
disable certain functions, be sure to give the appropriate DISABLE commands before you
give the SERVER command.

DISABLE ASSIGN
Don’t allow the client to manipulate server variables.

DISABLE BYE
Ignore BYE commands; remain in server mode. Example:

C-Kermit>disable bye (Don’t let them log me out)
C-Kermit>server (Enter server mode)
Entering server mode, blah blah blah ...
Alt-x (Escape back)
MS-Kermit>bye (Try to log out the server)
Error: BYE disabled
MS-Kermit>

The server remains in server mode, ready to accept and execute any commands that
have not been disabled.

252 Using a Kermit Server / Chapter 11

DISABLE CD
Disallow changing of the default device and/or directory. Don’t allow files to be
transferred into or out of any but the current device/directory. Don’t allow files out-
side the current directory to be listed, deleted, or typed.

DISABLE { COPY, DELETE, DIRECTORY }
Ignore the indicated REMOTE commands from the client.

DISABLE FINISH
Ignore FINISH commands; remain in server mode.

DISABLE GET
Ignore GET commands; don’t send files.

DISABLE HOST
Do not execute host commands on behalf of the client.

DISABLE MAIL
Do not accept files to be delivered as mail.

DISABLE PRINT
Do not accept files for printing.

DISABLE QUERY
Don’t allow the client to read server variables.

DISABLE RENAME
Ignore RENAME commands from the client.

DISABLE RETRIEVE
Do not let the client command the server to send and then delete files.

DISABLE SEND
Refuse to receive files when the client Kermit tries to send them.

DISABLE SET
Do not allow the client to change the server’s settings.

DISABLE SPACE
Do not tell the client how much space is available.

DISABLE { TYPE, WHO }
Ignore these REMOTE commands from the client.

CAUTION: Some of these commands, including COPY, DELETE, DIRECTORY, RENAME,

SPACE, TYPE, and WHO, might also be accessible via REMOTE HOST. If you want to prevent
users from accessing these functions through the server, you must DISABLE HOST, too.

Starting the Server 253

The SET SERVER and ENABLE/DISABLE settings are shown by the SHOW SERVER command:

C-Kermit>sho server
Function Status:
GET enabled
SEND enabled
REMOTE ASSIGN enabled
REMOTE CD/CWD enabled
REMOTE COPY enabled
REMOTE DELETE enabled
REMOTE DIRECTORY enabled
REMOTE HOST enabled
REMOTE MAIL enabled
REMOTE PRINT enabled
REMOTE QUERY enabled
REMOTE RENAME enabled
REMOTE RETRIEVE enabled
REMOTE SET enabled
REMOTE SPACE enabled
REMOTE TYPE enabled
REMOTE WHO enabled
BYE disabled
FINISH enabled
...
C-Kermit>

Starting the Server

After the server is configured the way you want it, start it with this command:

SERVER
Tells the Kermit program to enter server mode using current communication and
protocol settings. The prompt disappears, and all further communication takes place
using Kermit protocol packets.

Here’s an example in which your local computer is a PC running Kermit 95, and you start
a C-Kermit server on a remote UNIX computer:

[D:\K95] K-95> connect (Connect to the remote computer)
login: olga (Login if necessary)
Password:

$ kermit (Start Kermit)
C-Kermit>server (Put it in server mode)

Entering server mode. If your local Kermit software is menu driven, use
the menus to send commands to the server. Otherwise, enter the escape
sequence to return to your local Kermit prompt and issue commands from
there. Use SEND and GET for file transfer. Use REMOTE HELP for a list of
other available services. Use BYE or FINISH to end server mode.

KERMIT READY TO SERVE...
Alt-X (Escape back to PC)
[D:\K95] K-95>

254 Using a Kermit Server / Chapter 11

From this point, you may conduct all further business from your local Kermit’s prompt. If
you try typing commands before you escape back, nothing will happen: the characters you
type are not likely to be valid Kermit packets, so the server ignores them. In an emer-
gency, however, you can get back to the C-Kermit command prompt by typing three
Ctrl-C’s in a row, or whatever else your TRANSFER CANCELLATION setting calls for:

C-Kermit>server (Put C-Kermit in server mode)

Entering server mode. If your local Kermit software is menu driven, use
the menus to send commands to the server. Otherwise, enter the escape
sequence to return to your local Kermit prompt and issue commands from
there. Use SEND and GET for file transfer. Use REMOTE HELP for a list of
other available services. Use BYE or FINISH to end server mode.

KERMIT READY TO SERVE...
Ctrl-C Ctrl-C Ctrl-C (Type Ctrl-C three times)
^C...
C-Kermit> (The prompt comes back)

To operate a Kermit server on a dialin or network port, so that others can make a connec-
tion to it and use it, you should put all the preparatory commands into a command file and
then have C-Kermit TAKE the command file. A command file is needed because your SET

HOST or ANSWER command waits until a connection comes in, and the SERVER command
can’t be given until it does, which could be minutes, hours, or days later. Here is a typical
procedure for setting up a dialup server.

set take error on ; Exit from command file upon any error
cd ~/public ; Change to desired directory
set modem type telebit ; Specify your modem type
set line /dev/cua ; Communication port
set flow rts/cts ; Flow control
set speed 57600 ; Speed
disable cd ; Don’t let them leave it
set server login username password ; Require login with password

(Give any other desired SET SERVER or DISABLE commands here)

answer ; Wait for a call to come in
server ; Enter server mode

And for a TCP/IP connection:

set take error on ; Exit from command file upon any error
cd /tmp ; Change to desired directory
disable cd ; Don’t let them leave it
disable send ; Don’t let them upload files
disable delete ; Don’t let them delete files
set server login username password ; Require login with password

(Give any other desired SET SERVER or DISABLE commands here)

set host * 3000 ; Listen for a TCP connection on port 3000
server ; Enter server mode

Sending Commands to Kermit Servers 255

Sending Commands to Kermit Servers

The previous section explained how to set up a server; this section explains how the client
uses it. The first interactive Kermit command you learned was EXIT. The first command
you should learn for controlling a Kermit server is the one that takes it out of server mode:

FINISH
Sends a command packet from a Kermit client to a Kermit server. This packet in-
structs the server to exit server mode and return to its interactive Kermit prompt, or to
exit to the system prompt, depending on how it was started. Example:

MS-Kermit>finish (Shut down the server)
MS-Kermit>connect (Go back)
C-Kermit> (C-Kermit’s prompt has returned)

A similar command makes the entire remote session just go away:

BYE
Tells the client Kermit program to send a command packet to a Kermit server. This
packet tells the server to destroy itself and log out the session or job under which it is
running and hang up the connection. It should be equivalant to FINISH, then exit from
remote Kermit, then log out from remote session. On network connections, the BYE

command also causes the client to close the connection.

Let’s practice starting and stopping a remote C-Kermit server a few times from a PC:

MS-Kermit>connect (Connect to the remote computer)
login: olga (Log in)
Password: (Supply your password)

$ kermit (Start Kermit)
C-Kermit>server (Put it in server mode)
Entering server mode. If your local Kermit software is menu driven, use
the menus to send commands to the server. Otherwise, enter the escape
sequence to return to your local Kermit prompt and issue commands from
there. Use SEND and GET for file transfer. Use REMOTE HELP for a list of
other available services. Use BYE or FINISH to end server mode.

KERMIT READY TO SERVE...
help (Type commands to the server)
exit (See how it ignores them)
Alt-X (Escape back to PC)
MS-Kermit>finish (Shut down the server)
MS-Kermit>connect (Connect again)
C-Kermit server done
C-Kermit> (The prompt is back)
C-Kermit>server (Start the server again)

Entering server mode. If your local Kermit software is menu driven, use
the menus to send commands to the server. Otherwise, enter the escape
sequence to return to your local Kermit prompt and issue commands from
there. Use SEND and GET for file transfer. Use REMOTE HELP for a list of
other available services. Use BYE or FINISH to end server mode.

256 Using a Kermit Server / Chapter 11

KERMIT READY TO SERVE...
Ctrl-C Ctrl-C Ctrl-C (Type 3 Ctrl-C’s)
^C...
C-Kermit> (Prompt reappears)
C-Kermit>server (Start the server again)

Entering server mode. If your local Kermit software is menu driven, use
the menus to send commands to the server. Otherwise, enter the escape
sequence to return to your local Kermit prompt and issue commands from
there. Use SEND and GET for file transfer. Use REMOTE HELP for a list of
other available services. Use BYE or FINISH to end server mode.

KERMIT READY TO SERVE...
Alt-X (Escape back to PC)
MS-Kermit>bye (Terminate the remote session)
MS-Kermit>

All other client commands are sent to the server in the same way: by typing them at the
client Kermit program’s prompt or, if the client Kermit program is menu driven or has a
graphical user interface (GUI), by selecting the desired items from the client/server menu.
Of course, client commands can also come from command files or macros.

Interrupting Server Operations
SEND, GET, and the other client commands can be interrupted the same way you would in-
terrupt a file transfer: X to cancel a file, Z to cancel a group, and so on (see Chapter 9).
You can also CONNECT to the C-Kermit server and type three Ctrl-C’s, or whatever other
sequence its TRANSFER CANCELLATION setting calls for.

Transferring Files with a Server
Now that you know how to start and stop the server, let’s put it to work. Here are the
basic commands for transferring files, which you would give to your local client Kermit
program’s prompt, after putting the remote Kermit program in server mode and escaping
back to the local Kermit program:

SEND filespec [remote-filename]
Sends the file or group of files named by filespec to the server (or, if no filespec is
given, then the files in the Send List, if any). This is exactly the same command that
you use to send files to a Kermit program that has been given the RECEIVE command
and it works the same way in every respect (see Chapter 9).

MOVE filespec [remote-filename]
Sends the file or group of files named by filespec to the server, and then deletes the
original (source) copy of each file that was sent successfully and completely.

MSEND filespec [filespec [. . .]]
You can also use the MSEND command to send a selected group of files to the server,
each under its own name.

Sending Commands to Kermit Servers 257

MMOVE filespec [filespec [. . .]]
Like MSEND, but deletes each source file after it has been sent successfully.

SEND
You can also use the ADD SEND-LIST command to build a send list, and then SEND

without a filespec, to send a mixed group of files, possibly in mixed transfer modes,
with any desired assortment of ‘‘as-names,’’ to a server.

GET filespec [filespec [. . .]]
Asks the Kermit server to send the file or file group specified by the filespec(s), which
are given in the syntax of the server’s computer.

REGET filespec [filespec [. . .]]
Asks the Kermit server to RESEND the specified file or file group using the file transfer
recovery method described in Chapter 9. Works only for binary-mode transfers.

RETRIEVE filespec [filespec [. . .]]
Asks the Kermit server to send the given files and then delete each one that was sent
successfully.

GET (and REGET, and RETRIEVE) are quite different from RECEIVE. Unlike RECEIVE, which
passively waits for a file to arrive from another Kermit that has been given a SEND com-
mand, the GET command actively requests a particular file with a ‘‘please send me’’
protocol message containing the file name(s). If you give a RECEIVE command instead,
the server doesn’t know what file you want:

[D:\K95] K-95> receive (Should have been ‘‘GET filespec’’)
Protocol Error: Did you say RECEIVE instead of GET?
[D:\K95] K-95>

A special form of the GET, REGET, and RETRIEVE commands lets you ask for a single file
and then store it under a different name. Just type carriage return (press the key marked
Return or Enter) immediately after the word GET (or REGET), and Kermit prompts you for
the remote and local names separately:

[D:\K95] K-95> get
Remote source file: foo bar b
Local destination file: foo.bar

You can use wildcards in all the file transfer commands. Wildcards in the GET, REGET,
and RETRIEVE commands must be written in the notation of the computer where the server
is running.

When C-Kermit itself is the server, your GET, REGET, or RETRIEVE command can include a
single filename, a wildcard filename, or a list of any mixture of these. The C-Kermit serv-
er sends all the requested files in a single operation:

MS-Kermit>get ck*.c *.h ~olga/oofa.doc

258 Using a Kermit Server / Chapter 11

The file specifications are separated by spaces (not commas). If you need to include a
space in a filename, use \32 (backslash followed by the ASCII code for space). In this
example we ask a VMS C-Kermit server to send a file that resides on another DECnet
node (more about this in Appendix IV):

MS-Kermit>get node"USER\32PASSWD"::dev:[dir]name.ext

If you need to include a backslash in the filename, you might need to use two of them,
depending on the quoting rules of the Kermit client.

Choosing Text or Binary Transfer
As you learned in Chapter 9, the transfer mode — text or binary — in SEND/RECEIVE file
transfers is determined by the file sender.

When using modern Kermit software in a client/server arrangement, however, the file
transfer mode (SET FILE TYPE) and filename conversion (SET FILE NAMES) are controlled in
a more convenient, if somewhat more complex, manner.

The precise method used by any Kermit client/server pair to determine the transfer mode
is as follows:

1. If both client and server support the ‘‘whoami’’ feature (see Table -FEATURZ on page
-FEATURZ), by which they inform each other of their system type, and they deter-
mine that they are running on the same type of system, and SET TRANSFER MODE is
AUTOMATIC, then both client and server switch automatically into BINARY transfer
mode (in OS/2 and VMS they switch into LABELED transfer mode). Otherwise:

2. If both client and server support the ‘‘whatami’’ feature (again, see Table
-FEATURZ), by which the two Kermits inform each other of their client/server status,
transfer mode, and file names setting, the client’s settings take precedence. Otherwise:

3. If both client and server support Attribute packets (Table -FEATURZ), by which the
file sender informs the receiver of (among other things) the transfer mode, the file
sender’s settings dominate. Thus the client can change settings prior to sending files
and all will work as expected. But when GETting files from the server, the server’s
settings dominate. In case the server does not have the desired modes, you can use
REMOTE SET, explained later in this chapter, to change them.

4. If none of the above is true, then you must give the appropriate SET FILE TYPE and SET

FILE NAMES commands to both client and server to ensure correct transfer.

To put it more simply: When using modern Kermit versions in client/server mode, and
you have not gone out of your way to disable their features, you can control the transfer
mode by giving commands to the client, without having to tell the server too.

Sending Commands to Kermit Servers 259

The Client’s REMOTE Command
So far, we’ve seen the Kermit server only as a new way of doing the same old thing —
transferring files. But you can also use the server for remote file management, just as you
can use C-Kermit for local file management by giving it DIRECTORY, DELETE, and similar
commands. The difference is the word REMOTE. The REMOTE prefix lets you send com-
mands to the remote Kermit server instead of executing them locally:

MS-Kermit>delete data.tmp (Delete a local file)
MS-Kermit>remote delete data.tmp (Delete a remote file)

The DELETE command deletes a file on your local computer; the REMOTE DELETE com-
mand asks the remote Kermit server to delete a file on its computer.

Most REMOTE commands send back their results to your screen, like the REMOTE HELP

command shown on the next page. You can also redirect this material to a file or to
another process using the following notation (shown with the REMOTE DIRECTORY com-
mand, but it works with any REMOTE command):

remote dir ; Displays on screen
remote dir > filename ; Goes to a (new) file
remote dir >> filename ; Appends to a file
remote dir | command ; Piped into a command
remote dir | command > filename ; .. whose output goes to a file
remote dir | command >> filename ; .. or is appended to a file

The redirection indicators ‘‘>’’, ‘‘>>’’, and ‘‘|’’ are the familiar ones from UNIX and
DOS. ‘‘>’’ means to create a new file of the given name, overwriting any existing file
having the same name. ‘‘>>’’ means to append to (write to the end of) the named file if it
exists, otherwise create a new file. ‘‘|’’ indicates a ‘‘pipe’’ to another program or to a sys-
tem command; the Kermit material is sent as ‘‘standard input’’ to the indicated command.

The REMOTE commands are as follows. They are executed if the server understands them
and they have not been disabled in the server.

REMOTE CD [directory]
Tells the client Kermit to ask the Kermit server to change its default (working) direc-
tory to the one given, expressed in the syntax of the server’s file system. If none is
given, the server changes to its home, login, or default directory. Examples:

MS-Kermit>remote cd /usr/include (UNIX)
MS-Kermit>remote cd sys$system (VMS)
MS-Kermit>remote cd (Default directory)

REMOTE COPY filespec1 filespec2
Tells the client to ask the Kermit server to copy the file or files given by filespec1 to
the device, directory, or file(s) given by filespec2. The copy operation is performed on
the server’s computer. Write/create access is required for filespec2. Example:

C-Kermit>remote copy oofa.txt copy-of-oofa.txt

260 Using a Kermit Server / Chapter 11

REMOTE DELETE filespec
Tells the client to ask the Kermit server to delete the specified file or files on the
server’s computer. Normal access restrictions apply — the server can’t delete a file
that you could not delete yourself. Example:

MS-Kermit>remo del *.tmp (Delete all my .tmp files)

REMOTE DIRECTORY [filespec]
Tells the client to ask the server to send a directory listing of the specified file or files
to your screen. The filespec is in the syntax of the Kermit server’s operating system.
If no filespec is given, the server sends a directory listing of all files in its current
directory.

MS-Kermit>remo dir *.txt (List all my .txt files)
MS-Kermit>rem dir (All files in current dir)
MS-Kermit>rem dir [ivan] (A different directory)

REMOTE HELP
Tells the client to ask the remote server for a list of the services it offers. In this ex-
ample, an MS-DOS Kermit client queries a UNIX C-Kermit server:

MS-Kermit>remote help
C-Kermit Server REMOTE Commands:

GET files REMOTE CD [dir] REMOTE HOST command
REGET files REMOTE SPACE [dir] REMOTE DIRECTORY [files]
RETRIEVE files REMOTE DELETE files REMOTE LOGIN user password
SEND files REMOTE PRINT files REMOTE SET parameter value
RESEND files REMOTE TYPE files REMOTE QUERY type variable
MAIL file user REMOTE WHO [user] REMOTE ASSIGN variable value
FINISH, BYE REMOTE HELP
MS-Kermit>

If the client Kermit has these commands, the C-Kermit server can execute them.
Other Kermit servers might have different menus.

REMOTE HOST command
Tells the client to ask the server to ask its host operating system to execute the given
command or program and return the results to your screen. This command is
described more fully on page 262.

REMOTE KERMIT text
Tells the client Kermit program to send the text to the server, which is to interpret it as
if it were a Kermit command typed at its own Kermit prompt. C-Kermit can send this
command as a client, but a C-Kermit server cannot respond to it (presently, this com-
mand is useful only when sent to an IBM Mainframe Kermit server).

REMOTE LOGIN name [password [account]]
Tells the client Kermit program to send user ID, password, and, optionally, account in-
formation to a Kermit server that has been set up to require login before it will execute
any other commands.

Sending Commands to Kermit Servers 261

REMOTE LOGOUT
Terminates your access rights with a Kermit server that you have previously accessed
via REMOTE LOGIN.

REMOTE PRINT filespec [options]
Sends the specified local file to the Kermit server and asks the Kermit server to print it
using the specified options, if any. The options are in the syntax of the server’s host
operating system. If no options are specified, the server system’s defaults are used:

MS-Kermit>remote print oofa.txt /queue=laser /copies=3 (VMS)
MS-Kermit>remo prin oofa.txt -Plaser -#3 (UNIX)
MS-Kermit>rem pri oofa.txt

Note: If you want to tell the server to print a file that is already resident on the server’s
computer, use a REMOTE HOST command, such as ‘‘remote host lpr oofa.txt’’ (UNIX)
or ‘‘remote host print/copies=2 oofa.txt’’ (VMS).

REMOTE PWD
Tells the client Kermit program to ask the server to display its current directory
(‘‘pwd’’ means ‘‘print working directory’’). Example:

C-Kermit>remo cd ~olga
C-Kermit>rem pwd
/users/olga
C-Kermit>

REMOTE RENAME filename1 filename2
Tells the client to ask the server to change the name of the file whose name is
filename1 to filename2. Example:

C-Kermit>remote rename oofa.txt newname-of-oofa.txt

REMOTE SPACE [device-or-directory]
Tells the client Kermit program to ask the Kermit server to give a brief report on space
used or available on the given device or directory or, if none is given, in the server’s
current device or directory. Examples:

MS-Kermit>remot space /usr (UNIX, /usr partition)
MS-Kermit>remo spac sys$login (VMS, login disk)
MS-Kermit>rem spa a: (Windows or OS/2, A: disk)
MS-Kermit>rem spa (Any, current disk)

REMOTE TYPE filespec
Tells the client Kermit program to ask the Kermit server to display the specified file
on your screen. The file is assumed to be a text file. Example:

MS-Kermit>remote type oofa.txt

REMOTE WHO [user]
Tells the client Kermit program to ask the Kermit server to send information about a
particular user of its computer or, if the computer is on a network, about any user on

262 Using a Kermit Server / Chapter 11

any computer on the network. If no user is specified, the server sends a list of all users
who are currently logged in. Examples:

MS-Kermit>remote who (All logged-in users)
MS-Kermit>remote who olaf (A particular user)
MS-Kermit>remote who kermit@watsun (A user on the network)

REMOTE commands are system-independent. They are translated by your local Kermit
into standard protocol messages understood by all Kermit servers that support these com-
mands. If you send a command that is not in the server’s repertoire, the server responds
with a message like ‘‘Unimplemented server command’’.

The REMOTE HOST Command
As noted in the previous section, the REMOTE HOST command lets the client program run a
command or program on the server’s host computer. This command differs from other
REMOTE commands in several ways.

First, the syntax for redirection is a bit different. For example, does this:

remote host ls -lt > filename

mean the command ‘‘ls -lt’’ is to have its output sent to a file on the server’s computer
or on the client’s? In cases like this, you can ‘‘disambiguate’’ redirectors using braces:

remote host blah blah > file ; File on this end
remote host { blah blah } > file ; File on this end
remote host { blah blah > file } ; File on that end
remote host { blah blah > file } > file ; Files on both ends

So much for syntax. As for execution, the command must not require a dialog; it has to be
the sort of command that you can give to your host operating system completely on one
line and that responds by printing a message on your screen using ordinary characters —
not graphics or pop-up windows — or by not printing anything, and then exits. Examples:

MS-Kermit>remote host ln -s oofa.old oofa.new
MS-Kermit>remo hos date (UNIX date and time)
Sat Jul 4 18:42:43 EDT 1996
MS-Kermit>rem ho show time (VMS date and time)

4-JUL-1996 18:42:43
MS-Kermit>remote host rmdir temp (Delete UNIX directory)
MS-Kermit>remo ho delete/dir temp (Delete VMS directory)

If you invoke any other kind of program with REMOTE HOST, the results are unpredictable,
and probably not what you wanted. For example, if the server is running under MS-DOS
and you give a command like ‘‘remote host format a:’’, your session will get stuck as DOS
on the server end prompts the PC’s real keyboard and screen to insert a diskette and press
the Enter key when ready. Even if the REMOTE HOST command conforms to the rules, it
might take a long time to execute. In case this causes problems for your client program,
such as timing out and giving up, adjust your client program’s timeout interval.

Sending Commands to Kermit Servers 263

Sending E-Mail Through the Server
When the computer that the server is running on has a mail delivery system, you can send
files to the server to be delivered as electronic mail. The client command is:

MAIL filespec address
Sends the specified local file(s) to the Kermit server, asking the server to deliver
it/them as e-mail to the specified address(es) rather than storing it on disk. Examples:

MS-Kermit>mail oofa.txt olga, ivan
MS-Kermit>mail message.txt kermit@columbia.edu
MS-Kermit>mail message.* olaf

Changing the Server’s Settings
If your server allows it and your local Kermit program has the commands for it (MS-DOS
Kermit, Kermit 95, Kermit/2, and C-Kermit all can do both), you can change selected
server settings from the client:

REMOTE SET parameter value
Tells the Kermit client to ask the remote Kermit server to set the given parameter to
the specified value. The parameters include many of the same ones used in the SET

command, like BLOCK-CHECK, FILE TYPE, and so forth. Issuing the REMOTE SET com-
mand to your local Kermit program is exactly like issuing the corresponding SET com-
mand to the remote Kermit program if it were in interactive command mode and (in
cases where it makes a difference) also issuing the same command to your client
program. Here is an example in which we switch a Kermit server from sending files
in text mode to binary mode.

MS-Kermit>get *.txt (Get text files)
MS-Kermit>remote set file type binary
MS-Kermit>get *.bin (Get binary files)

(Note: This example works independently of the WHATAMI feature, because REMOTE

SET FILE TYPE BINARY sets both the client’s and the server’s file transfer mode.)

To see a complete list of REMOTE SET commands supported by your client Kermit
program, just type REMOTE SET followed by a space and a question mark; for example:

MS-Kermit>remote set ? One of the following:
attributes file incomplete block-check receive retry
server transfer window-slots
MS-Kermit>remote set attributes date off

These are the REMOTE SET commands an MS-DOS Kermit client can send to a Kermit
server. As with the local SET command, some of these commands have further options:

MS-Kermit>remote set receive ? One of the following:
packet-length timeout
MS-Kermit>remote set receive timeout 8
MS-Kermit>

264 Using a Kermit Server / Chapter 11

When C-Kermit itself is the client, it can send the following REMOTE SET commands to a
Kermit server:

C-Kermit>remote set ? One of the following:
attributes file receive server window
block-check incomplete retry transfer
C-Kermit>

And when C-Kermit is the server, it also allows these commands to be sent to it. If you
send a REMOTE SET command to a Kermit server that does not support this feature, it
replies with an error message like ‘‘Unimplemented server function’’ or ‘‘Unknown
REMOTE SET parameter’’.

Transmission of Variables

It is possible for the client to define, query, and in some cases change variables that reside
in the server and the server’s host operating system. We mention this now for complete-
ness, but the topic of variables is not covered until Chapter 17, and so a complete treat-
ment of transmission of variables between client and server is deferred until that chapter.
Briefly, the commands are:

REMOTE ASSIGN variable-name [value]
Tells the Kermit client to ask the Kermit server to assign the given value (if any) to the
named variable. If no value is given, the server’s variable is deleted.

REMOTE QUERY { KERMIT, SYSTEM, USER } variable-name
Tells the client to ask the server to send the value of the variable of the given type that
has the given name. If the query succeeds, the value is displayed on your screen and it
is also stored in a local client variable, \v(query).

See Chapter 17 for details.

Turning the Tables

Now that you can control a remote Kermit server from your local computer, can you think
of any reason why you might want to have the remote Kermit program act as a client to a
Kermit server running on your local computer?

Suppose you want to send a mixture of text and binary files from a remote UNIX com-
puter to MS-DOS Kermit on your local PC. (The remote UNIX computer has an old ver-
sion of C-Kermit that does not support ADD SEND-LIST). Here is one way to do it. Con-
nect and login to the remote computer from your local PC. Then use your UNIX text
editor to create a command file for UNIX C-Kermit containing the necessary SET FILE

TYPE and SEND commands, as in this example, called download.ksc:

Command Summary 265

echo Return to your local Kermit and give the SERVER command.
set delay 5 ; Allow time to escape back
set file type binary ; Binary for object and executable files
msend *.o wermit
set file type text ; Text for source files
msend *.c *.h
finish ; Return the PC to normal

The FINISH command makes MS-DOS Kermit’s prompt reappear after all the files have
been transferred.

Now start C-Kermit on the UNIX system, have it TAKE the command file, then escape
back to the PC and put MS-DOS Kermit into server mode:

C-Kermit>take download.ksc (TAKE the command file)
Return to your local Kermit and give the SERVER command.
Alt-x (Escape back to the PC)
MS-Kermit>serve (Put it in server mode)

And now go to lunch while all the files are being transferred.

An even better reason for a reverse client/server relationship is presented in Chapter 13.
But first, Chapter 12 examines the performance of the Kermit protocol and shows you
how to get the most out of it.

Command Summary

The following commands are used to configure and start a C-Kermit server:

SET SERVER DISPLAY { ON, OFF }
SET SERVER GET-PATH directory [directory ...]
SET SERVER IDLE-TIMEOUT number
SET SERVER LOGIN [username [password [account]]]
SET SERVER TIMEOUT seconds
DISABLE service
ENABLE service
SERVER

The following services can be ENABLEd and DISABLEd:

ASSIGN QUERY
BYE PRINT
CD RENAME
COPY RETRIEVE
DELETE SEND
DIRECTORY SET
FINISH SPACE
GET TYPE
HOST WHO
MAIL

Use the SHOW SERVER command to display the server configuration and list which ser-
vices are enabled and disabled.

266 Using a Kermit Server / Chapter 11

Client Summary

To log in and out from the server, if required:

REMOTE LOGIN name [password [account]]
REMOTE LOGOUT

To find out what services are available:

REMOTE HELP

To change the server’s settings:

REMOTE SET parameter value
REMOTE KERMIT command

To access the server’s variables:

REMOTE QUERY { KERMIT, SYSTEM, USER }
REMOTE ASSIGN variable-name [value]

To send files to the server:

SEND [filespec [remote-filename]]
MOVE filespec [remote-filename]
MSEND filespec [filespec ...]
MMOVE filespec [filespec ...]
MAIL filespec address
REMOTE PRINT filespec [options]

To get files from the server:

GET filespec [filespec ...]
REGET filespec [filespec ...]
RETRIEVE filespec [filespec ...]

For file and user access on the server:

REMOTE CD [directory]
REMOTE COPY filespec1 filespec2
REMOTE DELETE filespec
REMOTE DIRECTORY [filespec]
REMOTE PWD
REMOTE RENAME filename1 filename2
REMOTE SPACE [device/directory]
REMOTE TYPE filespec
REMOTE WHO [user]

To execute host commands on the server’s computer:

REMOTE HOST command

To shut down the server:

FINISH
BYE

267

Chapter 12

High-Speed Kermit File Transfer

Not to wear out our pet analogy, but learning to use Kermit is like learning to drive a car.
We stress safety first, performance later. If you have been following the chapters in se-
quence, you should be experiencing reliable transfers of all types of files between all man-
ner of systems on all sorts of connections. But you might have noticed that the transfers
were not particularly fast. This might be the cause of the persistent but unfounded rumor
that Kermit protocol is intrinsically slow compared to other protocols like ZMODEM.

Safety first. You don’t learn to drive at 120 miles per hour; first you master the basic
skills at lower speeds. And no matter how skilled you are, you can’t drive your car at high
speed down a bumpy road through a traffic jam. But suppose the road is smooth, wide,
and straight and you have it all to yourself. How fast can you go?

Here is an easy speed trial for those who are using any combination of C-Kermit, Kermit
95, Kermit/2, or MS-DOS Kermit. Fasten your seat belts! At the Kermit prompt of each
Kermit program, type the command FAST prior to starting a file transfer; for example:

C-Kermit> fast (Make the remote Kermit fast)
C-Kermit> receive (Tell it to wait for a file)
Alt-x (Escape back)
MS-Kermit> set file type binary (It’s a binary file)
MS-Kermit> fast (Make the local Kermit fast)
MS-Kermit> send kermit.exe (Send a file)

If the transfer worked at all, it should have been plenty fast. If it didn’t, well... that’s
what the rest of this chapter is for, in which we take a look at the performance features of
the Kermit protocol and how to harness them.

268 High-Speed Kermit File Transfer / Chapter 12

Overview of the Kermit Protocol

When you transfer a file, Kermit breaks it up into a series of messages called packets.
Each packet consists of distinct start and end markers; a length field for framing; a se-
quence number for detection of missing, duplicated, or out-of-sequence packets; a packet
type; maybe some data; and a checksum for error detection, as shown in Figure 12-1.

Except for the start and end markers (Control-A and Carriage Return, respectively), the
packets are normally encoded by the sender as short, simple lines of printable text to sur-
vive even the most hostile communication environments, and decoded by the receiver into
the appropriate form. Each control character (ASCII 0–31, 127–159, and 255) is encoded
as a sequence of two printable characters; for example, Control-C (ASCII 3) is encoded as
the two-character sequence ‘‘#C’’.

The file sender sends packets of various types, and the file receiver replies to each packet
with an acknowledgement (ACK) to indicate that the packet was received correctly, or a
negative acknowledgement (NAK) that tells the sender a packet was received in damaged
condition — or not received at all — and therefore needs to be retransmitted.

Because the file sender waits for an acknowledgement before sending the next packet, the
rate at which packets are exchanged is controlled by the receiver, which prevents a fast
sender from overrunning a slower receiver. This style of packet exchange, called ‘‘stop
and wait,’’ is illustrated in Figure 12-2. Of course, the protocol does not stop and wait
forever. If an expected packet does not arrive within a certain amount of time, there is an
automatic timeout and retransmission to break the deadlock.

The packet exchange proceeds through the following phases, each of which is associated
with a particular packet type, shown in parentheses (see Table 9-2 on page 208 for a more
complete list of Kermit packet types):

1. (S) Send initation and feature negotiation. ‘‘I am sending one or more files to you and
here are some facts about my features and configuration.’’ This lets the two Kermits
determine which features they have in common and agree to use them, and allows the
newest, most full-featured version of Kermit to work automatically with even the
oldest barest-bones version.

Figure 12-1 Kermit Packet Format

Overview of the Kermit Protocol 269

Figure 12-2 Stop-and-Wait Packet Exchange

2. (F) The file sender sends the file name so the receiver can create the new file with the
same name.

3. (A) The file sender sends information about the file (file attributes) so the receiver can
create the file with the appropriate attributes, including size, creation date, transfer
mode (text or binary), character set, and so forth.

4. (D) The file sender sends the contents (data) of the file, usually requiring many pack-
ets. During the data phase of a text-mode transfer, the Kermit protocol accomplishes
the necessary conversions by translating between the local computer’s character codes
and file formats and the standard ones specified by the protocol, so each computer
needs to know only its own local conventions and the standard ones.

5. (Z) When all the file’s data has been sent, the file sender sends an end-of-file packet so
the receiving computer knows the file has been completely received and can close it.

If there are more files to send, steps 2–5 are repeated for each file.

6. (B) When all the files have been sent, the file sender terminates the operation by send-
ing a ‘‘Break’’ packet, causing each Kermit program to leave packet mode and return
control to the user, with the local Kermit program notifying the user that the file has
been completely transferred.

So, in short, the Kermit protocol breaks a file up into packets, encodes the data somehow,
and sends messages back and forth in packet form. This tends to introduce some overhead

270 High-Speed Kermit File Transfer / Chapter 12

and might be slower than (say) just blasting all of the file’s bytes out the communication
channel all at once without any kind of protocol at all. But it works better.

A Word about Efficiency

How do we measure the efficiency of a file transfer? It is the ratio of the speed at which
the file was transferred to the speed of the connection. For example, suppose we have a
1200 bps (120 cps) serial connection and we transfer 36,000 bytes of information in 400
seconds. The speed of the transfer is therefore 90 cps, so we have used the connection at
90 / 120 = 75% efficiency. If we transferred the same data in 200 seconds, the efficiency
would be 150%; this might occur with data compression.

But this assumes that we know the speed of the underlying connection, and that it remains
constant. This might be the case on a direct serial connection, such as a null-modem cable
between two computers. The capacity of the connection is simply the serial port speed.
But the full capacity might not be used if one of the computers is slow or busy. A slow
sender will exhibit gaps between characters; a slow receiver will exert flow control to
throttle the sender. Nevertheless, one can measure the efficiency of a file transfer on such
a connection. If neither computer is a bottleneck, then the efficiency number is also a
good measure of the efficiency of the file-transfer protocol.

At the opposite end of the spectrum, network connections are entirely unpredictable. In
the first place, we rarely know the ‘‘transmission speed’’ of the network, and if we did it
would be irrelevant anyway, since the medium is shared by an unknown number of other
connections, and the speed of the interface to the network might not be the same as the
speed of the network transmission medium. In any event, the network load goes up and
down depending on the number of connections and how busy they are; the worse the con-
gestion, the longer each transmission must wait its turn. On a long-distance network con-
nection, the load on each network segment and on the routers or switches that join them
also must be considered. And of course, we still must take into account the speed of, and
the load on, the two end systems that are using the network to communicate.

The speed of a modem connection depends on many factors: the modulation protocol, the
modulation speed, the error correction and data compression protocols (if any), and the in-
terface speeds on each end, which can be different from each other and from the modula-
tion speed itself. If the connection is error-corrected, then noise on the telephone line
slows down the data because the modems are retransmitting between themselves, in-
visibly. If data compression is active, its effectiveness is limited by the lower of the two
interface speeds. If the modems have negotiated a mutually acceptable fallback and
fallforward arrangement, as is common with V.34 modems, the modulation speed is likely
to shift down and up throughout the connection. And the same constraints remain as on

Analyzing Kermit’s Performance 271

direct connections: the speed of and load on the end systems. And when a terminal server
is involved, the speed of and load on the terminal server and the network that connects it
to the remote system must also be factored in.

So in the modern world of high-speed modems and wide- and local-area networks, ef-
ficiency is an increasingly ephemeral concept. We can measure the data transfer rate, but
what do we compare it with to calculate the efficiency? We could do this back in the days
of direct serial connections and 1200 bps modems, but today efficiency calculations tend
to be baseless and misleading.

Analyzing Kermit’s Performance

Let’s transfer a file on a 9600 bps direct serial connection, using all of C-Kermit’s default
and deliberately conservative protocol settings20.

After a file transfer is finished, you can use the STATISTICS command to get information
about its efficiency and what parameters were used:

C-Kermit>stat
Most recent transaction --
files transferred: : 6
files not transferred: : 0
characters last file : 109313
total file characters : 452992
communication line in : 25989
communication line out : 489226
packets sent : 5180
packets received : 5187
damaged packets rec’d : 4
timeouts : 2
retransmissions : 7
parity : none
control characters : 28328 prefixed, 0 unprefixed.
8th bit prefixing : no
locking shifts : no
window slots used : 1 of 1
packet length : 94 (send), 94 (receive)
compression : yes [~] (79010)
block check type used : 1
elapsed time : 681 sec
transmission rate : 9600 bps
effective data rate : 665 cps (69%)
C-Kermit>

20Kermit 95, Kermit/2, and perhaps some other Kermit versions might have ‘‘higher’’ defaults, so we
explicitly set the relevant parameters back to their base values — use the ROBUST command to do this.

272 High-Speed Kermit File Transfer / Chapter 12

Let’s take a brief look at this report. It contains all the information needed to tune
Kermit’s peformance.

files transferred: : 6
files not transferred: : 0
characters last file : 109313
total file characters : 452992 (f)

This tells you how many files were transferred, how many were skipped, and how
many characters were in the last file transferred and in all the files that were trans-
ferred. Let’s call this last number f.

communication line in : 25989 (pi)
communication line out : 489226 (po)

This tells you how many characters were received (pi) and transmitted (po) on the
communication device. The number of extra characters introduced by the Kermit
protocol is:

pi + po − f

The encoding efficiency is the ratio of the file size to the total number of characters
sent and received:

f
pi + po

which, in this case, comes out to 452992 / (25989 + 489226) = 0.88. If this number
is less than 1, there is a net expansion, and therefore a loss of efficiency. If it’s greater
than 1, the data must have been compressed more than enough to compensate for the
packet overhead.

packets sent : 5180
packets received : 5187
damaged packets rec’d : 4
timeouts : 2
retransmissions : 7

This tells us how many packets were sent and received. The number of damaged
packets is a good indicator of the quality of the connection. A perfectly clean and ef-
fectively flow-controlled connection should have none. Timeouts can indicate either a
very poor connection (bad enough to make a packet indistinguishable from line noise),
long delays, lost packets due to inadequate flow control, or a timeout value based on
incorrect assumptions. The number of retransmissions is the number of times packets
had to be sent again because of a timeout, because a NAK was received, or because a
damaged packet was received.

Analyzing Kermit’s Performance 273

parity : none
8th bit prefixing : no
locking shifts : no

These items tell whether C-Kermit is operating in 7-bit or 8-bit mode. If PARITY is not
NONE, you have a 7-bit connection, and 8-bit data is transmitted using single shifts
(8th-bit prefixing) or locking shifts (described later) if these features are successfully
negotiated (see Table -FEATURZ on page -FEATURZ). Both of these methods add
additional overhead and should be avoided when possible. In other words, never set
PARITY to EVEN, ODD, MARK, or SPACE unless file transfers don’t work with PARITY set
to NONE.

control characters : 28328 prefixed, 0 unprefixed.
window slots used : 1 of 1
packet length : 94 (send), 94 (receive)
compression : yes [~] (79010)

These are Kermit’s performance boosters. Keep reading this chapter to find out how
to use them.

elapsed time : 681 sec (t)
transmission rate : 9600 bps (r)
effective data rate : 665 cps (69%) (e)

This is Kermit’s report card: 69 percent efficiency. We’ll improve our score shortly,
but first let’s see how it was calculated [22]:

e =
f × 10
r × t

where:

e = efficiency, 1.00 is perfect
f = file size in characters
t = elapsed time in seconds
r = transmission rate, bits per second

That is, the ratio of total file bits actually transferred to the number of bits that could
possibly be transferred in the elapsed time. In our example, this is:

= 0.6929
452992 × 10
9600 × 681

or about 69 percent.21

Kermit’s small packet size and stop-and-wait technique of exchanging packets tend to
result in this kind of performance on direct or directly dialed connections, and worse per-
formance than this on connections with noticeable round-trip delays. But this design lets

21The percent efficiency is reported by the STATISTICS command only on direct serial connections, with
no modems involved, which is the only case in which C-Kermit knows the communication speed.

274 High-Speed Kermit File Transfer / Chapter 12

Kermit protocol work on many types of connections where other protocols fail to work at
all — half-duplex connections, 7-bit connections, connections that are not transparent to
control characters, connections that have small buffers and/or inadequate flow control, and
so on. Of course other factors must be considered in the performance too, such as the
speed of the computers (CPU power, load on the system, disk access time, and so on), the
quality of the connection (the number of retransmissions), the properties of the data com-
munication devices (e.g. compressing versus non-compressing modems).

There are several ways to improve the performance of Kermit file transfer:

• Compress the data

• Increase the ratio of real data to packet overhead characters

• Reduce or eliminate the wait between packets

• On 7-bit connections, reduce the amount of 8th-bit prefixing

• Reduce the amount of control-character prefixing

In the next sections we present the tools you will need to accomplish each of these feats,
one at a time or in any combination.

Data Compression

Whenever you initiate a file transfer, the sending Kermit asks the receiving Kermit if it
can accept compressed data. If there is agreement, the file sender collapses repeated bytes
into a sequence composed of a compression prefix character, a repeat count, and then the
character itself. For example:

~@C

stands for 32 letter C’s in a row (~ is the prefix character, @ is the encoded repeat count,
and C is the letter C itself). Since the repeat count is a single printable ASCII character,
the maximum number of repeated characters that can be represented by a repeat-count se-
quence is 94, the number of printable ASCII characters.

Text files containing long strings of blanks and binary files with repeated null characters
turn out to be quite common. The average file — text or binary — is compressed about
15 percent during transmission using this simple method [21, pp. 248–250], which tends
to offset most other types of overhead introduced by the Kermit protocol. As an extreme
example, we transfer a Sun SPARC executable program (‘‘Hello World’’), 24576 bytes in
length:

Data Compression 275

C-Kermit>set file type binary
C-Kermit>s hello
...
C-Kermit>statistics
total file characters : 24576
communication line out : 3032
compression : yes [~] (23504)
elapsed time : 4 sec
transmission rate: : 9600 bps
effective data rate: : 6144 cps (647%)

‘‘(23504)’’ means that 23504 file bytes were compressed.

Unfortunately, Kermit’s compression feature is handled incorrectly by some shareware
and BBS Kermit implementations, so sometimes we have to turn it off to compensate.
The command is:

SET REPEAT COUNTS { ON, OFF }
Enables or disables repeat-count count compression during file transfer. By default, it
is enabled.

Some people claim that if files are being transferred through a data-compressing modem,
that Kermit’s compression is not only redundant but adds unnecessary overhead, thus ac-
tually slowing down the transfer. If you are curious, you can compare results with SET

REPEAT COUNTS ON and OFF, as we will do before concluding this chapter.

You can also change the repeat prefix character, although there is almost never a need to
do this. One reason might be if you were sending a file that contained many tilde charac-
ters as data, which themselves could not be compressed. The worst-case file would be
composed completely of non-tilde characters interspersed with tildes:

~A~B~C~D~E~F~G~H~I~J~K...

Each tilde would need to be ‘‘quoted’’ to distinguish it from a repeat prefix, and so the se-
quence above would be encoded as:

#~A#~B#~C#~D#~E#~F#~G#~H#~I#~J#~K...

The command to change the repeat prefix is:

SET REPEAT PREFIX number
Changes the repeat prefix to the ASCII character whose code is number, which must
be in the range 33–63 or 96–126. The default is 126 (tilde).

Before leaving the topic of compression, it is worth noting that the shortest run of repeated
characters that results in a savings when compressed is four. However, Kermit compres-
ses even when there are three characters in a row, for two reasons. First, since the com-
pressed sequence is also three characters long, there is no gain in overhead. Second, and
more important, this allows Kermit transfers to proceed through modems that return to

276 High-Speed Kermit File Transfer / Chapter 12

command mode when they see three plus-signs (or other characters) in a row.22 Thus, the
deadly plus-plus-plus sequence:

+++

becomes, harmlessly:

~#+

and your connection does not mysteriously hang up.

Long Packets

Kermit data packets can be any length between about 5 and 9000 characters.23 Normal
Kermit packets are 94 characters long, and most C-Kermit implementations use this length
unless told otherwise. As Figure 12-1 shows, each packet has five control fields in ad-
dition to the data, and each packet must be acknowledged by another packet that includes
five control fields of its own, but (usually) no data.

Kermit’s packet length is a major factor in its performance. The longer the packet, the
higher the proportion of actual data to protocol overhead characters, and the fewer ac-
knowledgements required. In a typical trial, Kermit’s file transfer efficiency was in-
creased 800 percent just by using longer packets [22, page 13, Table 4]. The trick is to
find the ideal packet length for a given connection. The command that governs Kermit’s
packet length is:

SET RECEIVE PACKET-LENGTH number
Give this command to the file receiver before the transfer starts. The file receiver
gives permission to the file sender to send packets up to the given number of bytes
(characters) in length. When you are using long packets, you should also stick with
the default strong error-checking method (SET BLOCK 3), since the probability of un-
detected errors goes up with the packet length. Example:

C-Kermit>set rec pack 2000 (Set the packet length)
C-Kermit>receive (Receive a file)
Alt-x (Escape back to the PC)
MS-Kermit>set block-check 3 (Use strong error checking)
MS-Kermit>send oofa.txt (Send a file)

22These are generally Hayes-compatible modems that do not implement a ‘‘guard time’’ around the
escape sequence because use of a guard time requires payment of a license fee to the patent holder.

23The absolute limit is 952 − 1 = 9024, but some Kermit programs have a lower limit because of memory
or addressing limitations. Most non-Columbia Kermit implementations are limited to 94; lengths greater
than 94 require the ‘‘long packet’’ protocol feature [21]. Use the SHOW PROTOCOL command to find the
maximum packet length of your Kermit program.

Long Packets 277

The SET RECEIVE PACKET-LENGTH command works only when you give it to the file
receiver. Of course, the file sender can decide to use shorter packets anyway, for example
if its maximum packet length is less than what the receiver asked for or if it doesn’t sup-
port long packets at all (see Table -FEATURZ on page -FEATURZ). For that matter, you
can even tell the file sender yourself:

SET SEND PACKET-LENGTH number
Give this command to the file sender. The maximum length packet used in the trans-
fer is the smaller of the receiver’s RECEIVE PACKET-LENGTH and the sender’s SEND

PACKET-LENGTH.

Thus, it is impossible to force a Kermit program to send packets longer than the receiver
asks for, but it is possible to force shorter ones.

To find the optimum packet length for a given connection, select a moderate-size file and
transfer it using different packet lengths. Note the effective data rate reported by
C-Kermit’s STATISTICS command after each transfer. Use whatever packet length results
in the highest performance. In this example, we use 2000-byte packets to transfer a
53,000-byte text file:

C-Kermit>set receive packet-len 2000 (Try 2000-byte packets)
C-Kermit>r (Receive a file)
Alt-x (Escape back to PC)
MS-Kermit>set block 3 (Use CRC error detection)
MS-Kermit>s test.txt (Send the file)

(The file is transferred)

MS-Kermit>c (Connect back)
C-Kermit>stat (Get statistics)
...
packet length : 94 (send), 2000 (receive)
elapsed time : 61 sec
transmission rate : 9600 bps
effective data rate : 870 cps (90%) (Better than 69%!)
C-Kermit>

Dynamic Packet Length
In a perfect world, it would make sense to use the longest possible packets all the time,
perhaps even to send the entire file — no matter how long — in one big packet. But this
is the real world, where sometimes long packets can actually reduce the efficiency of a file
transfer:

The longer a packet, the more likely it is to cause a buffer overflow or be
damaged by noise and the longer it takes to retransmit.

When C-Kermit is sending a file, it tries to compensate for noise on the communication
line by reducing packet lengths automatically whenever a packet is damaged or a timeout

278 High-Speed Kermit File Transfer / Chapter 12

occurs, and then slowly increasing it again for each packet that is transmitted successfully:
the packet length adjusts to the noise level [18]. This trick is not foolproof, however. If a
packet is absolutely, positively too long for the receiver’s or network’s buffers, it will
never get through and the only remedy is to start again with a shorter maximum packet
length.

C-Kermit tries to find the best packet length automatically, using a slow start technique.
If the maximum negotiated packet length is greater than 500, the file sender begins by
sending a 244-byte packet. If it is acknowledged, the packet length is increased, and so on
up to the maximum negotiated length. Any errors reduce the size, but then it starts to
grow back again. Throughout this process (which can repeat many times on a bad connec-
tion), Kermit keeps an eye out for the best length, and uses it as the length to grow back to
when recovering from errors; this might or might not be the maximum negotiated length.
The slow-start procedure is used unless you give instructions to the contrary:

SET TRANSFER SLOW-START { ON, OFF }
Enable or disable the slow start procedure; it is enabled by default. If you turn it OFF,
then the initial packets are sent at the maximum negotiated length. Use OFF if you are
trying to set some kind of speed record.

This command does not affect packet-length reduction in response to errors.

Sliding Windows

On a clean direct or dialed connection, long packets are often all you need to achieve good
performance. But suppose you have a long-distance connection through an X.25 network
or an earth satellite, or you are using the Internet on a bad day. It might take a second or
more for a packet to reach its destination and just as much time for an acknowledgement
to make the return trip. Or suppose you have a connection that is noisy or in which there
are buffer-size limitations, irrespective of delays. Kermit’s sliding window feature is
designed for these situations.

Kermit’s normal packet protocol is: send packet number n, wait for an acknowledgement
for packet n, then send packet n+1, and so on, as you saw in Figure 12-2. When the con-
nection has a long round-trip delay, the waiting time destroys the efficiency of the
protocol. For example, on a 9600 bps connection with 1 second delay, where one tenth of
a second is required to transmit a 94-byte packet, the waiting time could have been used to
transmit 9 more packets. Efficiency plummets to about 10 percent, as in this example,
using the same 53K file as before:

C-Kermit>set rec pack 94 (No long packets)
C-Kermit>c (Receive a file)
Alt-x (Escape back to PC)
MS-Kermit>send test.txt (Send a test file)

Sliding Windows 279

(The file is transferred)

MS-Kermit>c (Connect back)
C-Kermit>stat (Get statistics)
...
packet length : 94 (send), 94 (receive)
elapsed time : 686 sec
transmission rate : 9600 bps
effective data rate : 77 cps (8%) (Terrible!)
C-Kermit>

That’s 11 minutes to transfer the file at 8 percent efficiency, when you would expect to be
able to transfer it in about a minute. If you are using an external modem, you can watch
the receive and transmit lights to appreciate what’s happening: the transmit light blinks on
for a brief moment, then both lights go dark. After a long pause, you get a blip on the
receive light, followed immediately by a blip on the transmit light, then another long
pause. And so on. More than 90 percent of the time is wasted.

Let’s try the same transfer again with 1000-character packets to see how much long pack-
ets might help. Here we show just the statistics:

C-Kermit>stat (Get statistics)
...
packet length : 94 (send), 1000 (receive)
window slots used : 1 of 1
elapsed time : 117 sec
transmission rate : 9600 bps
effective data rate : 451 cps (47%)
C-Kermit>

Much better, but still less than half the transmission speed. The same long intervals of
dead air remain between each packet, only now we have fewer of them.

On full-duplex connections, the inter-packet waiting time can be eliminated if the normal
stop-and-wait rule is relaxed to let Kermit send packet n+1 before packet n’s acknow-
ledgement arrives. C-Kermit is so relaxed about this rule it can happily tolerate as many
as 32 outstanding packets, using the sliding window technique [21] illustrated in Figure
12-3 on the previous page.

SET WINDOW number
Specifies how many packets, 1 to 32, may be transmitted before acknowledgements
arrive. With a sufficiently large window size, Kermit (usually) can transfer packets
continuously. It is necessary to give a SET WINDOW command to both Kermit pro-
grams to make this feature work. If the window sizes differ, the smaller of the two is
used. If the other Kermit does not support sliding windows at all, normal
stop-and-wait packet exchange is used automatically, which is equivalent to using a
window size of 1.

Let’s see if we can pep up our connection with a combination of long packets and sliding
windows. Here we transfer the same file again, over the same long-distance connection:

280 High-Speed Kermit File Transfer / Chapter 12

Figure 12-3 Sliding Windows

C-Kermit>set rec pack 500 (Packet-length is 500)
C-Kermit>set window 4 (Use four window slots)
C-Kermit>r (Receive a file)
Alt-x (Escape back to PC)
MS-Kermit>set window 4 (Select window size)
MS-Kermit>send test.txt (Send the file)

(The file is transferred)

MS-Kermit>c (Connect back)
C-Kermit>stat (Get statistics)
...
packet length : 94 (send), 500 (receive)
window slots used : 2 of 4
elapsed time : 65 sec
transmission rate : 9600 bps
effective data rate : 816 cps (85%)
C-Kermit>

That’s more like it! Don’t be alarmed if the file receiver reports a smaller number of win-
dow slots used than the file sender. This is normal. The file sender sends packets as fast
as it can until its window fills up or an ACK arrives; the file receiver, however, gets the
packets in order and ACKs each one when it arrives. The receiver’s window is used only
when packets are received in damaged condition or out of order.

Sliding Windows 281

Sliding windows can be beneficial even when the connection has no delays at all. First,
sliding windows eliminate the ACK/NAK overhead. The ACKs and NAKs are on the
wire simultaneously with the data packets, so they don’t take up any extra time. Second,
sliding windows and shorter packets can give better results than stop-and-wait and long
packets on noisy connections. Remember the rule for long packets: The longer a packet,
the more likely it is to be damaged and the longer it takes to retransmit.

When sliding windows are in use and a packet is damaged or lost (perhaps it was stolen by
a pick-packet?), the Kermit protocol recovers by selective retransmission, meaning that
only the damaged packet is retransmitted, as with Packet 6 in Figure 12-3. If packets are
short, they are less likely to be damaged and take less time to retransmit.

But when the connection is clean and unobstructed, we can use long packets and sliding
windows together to obtain optimum results, as in this example with a window size of 4
and a packet length of 4000:

C-Kermit>stat
...
packet length : 94 (send), 4000 (receive)
window slots used : 4 of 4
elapsed time : 57 sec
transmission rate : 9600 bps
effective data rate : 921 cps (96%)
C-Kermit>

To achieve this level on a particular connection, experiment with different combinations
of packet length and window size.

Windows and Buffers
If sliding windows are so beneficial, perhaps you are wondering why the SET WINDOW

command is necessary at all. Why not use a large window size all the time? First of all,
many packets sent in a continuous stream could have the same ill effect as a very long
packet when computers or networks have small buffers: fatal indigestion.

Second, many Kermit programs have limited memory for packet buffers. To use sliding
windows, Kermit must keep all windowed packets in memory simultaneously so selected
packets can be retransmitted and packets arriving out of sequence can be sorted before
writing their contents to disk. If the total packet buffer memory available is less than the
product of the maximum packet size and the maximum window size (9024 × 32 = 288768
bytes plus some extra), the window size or the packet size must be reduced.

Most implementations of C-Kermit are set up to allow packet buffers to be allocated
dynamically. You can increase the overall packet buffer size using the command:

282 High-Speed Kermit File Transfer / Chapter 12

SET BUFFERS send-length [receive-length]
Allocates the specified number of bytes of memory for send and receive packet buf-
fers, respectively. If the receive-length is omitted from the command, it is set to the
same value as the send-length, which is recommended because it avoids problems in
environments where packets might be echoed back. Example:

C-Kermit>set receive packet-len 9000
C-Kermit>set window 31
Adjusting receive packet-length to 286 for 31 window slots
C-Kermit>show protocol
Receive packet-length: 286, Windows: 31, Buffers: 9065 9065
C-Kermit>set buffers 280000
C-Kermit>set rec pack 9000
C-Kermit>show protocol
Receive Packet-length: 9000, Windows: 31, Buffers: 280015 280015
C-Kermit>

If Kermit can’t find the memory you asked for, the command fails. If the SET BUFFERS

command gives a syntax error, your version of C-Kermit does not support dynamic
memory allocation, and you can’t increase the packet buffer size:

C-Kermit>set buffers 280000 280000
?No keywords match - buffers
C-Kermit>check dynamic
Not available
C-Kermit>

Now perhaps you are wondering why the SET BUFFERS command is necessary. Why not
always allocate 288768 bytes of memory for each kind of buffer and be done with it? The
answer is simple: different computers have different amounts of memory available, dif-
ferent memory allocation strategies, different strategies for paging and swapping, and so
forth. On some computers (but not others), allocating a lot of memory for packet buffers
can result in extremely poor performance: just the opposite of what you wanted, because
(for example) the computer has a slow disk and is swapping itself to death. So once again
the onus is on you to find the numbers that are just right for your computer. Note,
however, that on some computers where we can expect big memories and high perfor-
mance, the default buffer size is quite large.

Single and Locking Shifts

When Kermit transfers 8-bit data over a 7-bit connection, it uses a single-shift method.
Each 8-bit character is preceded by a special prefix character, normally ampersand (&),
that tells the receiving Kermit to put back the 8th bit. This 8-bit transparency technique is
supported by virtually all Kermit versions (see Table -FEATURZ on page -FEATURZ).
It is negotiated automatically; C-Kermit bids to use this option if its PARITY is set to (or
automatically sensed as) any value other than NONE, and agrees to use it whenever the

Single and Locking Shifts 283

other Kermit asks for it. Otherwise, the 8th bit of each data byte is preserved, which, of
course, results in better performance. C-Kermit has no command, other than SET PARITY,
to control the use of single shifts.

Since 8-bit characters occur either not at all, or else more or less randomly, in most types
of files, this simple approach lets the data get through without too much extra overhead.
The penalty is approximately zero for ASCII text, about 5 percent for text written in Wes-
tern European languages, and 50 percent for non-textual binary files that contain a
uniform distribution of 8-bit byte values.

Locking Shifts
Certain types of files can have long sequences of 8-bit bytes. The most common examples
are text files written in a non-Roman alphabet and encoded in character sets like ISO
Latin/Cyrillic, Latin/Greek, Latin/Hebrew, Latin/Arabic, and especially the EUC encoding
for Japanese Kanji.24 The penalty for single-shift encoding in typical Cyrillic text is about
80 percent, and for EUC Kanji it is very close to 100 percent. When you need to transfer
this type of file over a 7-bit connection, C-Kermit uses locking shifts [36] as well as single
shifts if the other Kermit program agrees. A locking shift is a special character, Ctrl-N
(Shift-Out, SO), that means that all the following characters up to the next Ctrl-O
(Shift-In, SI) are to have their 8th bits set to 1 upon receipt:25

Seven-bit-text<SO>Eight-bit-text<SI>Seven-bit-text

While encoding data to be sent, in each case C-Kermit decides whether it is more efficient
to use a locking shift or single shift. The use of locking shifts is almost never bad. At
worst, performance is about the same with it as without it (as with 7-bit text files and 8-bit
binary files). In some cases (particularly for Kanji and Cyrillic text), it produces a
dramatic increase in efficiency, as much as 100 percent. The use of locking shifts is con-
trolled by a SET command:

SET TRANSFER LOCKING-SHIFT { OFF, ON, FORCED }
Specifies whether or how locking shifts should be used by Kermit for encoding and
decoding packets. Synonym: SET XFER LOCKING-SHIFT. The options are:

ON: If PARITY is not NONE C-Kermit tries to negotiate the use of locking-shift
protocol with the other Kermit, and uses it if the other Kermit agrees. If PARITY is
NONE, locking shifts aren’t used unless the other Kermit requests them.

24Character sets are discussed in Chapter 16.

25The Ctrl-N and Ctrl-O characters are, of course, encoded as printable characters, #N and #O, during
packet transmission.

284 High-Speed Kermit File Transfer / Chapter 12

OFF: Don’t use locking shifts, regardless of the PARITY setting. If the other Kermit
asks for locking shifts, C-Kermit refuses.

FORCED: Use locking shifts, regardless of the PARITY setting and negotiations. This
command lets the file sender send shifted data to a receiver that doesn’t understand
locking shift protocol; the embedded SO and SI characters are stored in the
received file, where they can be processed by terminals, printers, and other
devices. And it makes the receiver treat SO and SI characters in the data as shift
commands. This option automatically disables the use of single shifts.

To illustrate the effect of locking shifts, let’s try transferring a Japanese Kanji text file
through a 7-bit connection without them (notice how the STATISTICS command tells
whether locking shifts were actually used):

C-Kermit>set parity even
C-Kermit>set file character-set shift-jis
C-Kermit>set xfer character-set japanese
C-Kermit>set xfer locking-shift off
C-Kermit>send kanji.txt
...
C-Kermit>statistics
total file characters : 29440
communication line out : 58451
8th bit prefixing : yes [&]
locking shifts : no
elapsed time : 61 sec (50%)
C-Kermit>

and with them (but otherwise the same settings as before):

C-Kermit>set xfer locking-shift on
C-Kermit>send kanji.txt
...

C-Kermit>stat
total file characters : 29440
communication line out : 32404
8th bit prefixing : yes [&]
locking shifts : yes
elapsed time : 34 sec (90%)
C-Kermit>

Nearly twice as fast. So...

When you’re in Japan or the (ex)-USSR
And your file transfers need a lift,
Remember the old football cheer:
Lock that Shift! Lock that Shift! Lock that Shift!

Control Character (Un)Prefixing 285

Control Character (Un)Prefixing

Binary files tend to contain a large number of bytes whose code values are in the control
range, 0–31, 127–159, and 255. A compressed file tends to exhibit a uniform distribution
of byte values, and so normally consists of about 26% control characters. So even if you
have followed all the instructions in this chapter for maximizing your Kermit file transfer
performance, and you are achieving 90–100% efficiency for text files, your efficiency for
(say) ZIP-file transfer might still be in the neighborhood of 75%. This section shows you
how you can squeeze out that additional 20-25% efficiency, but not without some risk.

First, let’s set a goal for ourselves. Users of V.34/V.42/V.42bis modems regard 3200 cps
as the target speed for transferring a ZIP file through a connection between two such
modems, just as users of V.32bis/V.42/V.42bis modems set 1600 cps as their standard.

The V.34 modulation speed is 28800 bps, but since these modems use a synchronous
mode of communication between themselves (8 bits per character rather than the 10
needed for asynchronous communication), and since the computer’s interface speed is set
higher than the modulation speed so as not to be a limiting factor, we obtain:

= 3600 chars / sec
28800 bits / sec

8 bits / char

from which must be deducted about 11% for the modem-to-modem LAPM protocol
overhead26, yielding a theoretical maximum throughput of about 3200 bps for data that
has already been compressed enough that cannot be further compressed by the modems.

So can we achieve 3200 cps when transferring ZIP files through V.34 modems with Ker-
mit? It would appear the only way to do this is to reduce the prefixing of control charac-
ters as much as possible. It must be emphasized that doing so will override many of
Kermit’s safety features. Sending any particular control character ‘‘bare’’ over certain
kinds of connections is very likely to result in deadlocks, disconnections, or any of the
other undesirable phenomena that the Kermit protocol was originally designed to avoid.
Three common examples: a Ctrl-S could cause a flow-control deadlock at any point where
Xon/Xoff flow control is in use; a Ctrl-P could ‘‘escape back’’ to an X.25 PAD; a Ctrl-
Caret (^) could escape back to a Cisco terminal server.

The essence of the problem is that a Kermit program has no way of knowing which con-
trol characters are safe to send, because it does not know what lies between itself and the
other Kermit program. So you, the user, have to tell it exactly which control characters
can be ‘‘unprefixed’’, i.e. sent as-is. If you are wrong, the transfer will fail. Thus some
trial and error is often required. Here are the relevent commands:

26Deduced empirically from measurements of V.42 data transfers on various brands of modems.

286 High-Speed Kermit File Transfer / Chapter 12

SET { SEND, RECEIVE } CONTROL-PREFIX number
Sets the control-character prefix that C-Kermit uses to the ASCII character whose
code is the given number, which must be in the range 33–63 or 96–126. Normally it is
35 (#, number sign). The SEND CONTROL-PREFIX is the one that C-Kermit will use in
the packets it is sending; the RECEIVE CONTROL-PREFIX should never be used, except
to override some kind of protocol negotiation foulup with a buggy BBS or shareware
Kermit implementation. Synonym: SET { SEND, RECEIVE } QUOTE.

SET CONTROL-CHARACTER UNPREFIXED { number ..., ALL }
This tells C-Kermit that you think it’s safe to include the control character represented
by number in packets that C-Kermit sends without prefixing. The number is the
numeric ASCII code for a control character, 1-31, 127-159, or 255 (Table VII-1). For
example, linefeed (code 10) is normally sent as two printable characters, #J. SET CON-

TROL UNPREFIXED 10 lets linefeed be sent literally. Include the word ALL to unprefix
all control characters (except 0). Or you can specify a list of one or more numeric
values, separated by spaces, e.g.:

C-Kermit> set control unprefixed 1 3 17 19 30

This command will not let you unprefix the NUL character (0), nor the following
characters if C-Kermit’s current FLOW-CONTROL setting is XON/XOFF: 17, 19, 145,
147. Nor can you unprefix character 255 on a TELNET connection (if C-Kermit knows
it’s a TELNET connection).

SET CONTROL-CHARACTER PREFIXED { number ..., ALL }
Says that the given control character(s) must be prefixed in Kermit packets. By
default, all control characters, 0–31, 127–159, and 255, are prefixed.

SHOW CONTROL-PREFIXING
Displays the current control prefix and a table of all control-character values, showing
1 for each one that will be prefixed and 0 for each one that will not be prefixed.

The following command lets you select among four common prefixing arrangements
without having to specify the ASCII codes for each character:

SET PREFIXING { ALL, CAUTIOUS, MINIMAL, NONE }
SET PREFIXING ALL is equivalent to SET CONTROL PREFIXED ALL. SET PREFIXING NONE

is equivalent to SET CONTROL UNPREFIXED ALL (this one is not recommended).
MINIMAL means to prefix only 0, 1, 13 and their 8-bit equivalents, plus 255, plus Xon
and Xoff and their 8-bit equivalents if using Xon/Xoff flow control. CAUTIOUS adds
several well-known problem characters to MINIMAL such as the escape characters used
by widespread communication devices and software (most of those in Table 12-1 on
the next page). CAUTIOUS is a good starting point for experimentation.

Control Character (Un)Prefixing 287

The purpose of the SET CONTROL UNPREFIX command is to unilaterally configure
C-Kermit to skip prefixing and printable encoding of the specified control characters to
achieve higher performance when sending files. This feature takes advantage of the fact
that most Kermit programs will accept control characters within packet data-fields
literally, provided they get through at all and provided they have no special meaning to the
receiving Kermit program (as do the packet-start and packet-end characters).

There is no protocol negotiation between the two Kermit programs to determine a ‘‘safe
set’’ of control characters, and in fact any such negotiation would be largely meaningless,
because in most cases neither Kermit program has all the needed information. For ex-
ample, a terminal server or PAD might be between them that is sensitive to a particular
control character, even though the two Kermit programs are not.

If you unprefix any control characters that are unsafe, any of several things might happen:

1. Transfer of any file containing these characters will fail.

2. The receiving Kermit program might be interrupted or halted.

3. Your connection might become hung, stuck, or broken; for example, because a control
character causes a PAD or terminal server to go from online mode to command mode.

The set of safe control characters depends on the two Kermit programs, their settings, the
host operating systems and their configurations, the communication and flow control
methods, and all the devices, drivers, and protocols that lie between the two Kermit
programs. Therefore, this feature is recommended only for use on well-known and
often-used connections, so the time invested in finding an optimal unprefixed control-
character set will pay off over many file transfers. For troubleshooting, Table 12-1 lists
control characters that are apt to cause trouble and therefore are likely candidates for
prefixing. In particular, note that unprefixing of the packet-start character (normally
Ctrl-A = 1) can cause big problems if the communication link is noisy, likely to lose
characters, or has long delays.

Table 12-1 Dangerous Control Characters

288 High-Speed Kermit File Transfer / Chapter 12

__

set con p 0 ; Ctrl-@ = NUL, internal string terminator in C-Kermit.
; Also, often discarded as padding.

set con p 1 ; Ctrl-A = Packet-start character.
set con p 3 ; Ctrl-C = Likely to cause interruptions on some systems.
set con p 13 ; Ctrl-M = Carriage return, packet-end character.

; Always prefix on TELNET connections.
set con p 14 ; Ctrl-N = Shift Out
set con p 15 ; Ctrl-O = Shift In
set con p 16 ; Ctrl-P = Commonly-used X.25/X.3 PAD escape character
set con p 17 ; Ctrl-Q = XON, must be prefixed with Xon/Xoff flow control
set con p 19 ; Ctrl-S = XOFF, must be prefixed with Xon/Xoff flow control
set con p 27 ; Ctrl-[= ESC, prefix if going through some kind of ANSI device
set con p 28 ; Ctrl-\ = CONNECT-mode escape for most C-Kermits
set con p 29 ; Ctrl-] = CONNECT-mode escape for some TELNETs and Kermits
set con p 30 ; Ctrl-^ = Cisco terminal server escape.
set con p 127 ; Ctrl-? = DEL, often discarded as padding.

; Also becomes TELNET IAC if parity bit is added.
set con p 128 ; = NUL + 128 (i.e. NUL + parity bit)
set con p 129 ; = Ctrl-A + 128
set con p 131 ; = Ctrl-C + 128
set con p 141 ; = CR + 128
set con p 145 ; = XON + 128
set con p 147 ; = XOFF + 128
set con p 255 ; 255 = TELNET IAC, must be prefixed on TCP/IP TELNET connections

including TELNET connections through terminal servers!
__

Case Study: Achieving the Best Transfer Rate

Many people believe the best way to judge the performance of a file transfer protocol is by
transferring a fairly large amount of precompressed data. Good compression techniques
such as the ones used by GZIP, UNIX compress, or PKWARE’s PKZIP program, produce
a result that can not be further compressed by other methods, including Kermit’s own and
the modem’s, and that contain a relatively uniform distribution of all possible byte values,
0 through 255.

In this exercise, we download a 731K ZIP file in binary mode from a VAXstation 3100
running VMS C-Kermit to an HP-9000 workstation running UNIX C-Kermit over a
V.34/V.42/V.42bis dialup connection through a Cisco terminal server, using the Cisco
TELNET protocol (rather than, say RLOGIN or LAT) to access the VAX. Both computers, as
well as the terminal server and the Ethernet that connects it to the VAX, are lightly loaded.
The serial interface speed on both ends is 57600 bps, with RTS/CTS hardware flow con-
trol between the HP and the calling modem as well as between the answering modem and
the terminal server. There is no appreciable delay in the connection; it is a directly dialed
local call. The moon is in its first quarter.

Case Study: Achieving the Best Transfer Rate 289

Using all the protocol defaults — 1 window slot, 94-byte packets — we get a data rate of
424 cps, only 13% of our target speed. Now we set a window size of 31 by telling each
Kermit program to:

C-Kermit>set buffers 300000
C-Kermit>set window 31

This should prevent any kind of round-trip delay. Then we transfer the file using various
packet sizes. After each transfer, we note the elapsed time and effective throughput and
look to see how many window slots were actually used by the sender. This gives us some
indication of the channel characteristics of the modem connection and lets us find its op-
timal packet length and window size. Note:

1. Effective flow control is essential for top performance, especially when dealing with
error-correcting, data-compressing modems. RTS/CTS hardware flow control is
recommended.

2. This exercise applies only to this particular connection. The results might be different
for other connections.

3. Before and after each file transfer, the modem (a US Robotics Sportster) was queried
(ATI6) about the link speed to make sure it was at 28800 bps and had not dropped to a
lower value due to line quality deterioration. If it had, the connection was redialed un-
til a new 28800 bps connection was achieved and the transfer was repeated (this test is
not foolproof, however, since the modulation speed might have fallen back and then
recovered one or more times during the connection).

4. In all cases, no errors or retransmissions were reported by Kermit or the modem.

5. Remember, only the file sender can accurately report the window size that was ac-
tually used, since when there are no errors, the receiver never uses more than one win-
dow slot.

The results are shown as Trials 1 through 13 in Table12-2.

Right away you can see how beneficial sliding windows are, even on a locally dialed con-
nection. Without even increasing the packet size, we get an immediate doubling of
throughput. Perhaps you are wondering why we do not enable this feature by default;
after all, if the other Kermit program doesn’t support sliding windows, the negotiation
phase will ensure they are not used. The answer is that (a) neither Kermit program knows
what sorts of devices, buffers, and flow control methods might lie along the communica-
tion path, and (b) some BBS and shareware Kermit implementations do not handle sliding
windows correctly even after negotiating them.

290 High-Speed Kermit File Transfer / Chapter 12

Table 12-2 V.34 ZIP-File Transfer Performance

Trial
Window

Size
Packet
Length Unprefixing

Repeat
Counts

Time
mm:ss CPS Efficiency

1 1/1 94 None On 28:42 424 13%

2 31/31 94 None On 11:33 1055 33%

3 31/31 250 None On 6:33 1860 58%

4 31/31 500 None On 4:56 2470 77%

5 13/31 1000 None On 4:49 2529 79%

6 13/31 2000 None On 4:47 2547 80%

7 8/31 3000 None On 4:50 2521 79%

8 5/31 4000 None On 4:51 2512 78%

9 4/31 5000 None On 4:45 2565 80%

10 4/31 6000 None On 4:47 2547 80%

11 3/31 7000 None On 4:51 2512 78%

12 4/31 8000 None On 4:53 2495 78%

13 3/31 9000 None On 4:45 2556 80%

14 4/31 9000 All but 0 On 3:47 3221 101%

15 3/31 9000 All but 0 Off 3:43 3278 102%

The top thirteen entries in the table show that efficiency on this connection peaks and flat-
tens out with packets of 1000 bytes or longer. We have also learned that, on this connec-
tion, it does no harm to set a high window size. So, with an eye toward achieving the
highest possible throughput (rather than, say, toward prudence), we settle on a packet
length of 9000 and let the protocol use whatever window size it needs (Trial 13). But at
2556 cps, we are still only at 80% of our target speed.

Now that we have settled on the packet length and window size, the next step is to look at
what is in the packets. The STATISTICS command shows:

total file characters : 731627
control characters : 191718 prefixed, 0 unprefixed
compression : yes [~] (2542)

So about 26% of all the bytes in the ZIP file were in the control range (as expected), and
barely any bytes were compressed by Kermit (also expected). Therefore, we should be
able to make up the lost efficiency by unprefixing as many control characters as possible.
Optimistically, we tell VMS C-Kermit (the file sender) to:

C-Kermit>set control unprefix all

Case Study: Achieving the Best Transfer Rate 291

Fortunately, unprefixing all characters (except 0) works on this connection. (Don’t expect
this work on every connection!) Nevertheless, this simple command did exactly what was
hoped, raising the effective throughput to 3221 cps (Trial 14), slightly above the target
speed. The result is due to the unprefixing:

control characters : 6933 prefixed, 184785 unprefixed
compression : yes [~] (2542)

This means we have removed approximately 185,000 control prefix characters from the
data stream, about 25% of the total characters.

Let’s see if we can increase the speed by disabling Kermit’s compression (SET REPEAT

COUNTS OFF). The ZIP file happens to contain 5546 tilde characters (7- and 8-bit ver-
sions) accounting for about 0.7% of the file, and each of these tildes had to be prefixed to
distinguish it from the compression prefix. Indeed our transfer rate rises by about that
much to 3278 cps (shaving four seconds off the elapsed time, less than one percent), Trial
15 in the table. Disabling the modem’s built-in V.42bis compression, however, made no
difference at all in our tests.

Finally, as an experiment, let’s see what happens if we disable the modem’s V.42 error
correction, which, since we’ve shown that V.42bis compression does not effect ZIP-file
transfer performance, must impose its own performance penalty of about 11% (the dif-
ference between 3200 and 3600 cps). But now the modems must transmit 10 bits per
character rather than 8, because we lose the synchronous modem-to-modem protocol
when we disable error correction. Thus we would expect a throughput of approaching
2880 cps (28800 bps / 10).

The result with 9000-byte packets: 2583 cps, averaged over several trials; in each trial
there were several retransmissions due to line noise that was not corrected by the modems.
As you can see the retransmission penalty for 9000-byte packets is rather high! However,
when dropping the packet length to 1000, we achieve 2765 cps, which is 96% of the 2880
bps V.34 modulation speed even with the same amount of noise.

Remember that ZIP-file transfer is a ‘‘worst-case scenario’’ as far as Kermit file transfer is
concerned. Uncompressed files fare better. For example, on the same connection, using
all the same settings as in Trial 14, we transferred 3.5 million bytes of netnews (text) in 11
minutes and 23 seconds, or 5059 characters per second.

How does control-character unprefixing affect uncompressed files? Text files, as Kermit
transmits them, generally contain only about 4 or 5 percent control characters — carriage
return and linefeed — which are risky to send bare. Carriage return, especially, should
normally be prefixed, so unprefixing linefeed gains about 2 percent.

292 High-Speed Kermit File Transfer / Chapter 12

Uncompressed binary files, on the other hand, particularly executable program images,
might contain a very large proportion of control characters, such as (for example) the un-
stripped C-Kermit 5A binary for Solaris 2.4 on Intel platforms:

Size: 1563112
Control characters: 734598 = 47%

So there is a significant gain from control-character unprefixing, even more than with
compressed files.

So what have we learned?

1. Use the biggest window size that works.

2. The performance gain from packets longer than 1000 is significant mainly to
benchmarkers. While there might be a marginal improvement in using very long
packets, it is outweighed by the retransmission penalty when errors occur.

3. The advantage gained from disabling Kermit’s or the modem’s compression is negli-
gible when transferring precompressed files, but the performance gain when transfer-
ring uncompressed binary data is considerable, so you should leave compression en-
abled everywhere.

4. Control-character unprefixing can make a significant difference in speed when trans-
ferring precompressed or binary files. But if a file transfer fails when you have con-
trol characters — any control characters — unprefixed, you know where to look first!

Three simple commands — SET WINDOW, SET RECEIVE PACKET-LENGTH, and SET

PREFIXING — let you pick any desired tradeoff between speed and safety, just as you do
with the accelerator, transmission, and brake when driving a car; you know the road, so
it’s your choice.

Summary and Conclusion

The old debate about which protocol is faster, Kermit or x (where x is usually ZMODEM), is
best settled by observing transfers of all types of files over different kinds of connections
of varying quality between all combinations of computers. When a transfer fails, the
speed is 0. When the connection is poor, how effective are the error recovery procedures?
Kermit differs from most other protocols in offering you a full range of ‘‘personality’’
controls to adapt it to any type or quality of connection.

Given the kind of clean, clear, and totally transparent connection that ZMODEM was

Summary and Conclusion 293

designed for, you can use these controls to — in effect — turn Kermit into ZMODEM27.
But faced with a difficult connection — small buffers, noise, lack of transparency to the
8th bit or to control characters, lack of flow control, you name it — you can just as easily
turn Kermit into a rugged and persistent off-the-road vehicle — a Jeep rather than a rocket
sled — to transport your cargo over the roughest terrain.

Several common combinations of packet length, window size, and prefixing can be
selected easily with the following commands:

FAST
Equivalent to SET WINDOW 20, SET RECEIVE PACKET-LENGTH 4096, SET PREFIXING

MINIMAL. The specific window size and packet length might be smaller in some
C-Kermit versions where memory is at a premium.

CAUTIOUS
= SET WINDOW 4, SET RECEIVE PACKET-LENGTH 1000, SET PREFIXING CAUTIOUS.

ROBUST
= SET WINDOW 1, SET RECEIVE PACKET-LENGTH 90, SET PREFIXING ALL.

Several performance-related command-line options (Appendix I) are also available:

-v n Set the window size to n.
-e n Set the receive packet-length to n.
-Q SET WINDOW 20, SET RECEIVE PACKET-LENGTH 4096, SET PREFIXING CAUTIOUS.

For example:

$ kermit -YQqD 0 -is oofa.zip

starts C-Kermit fast (-Y means ‘‘don’t execute the initialization file’’) to send (-s) the
oofa.zip file in binary mode (-i), with no delay (-D 0), quietly (-q) and quickly (-Q).

Several variables (Chapter 17) are performance related:

\v(cps)

The speed of the most recent file transfer in characters per second.

\v(packetlen)

The current RECEIVE PACKET-LENGTH setting.

27But with better error recovery characterstics: ‘‘Kermit’s windowing approach is faster than protocols
such as XModem and YModem . . . What many people don’t realize is that under less-than-ideal
conditions, Kermit’s windowing approach is significantly faster than ZModem, a protocol with a well-
deserved reputation for fast transfers over good-quality lines’’ [54].

294 High-Speed Kermit File Transfer / Chapter 12

\v(window)

The current window size setting.

The SHOW PROTOCOL command lists C-Kermit’s protocol-related settings:

C-Kermit>show protocol

Protocol Parameters: Send Receive
Timeout: 10 7 Server Timeout: 0
Padding: 0 0 Block Check: 3
Pad Character: 0 0 Delay: 4
Packet Start: 1 1 Max Retries: 10
Packet End: 13 13 8th-bit Prefix: ’&’
Packet Length: 90 1000 Repeat Prefix: ’~’
Maximum Length: 9024 9024 Window Size: 2 set, 1 used
Buffer Size: 9065 9065 Locking-Shift: enabled, used

C-Kermit>

Table 12-3 summarizes the major Kermit protocol options, who controls them, and with
what commands.

Table 12-3 Kermit File Transfer Feature Summary

Feature Controlled By Command

File collision Receiver SET FILE COLLISION to receiving Kermit

File type Client/sender SET FILE TYPE to client or sending Kermit

File character-set Both SET FILE CHARACTER-SET to both Kermits

Transfer character-set Sender SET XFER CHARACTER-SET to sending Kermit

Block check Sender SET BLOCK-CHECK to sending Kermit

Control prefixing Sender SET CONTROL [UN]PREFIX to sender

Single shifts Either SET PARITY to either Kermit, or automatic

Locking shifts Either SET PARITY, SET XFER LOCKING-SHIFT

Sliding windows Both SET WINDOW to both Kermits

Packet length Receiver SET RECEIVE PACKET-LENGTH to receiving Kermit

Slow start Sender SET XFER SLOW-START to sender

Compression Automatic Unless disabled by SET REPEAT COUNTS OFF

Attributes Automatic SET ATTRIBUTE ... OFF to disable

Incomplete transfers Receiver SET FILE INCOMPLETE to receiver

295

Chapter 13

Automatic File Transfer and
Command Execution

Now that you know all about terminal emulation, file transfer, and server mode, and a fair
amount about C-Kermit’s command language, you are ready to use some of C-Kermit’s
automation features (‘‘Now that you have learned to drive a stick-shift, you are ready to
use an automatic transmission’’ :-)

Remote-Control File Transfer

In Chapter 9 you learned the classic, labor-intensive, manual method for transferring files
when using a Kermit program as your terminal emulator: enter CONNECT mode, start Ker-
mit on the remote computer, tell it to send (or receive) a file, escape back, tell the local
Kermit to receive (or send); when the transfer is complete, CONNECT again so you can log
out or continue your business there. So many steps! But remember, this is the universal
and ‘‘safe’’ method that should work in any situation. So in case you encounter unwanted
surprises with the automatic methods described in this chapter, or software that does not
support the automatic methods, you always have the classic method to fall back on.

Now let’s switch Kermit’s transmission from manual to automatic:

C-Kermit> set terminal autodownload on
C-Kermit> connect

You can give these commands to C-Kermit (most versions), MS-DOS Kermit 3.15 or
later, Kermit 95, or Kermit/2.

296 Automatic File Transfer and Command Execution / Chapter 13

Only do this on your local computer. See the cautions and explanations back on page 184,
which we would reproduce here if this book were not thick enough already.

Now that you are CONNECTed to the remote computer, start Kermit there and tell it to send
a file. For example, if the remote computer has C-Kermit:

$ kermit -s testing.123

Here we use the shortcut for running C-Kermit to execute just one command, in this case
SEND, which is written on the command line as ‘‘-s’’. (Command-line options are
covered in Appendix I.) You could just as well have given a SEND, MSEND, MOVE,
MMOVE, or RESEND command at the Kermit prompt; it doesn’t matter how the send opera-
tion is started, nor does it matter whether you are sending one file or a group of them.

So what happened? If all went according to plan, the file-transfer screen should have
popped up automatically, the file should have been received, and when the transfer was
finished, you should have found yourself back in CONNECT mode and back at the UNIX
prompt. So hurray, no more escaping back and reCONNECTing.

How did it work? The local Kermit program’s terminal emulator saw a Kermit S (send)
packet appear in its CONNECT screen, and so switched into Kermit RECEIVE mode auto-
matically. And when the file transfer was finished, it remembered that it had entered
RECEIVE mode automatically, and so automatically went back to CONNECT mode.

Automatic Uploading

The feature just described is commonly known as ‘‘autodownload,’’ and you might also
find it in other communication software where it works with ZMODEM protocol. But its
opposite — ‘‘autoupload’’ — is a feature you don’t often run across, except right here. To
initiate an upload while in CONNECT mode, you have to tell the remote Kermit program to
GET the desired file. Do this by giving a GET command (or REGET or RETRIEVE) at the
Kermit prompt or by using the command-line GET option; e.g. for C-Kermit:

$ kermit -g oofa.txt

This tells the remote Kermit program to GET (-g) the file named OOFA.TXT. Your local
Kermit program’s terminal emulator sees an I (server information) packet and automati-
cally enters server mode, then it receives further instructions (‘‘send me the file called
OOFA.TXT’’) from the remote Kermit program. This is the reverse client/server relation-
ship we hinted at in the final section of Chapter 11, in action. To control the file transfer
mode — text or binary — give the appropriate commands to the remote Kermit. For ex-
ample, include the ‘‘-i’’ command-line option to select binary transfers when the remote
Kermit is C-Kermit, or tell it to SET FILE TYPE BINARY at its prompt.

Automatic Uploading, Part Deux 297

Automatic Uploading, Part Deux

Here we discover the ‘‘other side’’ of automatic uploading. Suppose you are at your local
Kermit prompt and you gave a SEND command but forgot to start Kermit on the other end,
or you did start it but you forgot to put it in RECEIVE or SERVER mode, so it’s sitting at its
prompt. In both cases, the local Kermit is sending packets, but the remote computer is ex-
pecting a command; two entirely different species! The result is a lot of error messages
from the remote computer plus a lot of packet timeouts and retransmissions by the local
one, while you scratch your head in bewilderment. Shouldn’t this stuff just work???

Chances are it just does, and you might have wondered how. C-Kermit lets you specify a
command to be sent automatically prior to uploading. By default it is:

kermit -r

followed by a carriage return. This is how you start C-Kermit to execute the RECEIVE

command and then exit automatically when the transfer is done. It can be used with the
UNIX, VMS, AOS/VS, VOS, or other host-resident C-Kermit versions.

If the host computer is at its system command (shell) prompt, and ‘‘kermit -r’’ works at
its command prompt, then you should be able to send files this way, without bothering to
start Kermit on the remote computer.

On the other hand, if C-Kermit on the remote computer is at its own command prompt,
‘‘kermit -r’’ is treated exactly like a RECEIVE command.

On the third hand, if the remote Kermit is already in RECEIVE mode or SERVER mode, the
‘‘kermit -r’’ string is harmlessly absorbed and ignored.

If your host computer has a different Kermit program, you can use the following com-
mand to adjust the ‘‘autoupload’’ command appropriately:

SET PROTOCOL KERMIT [binary-mode-command text-mode-command]
Tells C-Kermit the character string to be sent prior to uploading files in binary mode
and text mode, respectively. A carriage return is automatically appended. If you omit
the commands, the default ones are restored: ‘‘kermit -ir’’ and ‘‘kermit -r’’
respectively. If you want to disable the sending of autoupload strings, put pairs of
empty braces in their places:

C-Kermit> set protocol kermit {} {}

Recall that in most modern Kermit programs, the file sender tells the file receiver what the
transfer mode is, so in most cases the ‘‘i’’ in ‘‘kermit -ir’’ is not needed, but some
older Kermit programs might not support the transfer-mode notification feature and so
would need to be commanded explicitly into the appropriate mode.

298 Automatic File Transfer and Command Execution / Chapter 13

IBM Mainframe Kermit-370 accepts interactive-mode commands on the command line,
rather than short and cryptic UNIX-style command-line options. If there is to be more
than one command on the Kermit-370 command line, they are separated by the ‘‘line end’’
character, such as ‘‘number sign’’ (#). So to set the automatic upload commands for send-
ing files from C-Kermit to IBM Mainframes, use:

set proto k {kermit set file type binary # receive} {kermit receive}

Strictly speaking, the SET FILE TYPE BINARY command isn’t needed, because any version
of Kermit-370 since the 1980s should pick up the transfer mode automatically. But it
doesn’t hurt either.

Other Remote-Control Curiosities
Suppose you are using MS-DOS Kermit as your terminal emulator and you are
CONNECTed to a VMS computer. You want to send a directory listing from the PC to
VMS. The tedious method would be to run the DIR command in DOS, redirect its output
to a file, and then upload the file. Here’s an easier way (building on the material from
Chapter 11); just start C-Kermit on VMS and give it a command like the following:

C-Kermit> remote dir > pcfiles.txt

This pops the local Kermit program into server mode and has it send a directory listing to
the remote C-Kermit client, which in turn redirects the incoming directory listing to a file.

You can do the same with any REMOTE command. Suppose, for example, you want to
print a host-resident text file on your PC’s printer28. Just tell the remote Kermit to:

C-Kermit> remote print invoice.txt

and out comes the file on your local printer, error-free.

Some Things to Watch out For
Automation is a good thing when it makes difficult tasks easier, but by shielding us from
complexity and ‘‘texture’’ it makes us more vulnerable to unpleasant surprises and baffles
us when they occur.

Into this category falls the odd situation, alluded to in Chapter 8, when you have a mul-
tihop connection; two or more Kermit programs are in CONNECT mode simultaneously. If
more than one of them has autodownload enabled, and a Kermit packet arrives, all of
them go into RECEIVE or SERVER mode automatically at the same time. But only the most

28If your local Kermit program is MS-DOS Kermit, Kermit 95, or Kermit/2, you could use its terminal
emulator’s transparent printing feature for this, but the method discussed here applies to all Kermit
programs that support the autodownload feature. It is also superior to transparent printing in that the file
is transferred error-free, an important consideration on noisy connections.

Automatic Uploading, Part Deux 299

distant one will actually receive the file. Your local Kermit will become very dis-
appointed that no packets are arriving, and start to send NAK packets, which in turn are
likely to confuse the middle Kermit to no end. So please remember:

When making multihop Kermit connections, be sure that autodownload is en-
abled in no more than one Kermit program.

Here’s something else to watch out for. Kermit packets might appear on your terminal
screen for reasons other than file transfer. For example, suppose you followed the direc-
tions in Chapter 10 for recording a packet log to troubleshoot a failed download. Then, to
take a look at it, you told the remote computer to ‘‘TYPE PACKET.LOG’’. Surprise, your lo-
cal Kermit pops into RECEIVE mode. It’s a bother, but you should have disabled auto-
download before looking at the packet log:

C-Kermit> set term auto off
C-Kermit> connect
$ type packet.log

(Packets are shown, nothing bad happens...)

Should the file-transfer display screen pop up unexpectedly, you can always make it go
away by cancelling the file transfer with Ctrl-C. Be sure to SET TERM AUTO OFF before
returning to the remote host, where you will probably notice that a packet or two had been
diagnosed by your system command processor as strange commands indeed.

Handy Aliases for Automatic File Transfer
In UNIX, VMS, and other operating systems, you can define aliases for commands and
programs. When used with C-Kermit’s command-line options (Appendix I), you can con-
struct a little set of commands to use at the system (shell, DCL, CLI) prompt for
downloading and uploading files in text and binary mode quickly and conveniently. Espe-
cially convenient when your terminal emulator supports Kermit autodown- and uploads.

Here, for example, are sample alias definitions for the UNIX K-Shell [5], which you could
put into your ~/.env file, for use when C-Kermit is the remote Kermit:

alias "kts=kermit -YQqD 0 -Ts" # Send in text mode
alias "kbs=kermit -YQqD 0 -is" # Send in binary mode
alias "ktg=kermit -YQqD 0 -Tg" # Get in text mode
alias "kbg=kermit -YQqD 0 -ig" # Get in binary mode

The equivalent commands for VMS would go in your SYS$LOGIN:LOGIN.COM file:

kts :== "$kermit ""-YQqD"" 0 ""-Ts""" ! Send in text mode
kbs :== "$kermit ""-YQqD"" 0 ""-is""" ! Send in binary mode
ktg :== "$kermit ""-YQqD"" 0 ""-Tg""" ! Get in text mode
kbg :== "$kermit ""-YQqD"" 0 ""-ig""" ! Get in binary mode

Now just ‘‘kts oofa.txt’’ to send a text file and see how easy and fast it is.

300 Automatic File Transfer and Command Execution / Chapter 13

Automatic Command Execution

The previous section showed how the remote Kermit could initiate Kermit protocol trans-
actions — file transfer or client/server interactions — through the local Kermit’s terminal
emulator. This section presents a feature that lets any remote application (Kermit or
otherwise) send commands to your local Kermit program through its terminal emulator.

While in CONNECT mode, C-Kermit for Windows 95 and NT, OS/2, UNIX, and VMS, as
well as MS-DOS Kermit, are able to respond automatically to a special ANSI-format es-
cape sequence called Application Program Command, or APC, which allows the host ap-
plication to send commands to Kermit, through its terminal emulator, for execution. (The
Windows and OS/2 versions, which have their own terminal emulators built in, recognize
APC commands only when they are emulating an ANSI X3.64 [4] compatible terminal,
such as VT100 or above, ANSI or one of its variants, Wyse 370, etc.) APC has obvious
benefits in the area of automation, but it also carries some risks.

C-Kermit’s response to APC sequences is controlled by the following command:

SET TERMINAL APC { ON, OFF, UNCHECKED }

The default setting is OFF, meaning that C-Kermit ignores APC sequences unless you tell
it otherwise. In the Windows and OS/2 versions, APCs are harmlessly absorbed and not
displayed. In the UNIX and VMS versions, they are passed through transparently, in case
you want them acted on by your actual terminal or terminal emulator when C-Kermit is
‘‘in the middle.’’ To activate the APC feature in a relatively safe way, use:

SET TERMINAL APC ON

This allows execution of all commands received in APC sequences except those con-
sidered dangerous, such as: PUSH, RUN, !, REDIRECT, DELETE, RENAME, OUTPUT, ENABLE,

DISABLE, SCRIPT, and (of course) SET TERMINAL APC. With this setting, for example, it
would not be possible for someone to send you a ‘‘letter bomb’’ or screen message that
contained an APC sequence to execute a command on your computer (because RUN and !
are disabled). The commands allowed by SET TERMINAL APC ON are only the ones that af-
fect Kermit itself, including the initiation of Kermit file transfers.

Should you want to enable APC execution of all commands, which can be dangerous and
therefore is not recommended unless you know exactly what you are doing, you can use:

SET TERMINAL APC UNCHECKED

Use UNCHECKED at your own risk. Note, however, that even ON is not risk free. For ex-
ample, the host application could send a file to your PC that replaces an existing file that
you might not want replaced. So be sure to enable APC only when you are communicat-
ing in a trusted environment.

Automatic Command Execution 301

Sending APCs
The format of an APC sequence is:

<ESC>_text<ESC>\

where ‘‘<ESC>’’ is ASCII character 27 (Escape), and text is a Kermit command, or a list
of Kermit commands separated by commas. (Note: don’t confuse <ESC> with Kermit’s
CONNECT-mode escape character, which might or might not be <ESC>). On 8-bit connec-
tions, you can also use the 8-bit form:

<APC>text<ST>

Where <APC> (Application Program Command) and <ST> (String Terminator) are ISO
6429 [46] 8-bit control characters having decimal values of 159 and 155, respectively.

An APC operation has two ‘‘ends.’’ Let’s call the application that sends an APC escape
sequence the ‘‘APC sender’’, and the application that receives it, and which is supposed to
execute the commands it contains, the ‘‘APC receiver.’’ Any host application (not just
Kermit) can be an APC sender. To send an APC, all it needs to do is display the desired
Kermit commands on your terminal screen, enclosed between <ESC>_ and <ESC>\.

C-Kermit (which can be a host application too) has a command for doing this:

APC text
where the text is a command (or list of commands) for the APC receiver. Leading and
trailing spaces are removed from the text unless it is enclosed in braces:

C-Kermit> apc { text }

The text is evaluated for backslash codes and variables before being sent. If C-Kermit
is in local mode, the APC text is sent out the communication connection rather than to
your terminal screen.

Here’s an example that sets local Kermit parameters from the remote C-Kermit’s com-
mand line:

C-Kermit> apc set receive packet-length 2000, set window 4

This command causes C-Kermit to send the following characters:

<ESC>_set receive packet-length 2000, set window 4<ESC>\

The local Kermit recognizes the APC sequence, extracts the commands from it, and ex-
ecutes them automatically without ever leaving CONNECT mode.

We’ll have more to say about APCs in Chapter 18, when we see how they can be used
together with macros to achieve all sorts of interesting effects.

302

303

Chapter 14

External Protocols

❍ ❍ ❍ ❍

This chapter applies primarily to the UNIX version of C-Kermit. It does not
apply at all to Kermit 95 or Kermit/2, which include XMODEM, YMODEM, and
ZMODEM as built-in protocols.

C-Kermit gives you a way to use other protocols over the connections it makes, providing
the other protocols are available as programs that can be invoked with a simple command
line, and their input and output can be redirected. If your version of C-Kermit has this
feature, the command CHECK XYZMODEM will succeed:

C-Kermit> check xyzmodem
xyzmodem available
C-Kermit>

In C-Kermit versions that have this feature, SEND, RECEIVE, MSEND, MOVE, and similar
commands use the selected protocol. The command to select the protocol is:

SET PROTOCOL name [s1 s2 [s3 s4 s5 s6]]
Choose the protocol you want to use for transferring files, and specify the autoupload
strings (s1 and s2) and, if the protocol is not Kermit, the commands for invoking the
external protocol, s3 through s6.

The name can be KERMIT, XMODEM, YMODEM, YMODEM-g, ZMODEM, or OTHER. If the
SET PROTOCOL command ends with the protocol name, the protocol is selected with its
previous command list and all its previous protocol-specific settings. If you include any-
thing after the protocol name, and the protocol name is not KERMIT, you have to include
all six fields.

304 External Protocols / Chapter 14

The six command fields are:

s1 Autoupload command for sending files in binary mode
s2 Autoupload command for sending files in text mode
s3 Send command for binary mode
s4 Send command for text mode
s5 Receive command for binary mode
s6 Receive command for text mode

In each of these fields, you can include ‘‘%s’’ to be substituted by a filename, and if the
field contains any spaces, you must enclose it in braces; for example:

set proto zmodem rz {rz -a} {sz %s} {sz -a %s} rz {rz -a}

To specify a blank field, use an empty pair of braces:

set proto zmodem {} {} {sz %s} {sz -a %s} rz {rz -a}

You don’t need to (and shouldn’t) put carriage returns or linefeeds on the ends of these
strings — these are supplied automatically for you, based on the current connection type,
terminal settings, and TELNET mode (if any). Note that when using XMODEM protocol,
you must give the filename to both the sender and the receiver, and only one file can be
sent at a time.

If you want to use an external protocol other than ZMODEM, YMODEM, YMODEM-G, or
XMODEM, specify OTHER in your SET PROTOCOL command. For example, if you had a
CompuServe B+ protocol program at hand called ‘‘bplus’’, you could use SET PROTOCOL

OTHER, and include the appropriate ‘‘bplus’’ commands in the s1–s6 commands.

The default values for each field are shown in Table 14-1. The name of the current
protocol is available in the \v(protocol) variable; \v(ftype) is the current transfer
mode. Use SHOW PROTOCOL to display s1 through s6 plus all the relevant settings for the
currently selected protocol.

Table 14-1 SET PROTOCOL Command Defaults

Kermit Zmodem Ymodem Ymodem-g Xmodem Other

s1 Autoupload binary: kermit -ir rz rb rb rx %s (none)

s2 Autoupload text: kermit -r rz -a rb -a rb -a rx %s (none)

s3 Send binary: (n/a) sz %s sb %s sb %s sx %s (none)

s4 Send text: (n/a) sz -a %s sb -a %s sb -a %s sx -a %s (none)

s5 Receive binary: (n/a) rz rb rb rx %s (none)

s6 Receive text: (n/a) rz rb rb rx %s (none)

Receiving Files 305

Sending Files

The autoupload command is sent to the remote computer when you give a SEND (or MOVE,
or MSEND, etc) command. This spares you from having to type the command at the
remote computer yourself. If the other computer is at its system prompt, this command
should start the appropriate program to receive a file with the selected protocol. If the
program is already started on the remote computer, the autoupload command should be
absorbed harmlessly. In the example below, the autoupload command for binary ZMODEM

transfers is ‘‘rz’’, and so when you give a SEND command to C-Kermit, it sends the ‘‘rz’’
command to the other computer before it starts sending. If C-Kermit’s FILE TYPE were set
to TEXT, it would send ‘‘rz -a’’.29

After sending the autoupload string, if any, C-Kermit uses the binary-mode or text-mode
form of the protocol’s send command to start the external protocol on the local computer
to send the file. The file’s name is substituted for the ‘‘%s’’, and the program’s standard
input/output is redirected (if the program allows this) over C-Kermit’s communications
connection. To illustrate:

C-Kermit> set proto z {rz} {rz -a} {sz %s} {sz -a %s} rz {rz -a}
C-Kermit> set file type binary
C-Kermit> send oofa.zip

This results in sending the command ‘‘rz’’ to the other computer, which starts the
‘‘Receive Zmodem’’ program and then, since Kermit’s FILE TYPE is set to BINARY, runs
the local command ‘‘sz oofa.zip’’ (‘‘oofa.zip’’ replaces ‘‘%s’’).

While the file is being transferred, the external program takes over your screen, so the file
transfer display (if any) is not Kermit’s. When the transfer is completed, the C-Kermit>
prompt reappears.

Receiving Files

This works like sending files, except the autoupload command is not used since we are not
uploading. However, if the protocol is ZMODEM or Kermit and your version of C-Kermit
has the autodownload feature, and if SET TERMINAL AUTODOWNLOAD is ON, then when
C-Kermit is in CONNECT mode and you start a download from the remote computer,
C-Kermit will automatically go into file-receive mode using the same protocol, Kermit or
ZMODEM, regardless of your current protocol setting.

29The rz, sz, and similar commands shown as examples pertain to products of Omen Technology Inc.,
17505-V NW Sauvie IS Road, Portland OR 97231 USA; Web: http://www.omen.com/, Phone: +1 (503)
621 3406.

306 External Protocols / Chapter 14

Things to Watch Out for

C-Kermit’s built-in external protocol support works only with programs that transfer files
using ‘‘standard input’’ and ‘‘standard output.’’ The standard input and output (I/O) chan-
nels are redirected to use C-Kermit’s own connection. If C-Kermit is in remote mode,
then standard I/O is used directly.

However, not all external protocol programs work this way. Some of them obtain explicit,
non-standard-I/O file descriptors for the purpose of file transfer, and these cannot be
redirected, and therefore these programs cannot be used as external protocols by Kermit.

Even if they can be successfully redirected, protocols such XMODEM, YMODEM, and
ZMODEM are likely to fail over TELNET connections because of transparency issues. The
external protocol programs themselves are unaware that they have been redirected over a
TELNET connection, and so even if they would know what to do in this case, they don’t
know they are supposed to do it. If your external protocol program has a command-line
option to let you tell it to take precautions (certain ZMODEM implementations let you
‘‘escape’’ certain characters — carriage return and ‘‘all ones’’ are the ones to watch out
for), use it.

The only C-Kermit setting that applies to external protocols is FILE TYPE (text or binary),
and it is up to you to pass this setting along by assigning the appropriate commands to s1
through s6. No other settings are conveyed to external protocols, since Kermit does not
know their invocation syntax. But since you might know it, then you can easily write
macros to translate Kermit settings into the appropriate command syntax for the selected
protocol (after you have read Chapter 17).

Finally, the client/server operations described in Chapter 11 are unique to the Kermit
protocol and so work only when C-Kermit’s PROTOCOL is set to KERMIT. You can’t use
commands like GET, BYE, or FINISH, nor any of the REMOTE commands, except when your
protocol is Kermit.

Command Summary

Commands:

SET PROTOCOL name [s1 s2 [s3 s4 s5 s6]]
names = KERMIT, XMODEM, YMODEM, YMODEM-G, ZMODEM, OTHER
s1 = binary-mode autoupload command
s2 = text-mode autoupload command
s3 = external protocol binary-mode send command
s4 = external protocol text-mode send command
s5 = external protocol binary-mode receive command
s6 = external protocol text-mode receive command

Variables: \v(protocol) \v(ftype)

307

Chapter 15

Transferring Files without a
Protocol

Not all computers have Kermit or XYZMODEM software available. For example, certain
dialup data and typesetting services might not offer an error-correcting file transfer
program. The same might be true of various types of data-taking and laboratory devices,
as well as of certain application software, particularly electronic mail and text editors,
found on the hosts or services that you access with C-Kermit.

In such situations, C-Kermit lets you transmit files to and capture files from computers,
devices, services, or applications that don’t support any better methods of file transfer.
This is done without error detection or correction of any kind. Data transferred without
error correction is subject to corruption, loss, interference, misinterpretation, duplication,
and other types of damage.

In most cases, only textual data can be transferred using the methods described here, and
often only 7-bit text. In general, these methods work only for a single file, not for a group
of files. This method of data transfer is sometimes referred to as ‘‘ASCII protocol’’ or
(when Xon/Xoff flow control is in effect) ‘‘Xon/Xoff protocol.’’

Before proceeding, consider the alternatives. Can you get Kermit or XYZMODEM
software installed on the other computer? Is a network connection available with its own
file transfer or sharing method? Is there some kind of removeable storage medium com-
mon to both computers — compatible diskettes or tapes? If none of these options is vi-
able, read on.

308 Transferring Files without a Protocol / Chapter 15

Downloading to C-Kermit

Unguarded downloading is the act of capturing a file from a remote computer without its
knowledge. It thinks it is simply displaying the file on your screen. You, however, are
surreptitiously recording the screen characters on your disk during your C-Kermit
CONNECT session. Here are the commands to use:

LOG SESSION [filespec [{ APPEND, NEW }]]
The characters sent to C-Kermit during CONNECT mode are recorded in the specified
file. The default filename is SESSION.LOG. All current communication settings are
used, including duplex, flow control, shift-out/shift-in, and parity. RTX/CTS or
Xon/Xoff flow control can be used to help prevent loss of data on serial connections.
If parity is in use or the terminal bytesize is set to 7, the 8th bit of each character is dis-
carded. Character-set translations implied by your TERMINAL CHARACTER-SET settings
are performed (Chapter 16). A new session log file is created unless you include the
APPEND option, which adds the recorded material to the end of the named file, if it ex-
ists, and otherwise creates a new one. When a new log is created, any previously ex-
isting file with the same name (on the same device, in the same directory, on the same
computer) is destroyed, unless the underlying operating system supports multiple ver-
sions of the same file (as does VMS).

SET SESSION-LOG { BINARY, TEXT }
(UNIX, AOS/VS, and OS-9 only) Specifies the recording format for the session log.
TEXT is the default, meaning that certain control characters are discarded, including
Carriage Return (ASCII 13), Null (ASCII 0), and Delete (ASCII 127). BINARY means
that every character that arrives is recorded. Character-set translations are done in
both cases unless you use SET TERMINAL CHARACTER-SET TRANSPARENT to disable
them. SET SESSION-LOG BINARY does not mean you can capture binary files such as
executable programs in a session log.

To capture a remote file, display it on the other computer while logging your session with
C-Kermit. The trick is to avoid capturing an excessive amount of extraneous data, such as
commands, system prompts, and so forth. Here is an example in which you use C-Kermit
to log in to a UNIX system and copy a coveted recipe. The SET FLOW, PARITY, and
SESSION-LOG commands are included for emphasis; the settings shown are the defaults, so
you won’t need to give these commands unless you have previously changed the settings:

C-Kermit>set modem type microlink (Select modem type)
C-Kermit>set line /dev/ttyh8 (Select communication device)
C-Kermit>set speed 57600 (and speed)
C-Kermit>set flow rts/cts (and flow control)
C-Kermit>set parity even (and parity)
C-Kermit>set session-log text (and session log format)
C-Kermit>dial 7654321 (Dial the phone number)
Connection completed.

Downloading to C-Kermit 309

C-Kermit>connect (Begin terminal emulation)
BUON GIORNO!

login: garfield (Login)
Password: (Supply your password)

So far everything is normal. Now comes the tricky part. You must type the command to
display the text file you want to capture, but without the terminating carriage return (for
UNIX, the command is cat — what else? — for most other systems it is TYPE). Then es-
cape back, turn on the session log, CONNECT again, and then type the carriage return.
When the system’s prompt reappears, escape back again, close the session log, and you’ve
got the file, or at least as much of it as appeared on your screen, plus one system prompt at
the end, which you can remove with a text editor.

$ cat lasagna.recipe (Don’t press Return yet!)
Ctrl-\C (Escape back)
C-Kermit>log sess lasagna.recipe (Start the session log)
C-Kermit>connect (Go back)
<RETURN> (and press carriage return)
Ingredients: (The characters that appear)
1 lb Moozarel’ (on your screen are being)
1 lb Rigotha (recorded in the session log)
1 lb tiny meatballs
... (etc etc)
$ (Prompt reappears)
Ctrl-\C (Escape back again)
C-Kermit>close session (Close the session log)
C-Kermit>type lasagna.recipe (Check it out)
Ingredients: (Looks good, mmmmmm!)
1 lb Moozarel’
1 lb Rigotha
1 lb tiny meatballs
... (etc etc, good it worked)
$ (Notice the system prompt)
C-Kermit>

Now edit the file to remove or correct any unwanted material — system dialog, prompts,
messages, noise interference, and so on.

To ensure that the captured file is as close to the original as possible, you should make
sure the host is not sending any characters that are not part of the file. For example, you
should take whatever measures the host allows to turn off services like line or word wrap,
tab expansion, pausing at end of each screenful, and so on, as well as eliminating other
possible sources of interference such as messages from other users, e-mail notifications,
alarm clocks, or host-generated status lines.

HINT: This process includes quite a few routine steps that could be easily automated in a
script program. Chapters 17–19 cover script programming.

310 Transferring Files without a Protocol / Chapter 15

Uploading from C-Kermit

How do you create a text file on a computer? You set up a process on the computer that
copies your keystrokes to a disk file. This could be a simple copy process, or it could be a
text editor. When you have finished entering characters into the file, you type a special
key or sequence to tell the copy process or text editor to close the file. The simplest way
to create a file in UNIX is like this:

$ cat > file.new (Start the copy process)
I am typing some characters. (Type characters into the file)
They are being copied into
file.new.
Ctrl-D (Ctrl-D closes the file)
$ (and returns you to the prompt)

and in VMS it is:

$ create file.new (Start the copy process)
I am typing some characters. (Type characters into the file)
They are being copied into
file.new.
Ctrl-Z (Ctrl-Z closes the file)
$ (and returns you to the prompt)

Other systems, of course, have other methods.

Now suppose you have a text file on your computer that you want to send to a remote
computer that doesn’t have a file transfer program. Instead of retyping the characters of
the text file with your own fingers, you can set up the remote computer for creating a file,
as shown in the previous examples, and then tell C-Kermit to imitate what you would do if
you were typing the file at your keyboard. The remote computer will never know the dif-
ference. The command is:

TRANSMIT filename
Sends the characters of the file out the current communication device, just as if you
were typing them in CONNECT mode. The TRANSMIT command obeys all current (and
relevant) communications and terminal settings, including echo, parity, flow control,
and shift-out/shift-in. Unless you say otherwise, the TRANSMIT command also dis-
plays the transmitted data on your screen according to the current TERMINAL ECHO

setting. Synonym: XMIT.

The most important factor affecting how the TRANSMIT command works is the current
FILE TYPE setting:

SET FILE TYPE TEXT
If the current file type is TEXT, the TRANSMIT command treats each line of the file as
an individual record. It reads a line, strips off the line termination characters (such as
LF for UNIX or AOS/VS, CRLF for VMS or OS/2, CR for OS-9 or MacOS), and

Uploading from C-Kermit 311

sends a single carriage return at the end of each line, just as you would do if you were
typing the line yourself. Then it waits a certain amount of time for the remote system
to echo a linefeed before sending the next line (so if your file contains long lines, be
sure the remote host or service has been told not to wrap them). Characters are trans-
lated according to the current TERMINAL CHARACTER-SET setting (Chapter 16). If you
want to avoid translation, SET TERMINAL CHARACTER-SET TRANSPARENT before giving
the TRANSMIT command.

SET FILE TYPE BINARY
The file’s bytes are sent exactly as they are stored on the disk with no conversion at
all, and there is no synchronization between the two sides as there is with text file
transmission. Use binary transmission with caution and skepticism.

The standard text and binary transmission procedures might not work in every case, so
C-Kermit also offers you the customary selection of SET commands to modify their opera-
tion as needed:

SET TRANSMIT ECHO { OFF, ON }
Tells C-Kermit whether you want to see the transmitted characters echoed on your
screen. The default setting is ON, in which case echoing is done according to the cur-
rent TERMINAL ECHO (DUPLEX) setting. If the computer or device on the other end of
the connection does not echo, you should SET TERMINAL ECHO ON (or SET DUPLEX

HALF, same thing) if you want C-Kermit itself to display each character it sends, or
SET TRANSMIT ECHO OFF if you don’t want the characters displayed. No echoing is
more efficient but less informative. Synonym: SET XMIT ECHO.30

SET TRANSMIT EOF [string]
Tells C-Kermit the character or characters to send after EOF (End Of File) is encoun-
tered, or when you type Ctrl-C to interrupt transmission. Normally, nothing is sent.
To include control characters in the string, use backslash codes such as \4 for Ctrl-D
or \26 for Ctrl-Z (see Table VII-2 on page 594). To cancel a previous TRANSMIT EOF

setting, type this command without specifying a string. Examples:

C-Kermit>set transmit eof \4 (Send Ctrl-D on EOF)
C-Kermit>set transm eof \26 (Send Ctrl-Z on EOF)
C-Kermit>set xmit eof (Send nothing on EOF)

The next example shows a typical sequence that might be sent to a text editor to exit
from text insert mode, save the file, and exit:

C-Kermit>set xm eof \26save\13\exit\13

The TRANSMIT EOF setting applies to both text and binary file transmission.

30All the SET TRANSMIT commands can also be entered as SET XMIT.

312 Transferring Files without a Protocol / Chapter 15

SET TRANSMIT FILL number
The TRANSMIT command normally sends a blank line as a sequence of two carriage
returns. Some computer text entry systems, however, treat two carriage returns in a
row as an ‘‘end of file.’’ This command lets you specify a single character to insert
into each blank line so it won’t be blank any more. The number is the code for the
character, such as 32 for ASCII space (blank). This setting applies only in text mode.
Examples:

C-Kermit>set transmit fill 32 (Add space to empty lines)
C-Kermit>set transm fill (Don’t fill empty lines)

SET TRANSMIT LINEFEED { OFF, ON }
SET TRANSMIT LINEFEED ON tells C-Kermit to send both carriage return and linefeed at
the end of each line, rather than just a carriage return. This command applies only in
text mode. The default is OFF, meaning that only a carriage return is sent at the end of
each line. Examples:

C-Kermit>set transmit linefeed on
C-Kermit>set xm li off

SET TRANSMIT LOCKING-SHIFT { OFF, ON }
If you want to transmit 8-bit data over a 7-bit connection, and the remote computer or
service supports Shift-Out and Shift-In (Ctrl-N and Ctrl-O) as a way of shifting be-
tween 7-bit data and 8-bit data, you can use SET TRANSMIT LOCKING-SHIFT ON to have
Kermit provide the shifting. Use SET TRANSMIT LOCKING-SHIFT OFF to cancel a pre-
vious SET TRANSMIT LOCKING-SHIFT ON command. Applies only in text mode.

SET TRANSMIT PAUSE number
If the FILE TYPE is TEXT, this command tells C-Kermit to pause the given number of
milliseconds (thousandths of a second) after sending each line. If the FILE TYPE is
BINARY, the pause occurs between each character.

SET TRANSMIT PROMPT number
Use this command to tell C-Kermit to wait for some character other than linefeed as
permission to send the next line. The number is the code for the character to wait for,
such as 17 for Control-Q (Xon). A value of 0 tells C-Kermit not to wait at all, but to
send all the characters of the file without waiting for any response, which is useful for
transmitting text to devices that do not echo a suitable, unique character at the end of
each line. This command applies only in text mode. In binary mode, the TRANSMIT

command never waits for a response.

C-Kermit>set file type text (Use text mode)
C-Kermit>set transmit prompt 17 (Wait for Xon)
C-Kermit>set transm pr 0 (Don’t wait for anything)

Uploading from C-Kermit 313

You can examine SET TRANSMIT settings with the SHOW TRANSMIT (or SHOW XMIT)
command:

C-Kermit>show xmit
File type: text
See SHOW CHARACTER-SETS for character-set info
Terminal echo: remote
Transmit EOF: none
Transmit Fill: none
Transmit Linefeed: off
Transmit Prompt: 10 (host line end character)
Transmit Echo: on
Transmit Locking-Shift: off
Transmit Pause: 0 milliseconds
C-Kermit>

TRANSMIT Examples
Now let’s work through two examples. In the first, we upload a text file to a UNIX com-
puter. On the UNIX end we simply cat (type) from the keyboard to a file. C-Kermit is
told to transmit the file, followed by a Ctrl-D to close it.

$ kermit (Start Kermit)
C-Kermit>set modem type hayes (Select modem type)
C-Kermit>set line /dev/ttyh8 (Select communication device)
C-Kermit>set speed 2400 (and speed)
C-Kermit>set flow xon/xoff (and flow control)
C-Kermit>dial 7654321 (Dial the phone number)
C-Kermit>connect (Begin terminal emulation)
WELCOME TO THE HOLLYWOOD SCRIPT AGENCY

login: olga (Log in)
Password:

$ cat > stormy.txt (DO press Return/Enter here!)
Ctrl-\c (Escape back to C-Kermit)
C-Kermit>set transm eof \4 (Send Ctrl-D when done)
C-Kermit>transmit stormy.txt (Transmit the file)
THE DARK AND STORMY NIGHT (The lines are displayed)

It was a dark and stormy night in Plainville. Everyone was huddled
inside their houses, safe and dry. In the old abandoned house on
Main Street, a sinister light shone from the attic window...
etc etc

C-Kermit> (C-Kermit prompt returns)
C-Kermit>connect (Go back to the remote system)
$ cat stormy.txt (Look at the file)
THE DARK AND STORMY NIGHT

It was a dark and stormy night in Plainville. Everyone was huddled
inside their houses, safe and dry. In the old abandoned house on
Main Street, a sinister light shone from the attic window...
etc etc

314 Transferring Files without a Protocol / Chapter 15

$
$ exit (Log out)
Communications disconnect.
C-Kermit>exit (All done)
$

This example was easy because C-Kermit’s default settings are well suited for a direct
dialup connection to the remote UNIX system. The UNIX system has a simple mecha-
nism for entering text from the keyboard into a file; it does not react adversely to blank
lines and it echoes a linefeed whenever it receives a carriage return to indicate it is ready
for another line.

Now let’s see how far we can push C-Kermit by trying to upload the same file to an IBM
mainframe with the VM/CMS operating system, using a text editor on the mainframe.
The connection is linemode and half duplex, so we must wait for the editor’s prompt
(which is a period followed by an Xon, or Ctrl-Q) before sending the next line or else data
will be lost. The text editor, Xedit, leaves text insertion mode if it gets a blank line and
therefore must have a fill character in case the file contains blank lines. The fill character
is chosen to be capital X (ASCII 88) because a printable character is required — blank
won’t do. The EOF string is set to be a carriage return (\13), which sends a blank line,
putting the editor back into command mode, followed by the commands to save the file
(save\13) and exit (qq\13).

$ kermit (Start C-Kermit)
C-Kermit>set modem hayes (Select modem type)
C-Kermit>set line /dev/ttyh8 (Select communication device)
C-Kermit>set speed 2400 (and speed)
C-Kermit>set duplex half (Connection is half duplex)
C-Kermit>set flow none (No Xon/Xoff flow control)
C-Kermit>set parity mark (Mainframe uses MARK parity)
C-Kermit>dial 8765432 (Dial the phone number)
Connection completed.
C-Kermit>connect (Begin terminal emulation)

VIRTUAL MACHINE/SYSTEM PRODUCT--CUVMB --PRESS BREAK KEY

Ctrl-\B (Send BREAK)
!
.login olga (Log in)

Enter password: XXXXXXXX (Half duplex; password echoes)

LOGON AT 23:23:23 EDT FRIDAY 09/06/96
VM/SP REL 5 04/19/88 19:39
.
CMS
.xedit stormy txt (Start the editor)
.i (Put it in text input mode)
DMSXMD573I Input mode:
Ctrl-\C (Escape back to C-Kermit)

Encoding 8-Bit Data Files for Transmission 315

C-Kermit>set transm fill 88 (Fill blank lines with X)
C-Kermit>set transm prompt \17 (Wait for Xon)
C-Kermit>set transm eof \13save\13qq\13
C-Kermit>transmit stormy.txt (Send the file)
THE DARK AND STORMY NIGHT (The echoed lines are displayed)
X
It was a dark and stormy night in Plainville. Everyone was huddled
inside their houses, safe and dry. In the old abandoned house on
Main Street, a sinister light shone from the attic window...
etc etc

C-Kermit> (Prompt returns when done)
C-Kermit>connect (Return to the mainframe)
.
Ready; T=0.02/0.06 23:29:11
.lf stormy (Make sure file is there)
STORMY TXT (It is)
Ready; T=0.01/0.01 23:29:16
.type stormy txt (Take a peek)
THE DARK AND STORMY NIGHT
X
It was a dark and stormy night in Plainville. Everyone was huddled
inside their houses, safe and dry. In the old abandoned house on
Main Street, a sinister light shone from the attic window...
etc etc

Ready; T=0.01/0.01 23:29:20
.logout (Log out from the mainframe)
CONNECT= 00:01:11 VIRTCPU= 000:00.12 TOTCPU= 000:00.32
LOGOFF AT 23:29:25 EDT FRIDAY 09/06/96
Ctrl-\C (Escape back to C-Kermit)
C-Kermit>exit
$

The X’s can be removed with a text editor (such as Xedit, the same editor that made you
put them there in the first place).

Encoding 8-Bit Data Files for Transmission

Unguarded transfer of binary files is an iffy proposition at best. If even one byte is lost or
corrupted, terrible damage could result. And it usually is not easy to repair a damaged bi-
nary file with a text editor, as you can do with a text file. It is often better to convert a bi-
nary file into simple short lines of printable ASCII text, then up- or download it in text
mode, and then convert it back into its original form. The easiest, most reliable, and most
portable format is called ‘‘hex’’ (hexadecimal), in which each 8-bit byte is translated into
two printable hexadecimal digits taken from the set 0123456789ABCDEF. Short lines are
formed, composed of only these characters. A file of this form is slightly more than twice
the length of the original, but it is immune to any known translation or transparency
problems. A pair of short C-language programs for hexifying and dehexifying is included
in Appendix IX.

316 Transferring Files without a Protocol / Chapter 15

Other encoding methods might be more efficient. For example, a pair of programs, uuen-
code and uudecode, is available on most UNIX computers but not necessarily on other
systems. The encoding is more efficient than hex but also uses a bigger alphabet that
might cause transparency or translation problems; for example, with EBCDIC hosts.

Many other file encoding, compaction, and archiving techniques are available, too. Use
whatever works best for you. The primary considerations are transparency (can the en-
coded data survive the passage to the other computer?) and portability (can you recon-
struct and use the original data after transmitting to another computer?).

The latter consideration is particularly important when transmitting text files between
computers that have different record formats, such as UNIX and DOS (or OS/2 or Win-
dows). If you encode the file on UNIX, the UNIX single-character line terminator
(linefeed) is kept in the file, and when when you decode in DOS, where carriage return
and linefeed are used, the lines are no longer properly terminated and will not be recog-
nized by most applications.

This type of problem is most severe when when using archive formats such as ZIP to col-
lect a mixture of text and binary files into a single archive file. When unZIPping such a
file on an unlike file system, even when the unZIP program has an option for
record-format conversion, it cannot be used without also corrupting any binary files that
are also in the archive.

Command Summary

The following commands are used for unguarded file capture and transmission:

LOG SESSION [filespec [{ APPEND, NEW }]]
SET FILE TYPE { TEXT, BINARY }
SET SESSION-LOG { TEXT, BINARY }
SET TRANSMIT ECHO { OFF, ON }
SET TRANSMIT EOF [string]
SET TRANSMIT FILL number
SET TRANSMIT LINEFEED { OFF, ON }
SET TRANSMIT LOCKING-SHIFT { OFF, ON }
SET TRANSMIT PAUSE number
SET TRANSMIT PROMPT number
TRANSMIT filename

Synonyms:

XMIT = TRANSMIT
SET XMIT = SET TRANSMIT

317

Chapter 16

International Character Sets

❍ ❍ ❍ ❍

If you have no need to transfer text files that contain accented or non-Roman
characters and you never need to display these characters on your screen at
C-Kermit command level or during CONNECT mode, skip ahead to Chapter 15
on page 307.

All the different computers and operating systems supported by C-Kermit use the ASCII
character set: the American Standard Code for Information Interchange [1], listed in Table
VII-1 on page 593.31 C-Kermit’s command and file names, messages and help text — all
textual matter is encoded in ASCII.

ASCII contains uppercase and lowercase Roman letters, decimal digits, and punctuation
marks sufficient for representing English text and most computer commands and program-
ming languages. But it does not contain the accented or special letters needed for Italian,
Norwegian, French, German, or other languages written using Roman-based alphabets, let
alone the non-Roman characters of languages like Russian or Japanese.

Although C-Kermit’s user interface is strictly English and ASCII, you can use C-Kermit
to conduct terminal sessions and transfer files in a wide variety of Roman and non-Roman
character sets. This chapter tells you how.

31ASCII is the United States version of ISO 646 [41].

318 International Character Sets / Chapter 16

Table 16-1 Decimal Character Codes for Accented Capital Letter A

Character
IBM PC
CP 850

Macintosh
Quickdraw

Data General
DGI

DECstation
DEC MCS NeXTSTEP

A-Grave À 183 231 193 192 129

A-Acute Á 181 203 192 193 130

A-Circumflex Â 182 229 194 194 131

A-Tilde Ã 199 204 196 195 132

A-Diaeresis Ä 142 128 195 196 133

A-Ring Å 143 129 197 197 134

Proprietary Character Sets

There are thousands of different languages in the world, hundreds of different kinds of
computers, and a potentially vast number of ways to represent the characters of each lan-
guage on each computer. If we consider only the written languages based on the Roman
alphabet, such as Italian, Portuguese, or Norwegian, we find that different computers, such
as the IBM PC, the Apple Macintosh, the Data General MV system, the DECstation, and
the NeXTstation represent the accented letters and other special symbols in completely
different ways internally. Table 16-1 shows the codes for the uppercase letter A with
various accents used by each of these computers.

CP850 is IBM’s ASCII-based multilingual code page for PCs, Quickdraw is the character
set most commonly used on Apple Macintosh computers, DGI is the Data General Inter-
national character set, DEC MCS is DEC’s Multinational Character Set, and the NeXT
character set is used in NeXTSTEP (see Table VII-4 on page 596 for a fuller listing).
These are just a few of the many proprietary character sets in current use.

Most modern equipment supports some form of national or international text. As long as
you stick with a particular manufacturer’s equipment — display, keyboard, printer — you
can create, read, and print text in any language supported by your equipment. This is a
great leap forward from the ASCII-only days. But what if you need to access a different
kind of equipment from within your own computing environment? What if you need to
exchange text with users of a different kind of equipment?

There are several ways to cope with this problem. The traditional solution has been to ban
the use of accented Roman letters as well as all letters from languages like Russian or
Hebrew that have non-Roman alphabets. Since computers everywhere support the letters
A–Z, transportability of data is assured. But the nature of the data is severely limited, and
non-English speaking computer users justifiably resent this approach.

Standard Character Sets 319

At the other extreme, we could attempt to translate directly between each character set and
all the others. This works adequately when the number of sets is small, but quickly be-
comes unwieldy and unmanageable as the number increases. If the number of character
sets is n, the number of translations is n × (n − 1) (the number of pairs chosen from a set of
size n, sampling without replacement; see any statistics book, e.g. [59]).

So if we have two character sets, A and B, we need two translations, one from A to B and
one from B to A. If we have three sets — A, B, and C — we need 3 × 2 = 6 translations:
AB, BA, AC, CA, BC, and CB. And so on. Each translation is typically a pair of tables,
256 bytes in each. Now consider that as of 1990, IBM alone listed 276 different coded
character set identifiers in its registry [40]. If we needed translations between every pair
of IBM character sets, we would require 75,900 of them, or about 4 megabytes of tables.
Now add in all the other companies and their character sets to appreciate the magnitude of
the problem.

A more reasonable approach is to represent characters in a standard intermediate character
set for purposes of transmission. The sender translates from its local codes to the standard
ones, the receiver translates from the standard codes to its local ones. This cuts the
problem down to a manageable size; each computer needs to know only its own character
sets plus a handful of standard sets.

Standard Character Sets

Standard character sets come in 7-bit and 8-bit single-byte varieties, as well as multibyte
sets such as those used for Chinese, Japanese, and Korean.

The 7-bit sets include US ASCII and other national sets provided for by ISO Standard
646 [41]. The more flexible 8-bit international standard character sets include ISO 8859
Latin Alphabets 1 and 2 for Western and Eastern European languages, respectively, and
the ISO 8859-5 Latin/Cyrillic32 Alphabet [44]. Multibyte character sets include the
Chinese, Japanese, and Korean national standard sets, plus Unicode [61] and ISO
10646 [45].

ISO 646 is the international standard for 7-bit character sets. It is identical to ASCII ex-
cept that 12 of its positions are set aside for the characters needed for each national lan-
guage. In ASCII itself, the US version of ISO 646, these 12 positions are occupied by the
familiar brackets, braces, bars, and so on, used in many programming languages. In other
ISO 646 national versions, these character positions are occupied by national characters.

32‘‘Cyrillic’’ refers to the family of alphabets used for Russian, Ukrainian, and other Slavic (and some
non-Slavic) languages, created by Saints Cyril and Methodius in the 9th century A.D.

320 International Character Sets / Chapter 16

Table 16-2 7-Bit National Character Sets, Differences from ASCII

2/03 4/00 5/11 5/12 5/13 5/14 5/15 6/00 7/11 7/12 7/13 7/14

decimal 35 64 91 92 93 94 95 96 123 124 125 126

US ASCII # @ [\] ^ _ ‘ { | } ~

British £ @ [\] ^ _ ‘ { | } ~

Canadian-French # à â ç ê î _ ô é ù è û

Chinese Roman # @ [¥] ^ _ ‘ { | } ¯

Danish # @ Æ Ø Å ^ _ ‘ æ ø å ~

Dutch £ 3/4 ÿ 1/2 | ^ _ ‘ ¨ ƒ 1/4 ’

Finnish # @ Ä Ö Å Ü _ é ä ö å ü

French £ à ° ç § ^ _ µ é ù è ¨

German # § Ä Ö Ü ^ _ ‘ ä ö ü ß

Hungarian # Á É Ö Ü ^ _ ú é ö ü ’’

Icelandic # Þ Ð \ Æ Ö _ þ ð | æ ö

Italian £ § ° ç é ^ _ ù à ò è ì

Japanese Roman # @ [¥] ^ _ ‘ { | } ¯

Norwegian § @ Æ Ø Å ^ _ ‘ æ ø å |

Portuguese # ’ Ã Ç Õ ^ _ ‘ ã ç õ ~

Spanish £ § ¡ Ñ ¿ ^ _ ‘ ° ñ ç ~

Swedish # É Ä Ö Å Ü _ é ä ö å ü

Swiss ù à é ç ê î è ô ä ö ü û

For example, the character that occupies position 91, left bracket ([) in ASCII, is replaced
by Æ in Danish, ÿ (ij) in Dutch, Ä in Finnish, É in Hungarian, Ð in Icelandic, and so on,
as shown in Table 16-2.

The Latin alphabets are 8-bit, 256-character sets. As shown in Figure 16-1, the left half
(first 128 characters) of each Latin alphabet is the same as ASCII. It includes 32 7-bit
control characters (C0), the Space (SP) character, 94 7-bit graphic characters (GL), and
the additional control character, DEL. The right half contains 32 8-bit (C1) control
characters and 96 graphic characters (GR) for a particular group of languages. Table 16-3
lists the Latin alphabets. Note that when English is listed as a supported language, this
means modern English — Old and Middle English have some additional letters like Eth
(ð), Yogh (3), Ash (æ), and Thorn (þ) — plus any language that can be written in the
26-letter Roman alphabet without accents, including Latin, German (using alternative
notation for Umlauts and ß), Dutch (with the ‘ ‘ij’’ digraph written as i and j), and so on.

Standard Character Sets 321

Figure 16-1 Structure of an 8-Bit Latin Alphabet

Table 16-3 The ISO Latin Alphabets

Character Set Standard Languages

Latin-1 ISO 8859-1 Danish, Dutch, English, Faeroese, Finnish, French, German,
Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish, Swedish

Latin-2 ISO 8859-2 Albanian, Czech, English, German, Hungarian, Polish, Romanian,
Serbocroatian (Croatian), Slovak, Slovene

Latin-3 ISO 8859-3 Afrikaans, Catalan, English, Esperanto, French, Galician, German,
Italian, Maltese, and Turkish

Latin-4 ISO 8859-4 Danish, English, Estonian, Finnish, German, Greenlandic, Sami,
Latvian, Lithuanian, Norwegian, and Swedish

Latin/Cyrillic ISO 8859-5 Bulgarian, Belorussian, English, Macedonian, Russian, Ser-
bocroatian (Serbian), Ukrainian, other former-SSR languages.

Latin/Arabic ISO 8859-6 Arabic, English
Latin/Greek ISO 8859-7 Greek, English
Latin/Hebrew ISO 8859-8 Aramaic, Hebrew, Ladino, Yiddish, English
Latin-5 ISO 8859-9 Dutch, English, Faeroese, Finnish, French, German, Irish, Italian,

Norwegian, Portuguese, Spanish, Swedish, Turkish
Latin-6 ISO 8859-10 English, Estonian, Finnish, Lithuanian, Sami, Swedish.

322 International Character Sets / Chapter 16

Table 16-4 Right Half of Latin Alphabet 1

10 11 12 13 14 15

00 ° À Ð à ð

01 ¡ ± Á Ñ á ñ

02 ¢ 2 Â Ò â ò

03 £ 3 Ã Ó ã ò

04 ¤ ′ Ä Ô ä ô

05 ¥ µ Å Õ å õ

06 | ¶ Æ Ö æ ö

07 § • Ç × ç ÷

08 ¨ , È Ø è ø

09 1 É Ù é ù

10 ª º Ê Ú ê ú

11 « » Ë Û ë û

12 ¬ 1/4 Ì Ü ì ü

13 1/2 Í Ý í ý

14 3/4 Î Þ î þ

15 ¯ ¿ Ï ß ï ÿ

Table 16-5 DEC Multinational Character Set

10 11 12 13 14 15

00 ° À à

01 ¡ ± Á Ñ á ñ

02 ¢ 2 Â Ò â ò

03 £ 3 Ã Ó ã ó

04 Ä Ô ä ô

05 ¥ µ Å Õ å õ

06 ¶ Æ Ö æ ö

07 § • Ç Œ ç œ

08 ¤ È Ø è ø

09 1 É Ù é ù

10 ª º Ê Ú ê ú

11 « » Ë Û ë û

12 1/4 Ì Ü ì ü

13 1/2 Í Ÿ í ÿ

14 Î î

15 ¿ Ï ß ï

Table 16-4 shows the graphic characters (columns 10–15) of the right half of Latin Al-
phabet 1. The DEC Multinational Character Set is very similar to Latin-1, as you can see
by comparing Tables 16-4 and 16-5.

International Characters in Commands

If you have an 8-bit communication link (no parity) between your terminal (keyboard and
screen) and C-Kermit, or if you are running C-Kermit on a PC or workstation, use the fol-
lowing command to tell C-Kermit to allow 8-bit characters in your commands:

SET COMMAND BYTESIZE { 7, 8 }
Specifies the character size, in bits, to be used in C-Kermit’s commands and messages.
The default is 8 in Kermit 95 and Kermit/2; 7 elsewhere.

For example, suppose you have a German keyboard and an 8-bit connection to C-Kermit.
SET COMMAND BYTESIZE 8 lets you use German letters in your commands. Correct display
of 8-bit characters depends, of course, on your terminal emulator or console driver.

International Characters in Terminal Emulation 323

C-Kermit>set command bytesize 8
C-Kermit>echo Grüße aus Köln!
Grüße aus Köln!
C-Kermit>

International Characters in Terminal Emulation

Host-resident versions of C-Kermit provide no particular kind of terminal emulation
during CONNECT mode. Kermit just passes all characters received from the remote host
along to your screen and passes your keystrokes to the remote host. The responsibility for
most terminal-oriented functions — escape sequence interpretation, function keys, screen
rollback, and so on — lies in your terminal, emulator, or workstation window.

Character-set translation is an exception to this rule. If the remote computer or service
uses a character set different from your local computer and it is known to C-Kermit, you
can ask C-Kermit to translate between the remote character set and the one used by your
terminal or emulator so the characters sent by the remote computer will have the correct
appearance on your screen and the characters you type will be translated into the remote
computer’s character set before being sent.

Choosing the Terminal Character Set
C-Kermit usually has no way of knowing which character sets are in use. You must tell it
by giving the following command:

SET TERMINAL CHARACTER-SET remote-cset [local-cset]
Specifies the character set used on the remote computer (remote-cset) and the charac-
ter set used by your terminal or emulator (local-cset). If local-cset is not specified a
suitable default, such as C-Kermit’s current FILE CHARACTER-SET (explained on page
330), is used. To disable terminal character-set translation, use SET TERMINAL

CHARACTER-SET TRANSPARENT, which is the default.

To find out which character sets are available, type a question mark in either one of the
character-set name fields:

C-Kermit>set terminal character-set ?
remote terminal character-set, one of the following:
ascii danish hp-roman8 portuguese
british dec-multinational hungarian short-koi
canadian-french dg-international italian spanish
cp437 dutch koi8-cyrillic swedish
cp850 finnish latin1-iso swiss
cp852 french latin2-iso transparent
cp862-hebrew german macintosh-latin
cp866-cyrillic hebrew-7 next-multinational
cyrillic-iso hebrew-iso norwegian
C-Kermit>set terminal character-set spanish
C-Kermit>

324 International Character Sets / Chapter 16

Table 16-7 on page 329 tells you which character sets these names refer to. The sets with
‘‘national’’ names, like French, Dutch, Finnish, and so on, are 7-bit ISO 646 national sets,
shown in Table 16-2 on page 320. The Roman 8-bit sets (Latin-1, DEC Multinational,
NeXT, etc.) are shown in Tables VII-4 and VII-5, the Cyrillic codes are listed in Table
VII-6, and the Hebrew ones in Table VII-7. These tables begin on page 596.

Here is an example in which we CONNECT from C-Kermit on a PC running SCO UNIX
and using PC Code Page 437 to a remote Mailbox (BBS) in Cologne, Germany, that uses
the German ISO 646 set.

C-Kermit>connect
Gr}~e aus K|ln!
F}r Mailbox "gast" eingeben...
login:

If this does not look like German to you, it’s because the remote computer is using a dif-
ferent character set than your local one. Let’s try it again, but this time with C-Kermit
providing the translation from German ISO 646 to CP437:

C-Kermit>set terminal char german cp437
C-Kermit>connect
Grüße aus Köln!
Für Mailbox "gast" eingeben...
login:

When terminal character-set translation is in effect, C-Kermit uses a standard character set
(such as Latin-1), if necessary, as an intermediate step between the local and remote sets.
Otherwise, C-Kermit’s 33 terminal character sets would require 1056 translation func-
tions! But by choosing an appropriate intermediate set for each pair, we have about 100,
and these also happen to be the same ones we use for file transfer.

However, as a result of this ecologically sound design, we can lose characters that the lo-
cal and remote character sets do not have in common with the intermediate set. For ex-
ample, both the Macintosh and NeXT character sets have a Florin sign (ƒ), but since
Latin-1 doesn’t have one (see Table 16-4), it is replaced by something else along the way,
most likely a question mark.

Using a 7-Bit Terminal Character Set
If both the remote and local terminal character sets are 7-bit sets (ASCII, Short KOI, or
one of the ISO 646 national sets like Italian, Portuguese, or Norwegian), you should be
able to operate equally well in the 7-bit and 8-bit communication environments.

However, a word of warning is required. If the remote computer sends escape sequences
to control the appearance of your screen, these sequences might contain 7-bit graphic
characters that would normally be translated before they reach your screen. For example,

International Characters in Terminal Emulation 325

Table 16-6 ANSI Escape Sequence Formats

Introducer Type Terminator

ESC [Control Sequence 64–126

ESC P Device Control String ESC \

ESC] Operating System Command ESC \

ESC ^ Privacy Message ESC \

ESC _ Application Program Command ESC \

ESC other Escape Sequence 48–126

many ANSI and therefore VT100, VT200, and VT300 escape sequences [4] include the
left bracket ([) character, as in:33

ESC [24 ; 40 H

which moves the cursor to column 40 of line 24 on the screen. But the left bracket is an
ISO 646 national character and would be translated as shown in Table 16-2 on page 320,
thus destroying the escape sequence and interfering with your screen display.

C-Kermit does its best to avoid this effect by skipping translation of ANSI escape sequen-
ces during CONNECT mode. ANSI escape sequences begin with the ESC (Escape) charac-
ter, ASCII 27, and terminate under various conditions, depending on the character that fol-
lows the Escape, as shown in Table 16-6. Whenever C-Kermit sees an Escape character
under these conditions, it reads the ensuing characters up to and including the final charac-
ter or sequence, listed in the Terminator column in the table, and sends them to the screen
without translation. In the example:

ESC [24 ; 40 H

ESC [is a Control Sequence Introducer, which means that the escape sequence continues
until a terminating character in the range 64–126 appears. The first such character in the
example is H (ASCII character 72).

This technique is used only when translation of a 7-bit character set is requested, and so
8-bit escape sequences are not, and don’t need to be, recognized. Except in Kermit 95 and
Kermit/2, C-Kermit makes no attempt to avoid unwanted translations in non-ANSI ter-
minal control codes.

33ESC is the ASCII Escape character. Spaces are shown for clarity, but are not part of the escape
sequence.

326 International Character Sets / Chapter 16

Figure 16-2 Terminal Character Set Translation

Using an 8-Bit Terminal Character Set
During C-Kermit CONNECT mode, there are two components to the connection between
your desktop terminal or computer and the remote computer or service: the one between
C-Kermit and your keyboard and screen, and the one between C-Kermit and the remote
host or service. Each component can be either a 7-bit or an 8-bit connection. Most ver-
sions of C-Kermit treat both as 7-bit connections unless you say otherwise. This is to
prevent parity from being mistaken for real data, a sensible default given the widespread
use of parity and the equally widespread lack of awareness about it. But this default
prevents the use of 8-bit character sets during a CONNECT session.

Figure 16-2 shows the two components of the CONNECT-mode connection. If the com-
munication path between your terminal or emulator and C-Kermit (A in the figure) is truly
8-bits-no-parity, you can give the command SET COMMAND BYTESIZE 8 to tell C-Kermit
not to strip the 8th bit from each character that comes in from your keyboard and goes out
to your screen (not necessary in Kermit 95 and Kermit/2).

Similarly, if the path between C-Kermit and the remote host (B in the figure) is really 8
bits, give the commands SET TERMINAL BYTESIZE 8 and (if necessary) SET PARITY NONE to
prevent Kermit from stripping the 8th bit of characters that go in to and out of the com-
munication device.

If all components of the communication path are ‘‘8-bit clean,’’ you can give all three of
these commands and then use 8-bit terminal character sets with no further ado. You can
also start C-Kermit with the command-line option ‘‘-8’’, which is equivalent to giving the
same three commands.

Please note: These commands do not make the connection 8-bit clean, they merely tell
C-Kermit that it is 8-bit clean.

International Characters in Terminal Emulation 327

Using an 8-Bit Terminal Character Set on a 7-Bit Connection
If the connection between C-Kermit and the remote host (B) is normally 7 bits but you
need to transmit and receive 8-bit characters, you might still be able to do so. Explore the
terminal- and communication-related commands of the remote host and any communica-
tion equipment or networks in between: SET TERMINAL /EIGHT in VMS, stty pass8 or
stty -parity on some UNIX systems, rlogin -8 host when making ‘‘rlogin’’ con-
nections from one UNIX system to another; check the configuration of your modem, ter-
minal server, network PAD, or any other intermediate devices. Do whatever you can to
achieve an 8-bit connection.

If all else fails, the C-Kermit CONNECT command supports a terminal-oriented protocol,
known as shift-out/shift-in (SO/SI), that allows it to exchange 8-bit data over a 7-bit ter-
minal connection. The remote host must also be using this protocol. It works like this: if
an 8-bit character (a character with its 8th bit set to 1) must be sent on a 7-bit connection,
an SO character (Shift-Out, Control-N, ASCII 14) is sent first, then the 8-bit character is
sent with its 8th bit replaced by the required parity bit. When the receiver gets the SO, it
knows to set the 8th bit of subsequently received characters to 1 before interpreting them.
The next time a 7-bit character must be sent, an SI character (Shift-In, Control-O, ASCII
character 15) is sent first. This tells the receiver to set the 8th bit of subsequently received
characters to 0. Thus, SO applies to all subsequent characters until an SI is received, and
vice versa. To illustrate, suppose we have the German phrase:

Grüße aus Köln!

encoded in Latin Alphabet 1. Using SO/SI, it would be transmitted like this:

Gr<SO>|_<SI>e aus K<SO>v<SI>ln!

where <SO> and <SI> represent the Shift-Out and Shift-In control characters. The
‘‘funny’’ characters are obtained by removing the 8th bit from the Latin-1 special charac-
ters, which is equivalent to subtracting 128 from their code values. For example, the
Latin-1 code for ü is 252, minus 128 is 124, which is the code for vertical bar, |.

Here is the C-Kermit command that controls the use of Shift-out/shift-in during terminal
connection:

SET TERMINAL LOCKING-SHIFT { OFF, ON }
This setting, which normally is OFF, applies to the portion of the connection between
C-Kermit and the remote host. If you plan to use an 8-bit character set on the remote
host, but you only have a 7-bit connection, and the remote host can use Shift-In and
Shift-Out codes to switch between 7-bit and 8-bit characters, set this option to ON.
When TERMINAL LOCKING-SHIFT is ON, C-Kermit interprets incoming characters ac-
cording to the current shift state and automatically shifts the characters you type on
your keyboard before sending them to the remote host.

328 International Character Sets / Chapter 16

If the remote host uses an 8-bit character set, but you can’t get an 8-bit connection to it,
and it does not support shift-out/shift-in, all is not necessarily lost. For example, on a
remote UNIX host, you can pipe your 8-bit files through a shift-out/shift-in filter like the
one listed in Appendix X:

$ cat latin1.txt | so | more

Key Mapping
C-Kermit translates each key you press into the remote host’s character set before trans-
mitting it, according to your most recent SET TERMINAL CHARACTER-SET command.
These translations also apply to any key redefinitions you have made with the SET KEY

command.

National or international characters in your key definitions should use the coding of your
local character set, not the remote coding. This is the more natural arrangement and it al-
lows you access to different remote computers that use different character sets without
having to change your key mappings.

Transferring International Text Files

The Kermit protocol distinguishes between vendor-specific codes, used in storing and dis-
playing files on each computer, and the codes used within Kermit’s packets when transfer-
ring a file [35]. The vendor-specific file encoding is called the file character-set ; the file
character-sets known to C-Kermit are listed in Table 16-7. The code used during file
transfer is called the transfer character-set. The Kermit protocol supports only a small
number of transfer character-sets; namely, those that are well-established as international
standards, such as ISO 8859 Latin Alphabets 1 and 2 or ISO 8859-5 Latin/Cyrillic.34 The
sender translates the file from its local code to the standard transfer code, and the receiver
translates from the transfer code to its own local code, as shown in Figure 16-3.

Specifying Character Sets for File Transfer
If your computer supports international character sets at all, it probably does so only as an
afterthought. Most computers and operating systems were designed to support only a
single character code such as ASCII or EBCDIC, suitable only for representing English.
As computer users in non-English-speaking countries began to demand support for their
own languages, IBM, DEC, Apple, and other manufacturers introduced terminals, printers,
and PCs capable of displaying French, German, Italian, Russian, Hebrew, Arabic,

34There is now a single standard multibyte encoding that encompasses most of the world’s character sets,
ISO 10646 [45], and its cousin, UNICODE [61], but it will take some time, maybe lots of it, for this
‘‘Universal Character Set’’ to catch on.

Transferring International Text Files 329

Figure 16-3 International Text File Transfer

Japanese, and other languages, but in most cases they did this without significantly chang-
ing the computers themselves. Text is still stored on the disk in undistinguished,
anonymous 8-bit bytes, and the terminal or printer must be told how to interpret them.
Files are stored on most computers without any indication of character set.

Table 16-7 C-Kermit File Character Sets

Name Bits Description

ascii 7 ISO 646 United States Version, ASCII, ANSI X3.4-1986 [1]

british 7 ISO 646, British Version, BSI 4730 [7]

canadian-french 7 French-Canadian NRC (DEC) [28]

cp437 8 PC Code Page 437, used on PCs [39]

cp850 8 PC Code Page 850, used on PCs [39]

cp852 8 PC Code Page 852 for Eastern Europe [39]

cp862 8 PC Code Page 862 Hebrew [39]

cp866 8 PC Code Page 866 Cyrillic, used on PCs [56]

cyrillic-iso 8 ISO 8859-5 Latin/Cyrillic Alphabet [44]

danish 7 (Same as Norwegian) [47]

dec-kanji M DEC multibyte Japanese Kanji

dec-multinational 8 DEC Multinational Character Set [28]

dg-international 8 Data General International Character Set [25]

dutch 7 Dutch NRC (DEC) [28]

finnish 7 Finnish NRC (DEC) [28]

french 7 ISO 646, French Version, NF Z 62010-1982 [47]

german 7 ISO 646, German Version, DIN 66083 [47]

hebrew-7 7 7-bit Hebrew and uppercase Roman

330 International Character Sets / Chapter 16

Table 16-7 C-Kermit File Character Sets (continued)

Name Bits Description

hebrew-iso 8 ISO 8859-8 Latin/Hebrew Alphabet 1 [44]

hp-roman8 8 Hewlett Packard Roman 8

hungarian 7 ISO 646, Hungarian Version, HS 7795/3 [47]

italian 7 ISO 646, Italian Version [47]

japanese-euc M Japanese Extended UNIX Code, JIS X 0201 + JIS X 0208

jis7-kanji M Japanese 7-bit JIS Encoding

koi8-cyrillic 8 ‘‘Old KOI-8’’ Cyrillic (GOST 19768-74) [57]

latin1-iso 8 ISO 8859-1 Latin Alphabet 1 [44]

latin2-iso 8 ISO 8859-2 Latin Alphabet 2 [44]

macintosh-latin 8 Apple Quickdraw extended

next-multinational 8 NeXTSTEP

norwegian 7 ISO 646, Norwegian Version, NS 4551 [47]

portuguese 7 ISO 646, Portuguese Version [47]

shift-jis-kanji M Code Page 932 Kanji, used on PCs

short-koi 7 7-bit Roman and Cyrillic, uppercase only [57]

spanish 7 ISO 646, Spanish Version [47]

swedish 7 ISO 646, Swedish Version, SEN 850200 [47]

swiss 7 Swiss NRC (DEC) [28]

To send or receive a file containing international characters, you must tell C-Kermit which
character sets to use: which character set the original file is encoded in, which standard
character set is to be used during transfer, and which character set is to be used in the new
copy of the file. The first command you need is:

SET FILE CHARACTER-SET name
Identifies the character set to be used for file input or output. The file sender translates
from the file character set to the transfer character set, and the file receiver translates
from the transfer character set to its own file character set. In most cases, the default
file character-set is ASCII. In certain versions of C-Kermit, the local character set is
known, so that is your default file character-set. For example, in NeXTSTEP, it is the
NeXT character set; on AOS/VS systems, it is DG-International; in Windows or OS/2,
it is your current PC code page.

Your version of C-Kermit does not necessarily support all of the file character-sets listed
in Table 16-7. C-Kermit can be configured to omit one or more character-set families:

Transferring International Text Files 331

East European, Cyrillic, or Japanese Kanji. You can use the SHOW FEATURES and CHECK

commands to obtain configuration information:

C-Kermit>show features
...
No Kanji character-set translation
C-Kermit>check latin2
Available
C-Kermit>

To see the list of supported file character-sets, use a question mark in the SET FILE

CHARACTER-SET command:

C-Kermit>set file char ? local file code, one of the following:
ascii danish hebrew-iso macintosh-latin
british dec-kanji hp-roman8 next-multinational
canadian-french dec-multinational hungarian norwegian
cp437 dg-international italian portuguese
cp850 dutch japanese-euc shift-jis-kanji
cp852 finnish jis7-kanji short-koi
cp862-hebrew french koi8-cyrillic spanish
cp866-cyrillic german latin1-iso swedish
cyrillic-iso hebrew-7 latin2-iso swiss
C-Kermit>set file char hungarian

This is the list you would see with a fully-configured C-Kermit program as of this writing;
others are likely to be added as time goes on.

Choosing the appropriate file character-sets for the two computers solves two thirds of the
puzzle. To complete the puzzle, you must choose the transfer character-set that is best
capable of representing the characters in your file character-sets:

SET TRANSFER CHARACTER-SET name
Identifies the intermediate character set to be used in Kermit-to-Kermit communica-
tion, that is, in Kermit’s data packets. Synonym: SET XFER CHARACTER-SET.

The default transfer character-set is TRANSPARENT, meaning that no translation takes place
during file transfer.

C-Kermit supports the following transfer character-sets:

LATIN1-ISO
Is ISO 8859-1 Latin Alphabet 1 [44], or Latin-1 for short. This is the usual choice
for Western European languages based on the Roman alphabet, such as Italian, Por-
tuguese, Norwegian, French, and Spanish, because it is capable of representing all the
characters used in about 15 of these languages (see Table 16-3). Latin Alphabet 1 is
listed in Table VII-4.

332 International Character Sets / Chapter 16

LATIN2-ISO
Is ISO 8859-2 Latin Alphabet 2, or Latin-2 for short. This is the usual choice
for Eastern European languages based on the Roman alphabet, such as Czech, Polish,
Romanian, and Hungarian (see Table 16-3). Latin Alphabet 2 is listed in Table VII-5.

CYRILLIC-ISO
Is ISO 8859-5, the Latin/Cyrillic Alphabet [44], also known as ECMA-113 [31],
which can represent Russian, Ukrainian, and other languages written in Cyrillic and
(because it includes ASCII as its left half) also English. Listed in Table VII-6.

HEBREW-ISO
Is ISO 8859-8, the Latin/Hebrew Alphabet [44], also known as ECMA-121 [32],
which can represent Hebrew, Yiddish, Ladino, Aramaic, and Judeo-Arabic, as well as
English. Listed in Table VII-7.

JAPANESE-EUC
Should be used for Japanese text.

ASCII
Means to render each character as its closest ASCII equivalent, for example by remov-
ing diacritical marks from accented Roman vowels, or by converting Cyrillic charac-
ters ‘‘by sound.’’ Use this option when your computer does not have a way to display
the file’s characters correctly (these conversions don’t work for Japanese).

TRANSPARENT
Means that no character translation occurs; each code is sent as-is. This is the default
transfer character-set. This option can also be used whenever both computers use the
same character set.

Your version of C-Kermit might be configured differently. To find out which transfer
character-sets are available to you:

C-Kermit>set transfer char ?
ascii latin1-iso transparent

When you specify the file and transfer character-sets, Kermit picks the appropriate trans-
lation function and uses it as shown in Figure 16-4 on the next page, which illustrates
what happens when you transfer an Italian language text file from a PC with MS-DOS
Kermit to a Data General AViiON workstation with C-Kermit.

It’s your job to use the SET FILE CHARACTER-SET and SET TRANSFER CHARACTER-SET com-
mands to pick the translation you need. Kermit can’t do this for you because it doesn’t
know what you are trying to accomplish. To illustrate this point, let’s suppose you want
to receive a French-language text file with C-Kermit on an SCO UNIX system running on
an IBM or compatible PC. The TRANSFER CHARACTER-SET is LATIN1. Your PC uses
Code Page 437. You can choose your FILE CHARACTER-SET to be:

Transferring International Text Files 333

Figure 16-4 Linguini Transfer

• CP437 if you want the file to display correctly on your PC console screen

• CP850 if you want to copy the file to a tape cartridge for an IBM RS/6000

• LATIN1 if you want to keep the Latin-1 encoding intact for an application on your PC
that requires Latin-1 rather than CP437

• FRENCH if you want to print the file on your PC printer, but your printer supports only
the French ISO 646 character set

• ASCII if you want to convert the special characters to plain ASCII, for example be-
cause your PC-based e-mail system only supports ASCII

• NEXT if you want to copy the file to a DOS-format diskette to be read on a NeXT
workstation

And so on.

Use the SHOW CHARACTER-SETS command to see C-Kermit’s current terminal, file, and
transfer character-sets:

C-Kermit>sho char

334 International Character Sets / Chapter 16

File Character-Set: US ASCII (7-bit)
Transfer Character-Set: Transparent
Unknown-Char-Set: Keep
Terminal character-set: transparent

(Now change them...)

C-Kermit>set file char next
C-Kermit>set xfer char latin1
C-Kermit>set term char dg next
C-Kermit>set unkn discard
C-Kermit>sho char

File Character-Set: NeXT Multinational (8-bit)
Transfer Character-Set: LATIN1, ISO 8859-1
Unknown-Char-Set: Discard
Terminal character-sets:

Remote: dg-international
Local: next-multinational
Via: latin1-iso

C-Kermit>

The UNKNOWN-CHAR-SET setting tells C-Kermit what to do if a file arrives announcing it-
self with a character set that C-Kermit doesn’t support. Normally the file is accepted
(KEEP) without translation, but you can also instruct C-Kermit to reject such files:

C-Kermit>set unknown-char-set discard

The SET UNKNOWN-CHAR-SET command is effective only when given to the file receiver.

Transferring Roman Text
Let’s try a simple example. Suppose we have a German-language file stored on an IBM
PC using PC Code Page 437. The file is called modem.txt and it looks like this:

Wer ein Selbstwähl-Modem hat, muß zur Herstellung der Verbindung
mit dem anderen Rechner die Wählkommandos eintippen. Man kann zur
Kermit-Kommandoebene zurückgelangen durch Eintippen der
’Rückkehrsequenz’.

Let’s transfer this file from the PC to a UNIX system that uses the 7-bit German character
set. Assume we’re already logged in. The Kermit program on each computer must be
told which file character-set to use, but only the file sender has to be told the transfer
character-set because the sender automatically informs the receiver in the attribute packet.
First tell MS-DOS Kermit on the PC which character sets to use:

MS-Kermit>set file type text (Use text mode)
MS-Kermit>set transfer mode manual (Don’t switch to binary)
MS-Kermit>set file character-set cp437
MS-Kermit>set transfer character-set latin1

Now go to the UNIX system, start C-Kermit, tell it which file character-set to use, then
tell it to wait for the file:

Transferring International Text Files 335

MS-Kermit>connect
$ kermit
C-Kermit>set file character-set german
C-Kermit>receive

Now escape back to the PC and send the file. MS-DOS Kermit automatically tells
C-Kermit that the transfer character-set is Latin-1.

Alt-X (Escape back)
MS-Kermit>send modem.txt (Send the file)
(The file is transferred...)

Now the file is stored on the UNIX system with German ISO 646 encoding. To check that
it was transferred correctly, tell MS-DOS Kermit’s terminal emulator about the character
set, then connect back to UNIX and display the file on your screen:

MS-Kermit>set terminal character-set german
MS-Kermit>connect
C-Kermit>type modem.txt

Wer ein Selbstwähl-Modem hat, muß zur Herstellung der Verbindung
mit dem anderen Rechner die Wählkommandos eintippen. Man kann zur
Kermit-Kommandoebene zurückgelangen durch Eintippen der
’Rückkehrsequenz’.
$

As you can see, the file arrived with its special characters intact. Now let’s transfer the
same file from UNIX to another PC. But this time it is to be printed on a device that does
not have German characters. Here we choose ASCII as the transfer character-set to trans-
late the special characters to their closest ASCII equivalents, rather than into gibberish:

C-Kermit>set file type text (Transfer in text mode)
C-Kermit>set xfer mode manual (Don’t switch to binary)
C-Kermit>set file char german (Translate from this)
C-Kermit>set xfer char ascii (to this)
C-Kermit>send modem.txt (Send the file from UNIX)
alt<X> (Escape back)
MS-Kermit>receive (Wait for the file on the PC)
(The file is transferred...)

MS-Kermit>type modem.txt (Take a look...)

Wer ein Selbstwahl-Modem hat, mus zur Herstellung der Verbindung
mit dem anderen Rechner die Wahlkommandos eintippen. Man kann zur
Kermit-Kommandoebene zuruckgelangen durch Eintippen der
’Ruckkehrsequenz’.
$

Notice how ä has become simply a, ü has become u, and ß has become s. Without these
translations, the text would have been printed like this:

Wer ein Selbstw{hl-Modem hat, mu~ zur Herstellung der Verbindung
mit dem anderen Rechner die W{hlkommandos eintippen. Man kann zur
Kermit-Kommandoebene zur}ckgelangen durch Eintippen der
’R}ckkehrsequenz’.

336 International Character Sets / Chapter 16

Transferring Cyrillic Text
Cyrillic text (Russian, Ukrainian, Belorussian, and so on) can be encoded using a variety
of different and incompatible character sets, including at least the following:

• PC Code Page 866 [56], used on PCs, which, like other PC code pages, has ASCII in
the left half and the special characters in the right. Supported by MS-DOS Kermit and
C-Kermit.

• Alternative Cyrillic, a precursor to Code Page 866, developed for PCs in the Soviet
Union by Bryabin, et al. [6].

• PC Code Page 855 for PCs [39]. Like Code Page 866, but with different encoding.

• KOI-8, also known as ‘‘Old KOI-8,’’ an 8-bit Soviet government standard (GOST
19768-74) [57] character set consisting of full upper- and lowercase Latin and Cyrillic
alphabets, in which the 8-bit Cyrillic letters run parallel to their 7-bit ASCII phonetic
equivalents. KOI stands for

���������	��
������������������������� � !�!
— Kod dlia Ob-

miena Informatsii (Code for Information Interchange, like the CII in ASCII). Old
KOI-8 corresponds to the 1974 first edition of ECMA-113 [30] and is still in wide use,
as in the relcom.* newsgroups.

• Short KOI [57], a 7-bit code containing the uppercase Roman and Cyrillic letters, but
no lowercase. The Roman letters are in ASCII order, and Cyrillic letters parallel the
Roman letters phonetically.

• DKOI [57], similar to KOI-8, but with an EBCDIC-style layout, used on IBM com-
patible mainframes and supported by IBM mainframe Kermit [19].

• IBM Country Extended Code Page (CECP) 880 [39], IBM’s EBCDIC-based Cyrillic
Multilingual Code Page for IBM mainframes, totally different from DKOI, supported
by IBM mainframe Kermit [19].

• IBM Country Extended Code Page 1025, a newer revision of CECP 880.

• ISO 8859-5 Latin/Cyrillic, similar to Latin-1, but with Cyrillic characters in the right
half. Also known as ‘‘New KOI-8’’, this is the international standard Cyrillic charac-
ter set; it corresponds to GOST 19768-87 and to the second edition of
ECMA-113 [31].

Each of these sets is capable of representing both Roman and Cyrillic letters. The Kermit
protocol uses ISO 8859-5 Latin/Cyrillic as the transfer character-set for Cyrillic text, sup-
ported, as of this writing, by MS-DOS Kermit, IBM mainframe Kermit, and C-Kermit.
Use this command:

SET TRANSFER CHARACTER-SET CYRILLIC

to select the Latin/Cyrillic transfer character-set.

Transferring International Text Files 337

C-Kermit supports the following Cyrillic file character-sets:

SET FILE CHARACTER-SET CYRILLIC
ISO 8859-5 Latin/Cyrillic.

SET FILE CHARACTER-SET CP866
PC Code Page 866.

SET FILE CHARACTER-SET KOI8
(Old) KOI-8.

SET FILE CHARACTER-SET SHORT-KOI
Short KOI.

These character sets are listed in Table VII-6 on page 602. The method for transferring
Cyrillic files is the same as for Roman text. You have to identify the file character-set to
be used on each computer and you also must tell the file sender which transfer
character-set to use. Here is an example in which we send a KOI-8 file from C-Kermit to
an IBM-compatible mainframe, where it is to be stored using EBCDIC CECP 880:

Kermit-CMS>set file char cp880 (Translate to PC code page)
Kermit-CMS>receive (Receive the file)
Ctrl-\c (Escape back to C-Kermit)
C-Kermit>set file char koi8 (Identify the file character-set)
C-Kermit>set xfer char cyrillic (Translate to Latin/Cyrillic)
C-Kermit>send icsti.txt (Send the file)

C-Kermit tells IBM Mainframe Kermit that the transfer character-set is Latin/Cyrillic, and
IBM Mainframe Kermit translates from this to Code Page 880.

Suppose you need to look at Cyrillic text on a computer that does not have a Cyrillic dis-
play device available. Use Short KOI, in which all Roman letters are converted to upper-
case, and Cyrillic letters are converted to their lowercase Roman phonetic equivalents,
listed in Table VII-6 on page 602. In this example, we send a copy of Pushkin’s poem
‘‘Bronze Horseman’’ from a PC, where it is stored using CP866, to C-Kermit, where it is
stored in Short KOI format.

MS-Kermit>type horseman.txt (Read it in Russian)�����������
	�����������������
���������
�����! ��"�#�!$�%&�!'(�)����*�+,*��-������!$
./�)%&����0"	��, 1%&���&2435����%6��*�'87�*����#+9�
:��#+1�����&�1�,���� <;�����%
����=?>�@����
3A�6���#=��������A'�*��,�� B��%
*����#+9��2
...

MS-Kermit>connect (Go to UNIX)
C-Kermit>set file char short-koi (Translate to Short KOI)
C-Kermit>receive (Wait for the file)
Alt-X (Escape back)

338 International Character Sets / Chapter 16

MS-Kermit>set file char cp866 (Translate from this...)
MS-Kermit>set transf char cyr (to this)
MS-Kermit>send horseman.txt (Send the file)

(The file is transferred...)

MS-Kermit>connect (Go back to UNIX)
C-Kermit>type horseman.txt (Look at the result)

na beregu pustynnyh woln (You can almost read it aloud)
stoql on, dum welikih poln,
i wdalx glqdel. pred nim {iroko
reka neslasq; bednyj ~eln
po nej stremilsq odinoko.

...

You can translate between 8-bit Roman-based and Cyrillic-based character sets during file
transfer, but then you lose either the Cyrillic characters or the accented Roman ones. For
example, if you translate from KOI-8 to Latin-1, the ASCII text survives, but the Cyrillic
characters all become question marks (but see page 343 before giving up on this idea).

Similarly, if you translate from Latin-1 to Latin/Cyrillic, it is the same as translating from
Latin-1 to ASCII. All accents and other diacritical marks are lost.

Transferring Hebrew Text
The Hebrew alphabet is approximately 2000 years old, and is used for writing Hebrew,
Aramaic, Yiddish, Ladino, and Judeo-Arabic.

The Hebrew alphabet consists of 22 letters and five final forms, with no upper/lowercase
case distinctions, as shown in Table VII-7 on page 606. Other characters (vowel points,
digraphs or ligatures, cantillation marks, and special punctuation) are sometimes also used
for certain purposes, but they are not included in the standard single-byte Hebrew com-
puter character sets.

The Hebrew script is written right to left, but is commonly mixed with Arabic numerals
and Roman text that is written left to right; therefore Hebrew is considered a bidirectional
writing system.

Hebrew character sets include:

• Hebrew-7, a 7-bit code, constructed from ASCII, but with accent grave and the 26
lowercase letters a–z replaced by the 22 Hebrew letters and five final forms in normal
Hebrew order; used on Hebrew-model DEC VT100-series terminals.

• PC Code Page 862, based on PC code page 437, but with the 27 Hebrew letters replac-
ing many of the accented Roman characters. Includes all upper- and lowercase un-
accented Roman letters.

Transferring International Text Files 339

• IBM CECP 424, the Hebrew EBCDIC Country Extended Code Page for IBM
mainframes.

• ISO 8859-8 Latin/Hebrew, similar to Latin-1, but with Hebrew letters in the right half,
rather than accented Roman ones, and with many open positions.

Hebrew-7, CP862, and ISO Latin/Hebrew are supported by C-Kermit and MS-DOS Ker-
mit. CECP 424 is supported IBM Mainframe Kermit. The Kermit protocol uses ISO
8858-8 Latin/Hebrew as the transfer character set for Hebrew text:

SET TRANSFER CHARACTER-SET HEBREW-ISO

C-Kermit also supports the following Hebrew file character sets:

SET FILE CHARACTER-SET CP862
PC code page 862.

SET FILE CHARACTER-SET HEBREW-7
Hebrew-7.

SET FILE CHARACTER-SET HEBREW-ISO
ISO 8859-8 Latin/Hebrew.

In the following example, we transfer a Hebrew text file from a PC, where it is encoded in
CP862, to a UNIX server, translating to Latin/Hebrew in the process:

C-Kermit> set file character-set hebrew-iso
C-Kermit> set xfer character-set hebrew-iso
C-Kermit> receive
Ctrl-\c (Escape back to Kermit 95)
K-95> set file character-set cp862
K-95> set xfer char hebrew-iso
K-95> send hebrew.txt

Only the character code values are changed. Kermit protocol does nothing about the order
in which the characters appear.

Transferring Japanese Text
Japanese writing combines several distinct elements:

• Kanji, ideograms similar to those used in China and Korea, with each ideogram stand-
ing for a word. More than 6000 Kanji symbols are in common use.

• Kana, a phonetic writing system, containing 50–60 characters, including punctuation
and sound symbols. Kana comes in two major varieties, Katakana and Hiragana, the
latter being a more cursive and stylized form.

• Roman letters, digits, and punctuation.

340 International Character Sets / Chapter 16

As you might expect, there is more than one character set commonly used for representing
Japanese text:

• JIS (Japan Industrial Standard) X 0201 [48] combines Roman and Katakana in a
Latin-alphabet-like 8-bit single-byte character set. It differs from a Latin alphabet in
that the left half is not exactly ASCII (backslash is replaced by Yen sign, tilde by over-
bar). The right half has some empty positions.

• JIS X 0208 [49] is a set of 6877 two-byte characters including Roman, Cyrillic, Greek,
Katakana, Hiragana, and Kanji characters, plus special symbol and line-drawing
characters.

• JIS X 0212 [50] is a newer revision of JIS X 0208.

• Japanese EUC (Extended UNIX Code) combines JIS X 0201 and 0208 into a single
code in which single-byte Roman characters have their 8th bits set to 0, double-byte
JIS X 0208 codes have their 8th bits set to 1, and single-byte JIS X 0201 Katakana
codes are invoked via a single-shift mechanism.

• Shift-JIS (Code Page 932) is used on PCs and includes single-byte Roman and
Katakana and 2-byte Kanji, but at different code points than the standard sets or EUC.

• DEC Kanji is used on VMS and OpenVMS and is equivalent to EUC, but without
single-byte Katakana.

• Various ‘‘EBCDIC’’ Kanji codes are used on IBM, Hitachi, and Fujitsu mainframes,
supported by IBM mainframe Kermit [19].

To complicate matters, we have 7-bit transmission media and e-mail to contend with. For
this, a variation of EUC called JIS7 is used, in which all characters are represented by
7-bit bytes, and switching among JIS Roman, JIS Katakana, and JIS X 0208 is done by
locking shifts [35, 42] imbedded in the data stream.

C-Kermit uses Japanese-EUC as the transfer character-set for Japanese text, since it ac-
commodates the three major writing methods and still distinguishes between single- and
double-width Roman and Katakana characters:

SET TRANSFER CHARACTER-SET JAPANESE-EUC

C-Kermit supports the following Japanese file character-sets:

SHIFT-JIS
Shift-JIS (CP932) on PCs.

DEC-KANJI
DEC Kanji, used primarily on VMS and OpenVMS.

Transferring International Text Files 341

JIS7-KANJI
The code most commonly used in electronic mail.

JAPANESE-EUC
Japanese Extended UNIX code itself, commonly found on UNIX computers.

Here we use MS-DOS Kermit on a PC in Kyoto (which uses Shift-JIS) to send a Kanji file
to C-Kermit on a VAX in Tokyo (which uses DEC-Kanji). We also use the SET PROMPT

command to distinguish between the two C-Kermit prompts:

MS-Kermit>set prompt Kyoto> (Local PC Kermit prompt)
Kyoto>set file char shift-jis (Translate from this...)
Kyoto>set xfer char japanese (to this)
Kyoto>connect (Go to the VAX)

$ kermit (Start Kermit)

C-Kermit>set prompt Tokyo> (Change the prompt)
Tokyo>set file char dec-kanji (Translate to this)
Tokyo>r (Receive the file)

Ctrl-\c (Escape back)
Kyoto>send genji.txt (Send the file)

There is no mechanism for translating Japanese into Roman characters or vice versa.
C-Kermit lets you combine Japanese and non-Japanese transfer and file character-sets, but
only the Roman letters are preserved. As of this writing, C-Kermit does not support
Japanese character-set translation during terminal emulation (but MS-DOS Kermit does).

Language-Specific Translations
When C-Kermit is receiving a file encoded in the Latin-1 transfer character-set but has
been told to store the file as ASCII, or when it is sending a file encoded in a national or in-
ternational character set but has been told to use ASCII as its transfer character-set, it
strips diacritical marks and stores or sends the bare letters; for example, à côté becomes a
cote (French), Füße becomes Fuse (German). For most Romance languages (Italian,
Spanish, etc.), not much else can be done.

Languages like Dutch, Norwegian, Danish, Swedish, and German, however, have conven-
tions for changing accented or other special characters into the plain letters A–Z. These
rules are shown in Table 16-8 (in which Scandinavian means Danish, Finnish, Norwegian,
or Swedish). Since Kermit does not know what language a file is written in, you must tell
it. Here’s the command:

SET LANGUAGE name
Tells C-Kermit which language text files are written in so it can apply language-
specific transliteration rules when converting between ASCII and a national or inter-
national character set. Type a question mark to see which languages are supported by
your C-Kermit program, for example:

342 International Character Sets / Chapter 16

Table 16-8 Language-Specific Transliteration Rules

Character Dutch French German Icelandic Scandinavian

Å – – – – Aa

å – – – – aa

Ä – – Ae – Ae

ä – – ae – ae

Æ – – – Ae Ae

æ – – – ae ae

Ö – – Oe Oe Oe

ö – – oe oe oe

Œ – Oe – – –

œ – oe – – –

Ø – – – – Oe

ø – – – – oe

Ü – – Ue – Ue

ü – – ue – ue

ÿ ij – – – –

ß – – ss – –

Ð – – – D –

ð – – – d –

Þ – – – Th –

þ – – – th –

C-Kermit>set language ? One of the following:
danish finnish german norwegian russian ukrainian
dutch french icelandic none swedish
C-Kermit>set language finnish

NONE, which is the default, means that no special language rules should be applied.

If you SET LANGUAGE to DUTCH, FRENCH, GERMAN, ICELANDIC, or any of the Scan-
dinavian languages DANISH, FINNISH, NORWEGIAN, or SWEDISH, you get the effects shown
in Table 16-8 when translating into ASCII from an 8-bit character set or from a 7-bit ISO
646 national version, but not in the other direction. The language-specific translations are
not invertible.

You can find out your current character sets and language with the SHOW FILE, SHOW

LANGUAGES, or SHOW CHARACTER-SETS commands, for example:

Transferring International Text Files 343

C-Kermit>set xfer ch latin1
C-Kermit>show lang

Language-specific translation rules: Icelandic
File Character-Set: ASCII
Transfer Character-Set: Latin-1

C-Kermit>

To illustrate the use of the SET LANGUAGE command, let’s transfer our German file again,
and suppose again that the file is to be printed on a device that does not have the German
special characters. We can convert the German characters to ASCII without any loss of
information by using our special language rules:

MS-Kermit>set file character-set cp437
MS-Kermit>set transfer character-set latin1
MS-Kermit>connect
$ kermit
C-Kermit>set file character-set ascii
C-Kermit>set language german
C-Kermit>receive
Alt-X
MS-Kermit>send modem.txt
MS-Kermit>connect
C-Kermit>type modem.txt

Wer ein Selbstwaehl-Modem hat, muss zur Herstellung der Verbindung
mit dem anderen Rechner die Waehlkommandos eintippen. Man kann zur
Kermit-Kommandoebene zurueckgelangen durch Eintippen der
’Rueckkehrsequenz’.
$

The umlaut-a’s have become ae’s, the umlaut-u’s are now ue’s, and the German double-s
is two s’s — perfectly acceptable and proper German. Note, however, that these rules can
not be applied in the opposite direction. For example, if oe were always translated to ö,
then Kommandoebene would be improperly written as Kommandöbene and Rueckkehrse-
quence would become Rückkehrseqünce.

SET LANGUAGE RUSSIAN (or UKRAINIAN) has a special meaning. If C-Kermit’s file
character-set is one of the Cyrillic ones (KOI8, Cyrillic-ISO, etc.), but the transfer
character-set is ASCII, C-Kermit uses Short KOI in place of ASCII in the Kermit packets.
This lets you send, for example, a Latin-Cyrillic file in Short-KOI form, or receive a file
in Short-KOI form and store it in a proper 8-bit Cyrillic character set. This is useful when
the one of the two computers does not support Cyrillic characters. For example, here we
send a short file composed of both Roman and Cyrillic characters from a Russian com-
puter running C-Kermit to a CP/M microcomputer running Kermit-80:

C-Kermit>set file character-set koi8 (Translate from this)
C-Kermit>set xfer character-set ascii (to this)
C-Kermit>set language russian (using Short KOI)

344 International Character Sets / Chapter 16

C-Kermit>send kepmit.txt (Send a file)
Ctrl-]C (Escape back to micro)
Kermit-80>receive (Receive the file)

(The file is transferred)

Kermit-80>type kepmit.txt (Take a look at it)
protokol pereda~i fajlow KERMIT.

ppf razrabotan w sootwetstwii so standartom ISO 7498 "|talonnaq
modelx wzaimodejstwiq otzayplh sistemy princip raboty ppf
zakl‘~aetsq w obmene paketami KERMIT mevdu kompxywerami. format
paketow KERMIT:

+------+-----+-----+------+-- -- -- ---+-------+
? MARK ? LEN ? SEQ ? TYPE ? DATA ? CHECK ?
+------+-----+-----+------+-- -- -- ---+-------+

MARK - marker paketow KERMIT;
LEN - dlina paketa;
SEQ - nomer paketa;
TYPE - tip paketa;
DATA - dannye;
CHECK - kontrolxnaq summa.
Kermit-80>

In the Short-KOI result, uppercase words are English and lowercase words are Russian.
Question marks indicate untranslatable characters. For example, the original text had ver-
tical bars (|) in the diagram, but since vertical bar is the Short KOI notation for the Cyril-
lic letter � (see Table VII-6), they can’t also represent themselves.

Transferring 8-Bit Text Files in the 7-Bit Environment
The Japanese-EUC, Latin/Hebrew, and Latin/Cyrillic transfer character sets contain a
preponderance of 8-bit characters. Does this mean that you must pay a heavy perfor-
mance penalty when transferring Japanese, Hebrew, or Russian text across a 7-bit data
connection?

As part of its international text transfer capability, the Kermit protocol has been fitted with
an efficient locking shift mechanism, explained in Chapter 12, pages 282–284 and in
Reference [36]. Rather than prefix each 8-bit byte with an additional character, Kermit
shifts into and out of 8-bit character sequences much as you push the Caps Lock key on
your keyboard, thus reducing the shifting overhead to per-word or per-sentence rather than
per-character.

Locking shifts are used automatically whenever you have told Kermit to SET PARITY to
anything but NONE and the other Kermit agrees to use them (see Table -FEATURZ on
page -FEATURZ).

Translating without Transferring 345

When the other Kermit program does not implement locking-shift protocol, single shifts
are used; thus the file is still transferred correctly, but probably (in the case of Russian,
Hebrew, or Japanese) less efficiently.

Translating without Transferring

Since the facilities for translation are already in place for CONNECT sessions and file trans-
fer, C-Kermit includes — at no extra cost — a command to translate a local file from one
character set to another:

TRANSLATE file1 cs1 cs2 [file2]
Translate the local file file1 from the character set cs1 into the character set cs2. Both
character sets may be selected from C-Kermit’s repertoire of file character sets. The
result is stored in file2 or (if file2 is not specified) displayed on your screen.
Synonym: XLATE.

As with terminal connection and file transfer, an intermediate standard character set is
used in translation. If the target character-set (cs2) is Cyrillic (CP866, KOI8, Short KOI,
etc.), Latin/Cyrillic is the intermediate set. If Hebrew, Latin/Hebrew is the intermediate
set. Japanese EUC is used as the intermediate set if either one of the files is Japanese. If
either one of the sets is Latin-2 or CP852, Latin-2 is used. Otherwise, Latin-1 is used.

Here’s an example in which a Swedish-language electronic mail message has been re-
ceived and then saved to disk as diab.msg. It is encoded in Swedish 7-bit ISO 646, but
needs to be converted to HP-Roman8 for printing on a Hewlett Packard printer:

C-Kermit>xla diab.msg swedish hp-roman8 diab.hp8 (Translate)
C-Kermit>xla diab.hp8 hp-roman8 swedish (Check it)
From: bl@diab.se (Benny Löfgren)
Subject: C-Kermit 5a(177)
Date: Thu, 30 Jan 92 12:55:58 MET

Är det annonserat någon nyare C-Kermit än 5A(177)? Jag har
kompilerat upp den med TCP/IP-stöd på DS90, och det verkar
fungera bra. Kan lägga upp binären på klubben. Följande
entry har jag lagt till i makefilen:
========= cut ========= cut ========= cut ======== cut =========
#DIAB DS90, DNIX 5.3 or later, with HDB UUCP, nap, rdchk, TCP/IP
dnix5r3net:
...
C-Kermit>print diab.lat (Looks good, print it)

In case you are not lucky enough to have a printer with accented letters, you can use the
SET LANGUAGE command with the TRANSLATE command the same way it is used in file
transfer. Here we convert the Swedish message for printing on an ASCII-only printer:

346 International Character Sets / Chapter 16

C-Kermit>set language swedish
C-Kermit>xla diab.msg swedish ascii diab.asc (Translate)
C-Kermit>type diab.lat (Check it)
From: bl@diab.se (Benny Loefgren)
Subject: C-Kermit 5a(177)
Date: Thu, 30 Jan 92 12:55:58 MET

Aer det annonserat naagon nyare C-Kermit aen 5A(177)? Jag har
kompilerat upp den med TCP/IP-stoed paa DS90, och det verkar
fungera bra. Kan laegga upp binaeren paa klubben. Foeljande
entry har jag lagt till i makefilen:
========= cut ========= cut ========= cut ======== cut =========
#DIAB DS90, DNIX 5.3 or later, with HDB UUCP, nap, rdchk, TCP/IP
dnix5r3net:
...
C-Kermit>print diab.asc (Looks OK, print it)

See how the special characters were converted according to the rules listed in Table 16-8:
a-ring to aa, and so on.

One-Sided Translation

If the Kermit program on the other end of the connection does not support character-set
translation (most non-Columbia Kermits do not), that doesn’t mean you can’t use
C-Kermit’s translation features with other Kermit programs that don’t support this feature.
Whenever you send a file from C-Kermit to a non-internationalized Kermit on a computer
that happens to support one of Kermit’s transfer character-sets, have C-Kermit translate
the file in the normal way, for example:

C-Kermit>set file char cp437
C-Kermit>set xfer char latin1
C-Kermit>sen oofa.txt

The other Kermit does no translating, but it doesn’t have to.

If a local file is encoded in any character set that is also supported by the other computer,
you can use the TRANSPARENT transfer character-set to send it from C-Kermit, in which
case your current file character-set setting is ignored.

You can also use C-Kermit’s TRANSLATE command to pre- and/or postprocess transferred
files. In this example, C-Kermit running on an Apple Macintosh with A/UX uploads an
Icelandic-language file to a bulletin board system (BBS) that has Kermit protocol built in,
but which does not support character-set translation. The BBS is on a PC that uses Code
Page 850. C-Kermit translates the file from Macintosh Latin to CP850 and then sends it
without further translation:

C-Kermit>type kermit.txt

Af hverju er Kermit svona vinsæll? Hann er ódýr og góður. Með

Labor-Saving Devices 347

Kermit getur þú tengst tölvum, stórum eða litlum, nær og fjær.
Þú getur skiptst á upplýsingum, á þægilegan og öruggan hátt, við
næstum hvaða tölvu sem er. Þú getur tengst fréttakerfum,
verslunum, póstkerfum, bönkum, verðbréfabönkum og sent og tekið á
móti skrám. Þú getur skiptst á gögnum við vini og nágranna, þó
þeir eigi öðruvísi tölvu en þú. Þú getur unnið heiman frá þér.
Kermit getur tengt þig við "netið." Notið ímyndunaraflið. Með
nútíma alþjóðlegu símakerfi og ört vaxandi tækni í síma
og tölvumálum eru ykkur engin takmörk sett.

C-Kermit>translate kermit.txt macintosh-latin cp850 kermit.850
C-Kermit>set transfer character-set transparent
C-Kermit>send kermit.850

When the remote computer supports only ASCII, C-Kermit can send files to it using ASCII

as the transfer character-set, perhaps together with C-Kermit’s SET LANGUAGE command
for language-specific rules. In this example, we upload the same Icelandic text file to
another BBS, but this BBS supports neither the Kermit protocol nor any 8-bit character
sets, so we use the rules from Table 16-8 to transliterate the Icelandic letters to ASCII:

C-Kermit>set file char mac (Macintosh-Latin)
C-Kermit>set xfer char asc (ASCII)
C-Kermit>set lang icelandic (Icelandic rules)
C-Kermit>transmit kermit.txt (Unguarded upload)

Af hverju er Kermit svona vinsaell? Hann er odyr og godur. Med
Kermit getur thu tengst toelvum, storum eda litlum, naer og fjaer.
Thu getur skiptst a upplysingum, a thaegilegan og oeruggan hatt, vid
naestum hvada toelvu sem er. Thu getur tengst frettakerfum,
verslunum, postkerfum, boenkum, verdbrefaboenkum og sent og tekid a
moti skram. Thu getur skiptst a goegnum vid vini og nagranna, tho
their eigi oedruvisi toelvu en thu. Thu getur unnid heiman fra ther.
Kermit getur tengt thig vid "netid." Notid imyndunaraflid. Med
nutima althjodlegu simakerfi og oert vaxandi taekni i sima
og toelvumalum eru ykkur engin takmoerk sett.

C-Kermit>

Finally, it is conceivable that a Kermit program attempts to perform character-set trans-
lation but does so incorrectly, or at least not according to your preferences. You can
prevent two Kermit programs from negotiating automatic translation with each other by
issuing the command SET ATTRIBUTES CHARACTER-SET OFF, which forces the transfer
character-set to be TRANSPARENT.

Labor-Saving Devices

If you always work in a particular language and character-set environment, you can save
yourself some work by putting the appropriate commands in your C-Kermit customization
file so they will be in effect whenever you run C-Kermit. Say, for example, you always
use the Italian character set on the computer where you run C-Kermit and you often trans-

348 International Character Sets / Chapter 16

fer Italian-language text files from there to your MS-DOS PC, where they must be en-
coded in the PC’s character set, CP437. Put the following commands in your Kermit cus-
tomization file:

set file character-set italian
set transfer character-set latin1

If you add the corresponding commands to the customization file for Kermit on your PC:

set file character-set cp437
set transfer character-set latin1
set terminal character-set italian

you will never have to worry about character sets again and you can forget everything you
have read in this chapter.

Command Summary

Character-set translation occurs during file transfer only when the transfer mode is text:

SET FILE TYPE TEXT

Remember that the transfer mode is controlled by the file sender or, in a client/server
relationship, by the client. Also recall that two Kermit programs, even if they are both in
text mode, might switch to binary (or labeled) mode automatically if they are the same
type of system. So in case you need to transfer text files with character-set translation be-
tween like systems, also remember to:

SET TRANSFER MODE MANUAL

rather than AUTOMATIC, which is normally the default.

The commands affecting character-set display and transfer are:

Terminal emulation:

SET COMMAND BYTESIZE { 7, 8 }
SET TERMINAL BYTESIZE { 7, 8 }
SET PARITY { EVEN, ODD, MARK, NONE, SPACE }
SET TERMINAL CHARACTER-SET remote-cset [local-cset]
SET TERMINAL LOCKING-SHIFT { OFF, ON }

File transfer:

SET FILE CHARACTER-SET name
SET TRANSFER CHARACTER-SET name
SET TRANSFER LOCKING-SHIFT { ON, OFF, FORCED }
SET LANGUAGE name

Local translation:

Command Summary 349

TRANSLATE file1 cs1 cs2 [file2]

The SET TRANSFER LOCKING-SHIFT command is important for efficient transfer of
Japanese, Cyrillic, and Hebrew text files in the 7-bit communications environment; it is
discussed in Chapter 12.

350

351

Chapter 17

Command Files, Macros, and
Variables

❍ ❍ ❍ ❍

If you have digested the material in the preceding chapters and applied the ex-
amples to your own connections, you should be comfortable using C-Kermit to
accomplish your communication chores by hand. But manually operating com-
munications software does not make the best use of your time. In these three
chapters, you’ll see how to automate all the procedures you have learned so far.
By the end of Chapter 19 you will be able to create and use commands that
make the connection for you, log you in, carry on scripted dialogs with remote
hosts or services, and transfer data automatically, even when you are elsewhere.

This chapter shows you how to group commands together into command files
and macros so you can execute many commands by issuing a single command.
It also introduces the concept of variables and describes the kinds of variables
offered by C-Kermit and what you can do with them.

Chapter 18 shows you how to program C-Kermit to make decisions, execute
commands repeatedly in loops, read and write files, and so on, using C-Kermit
commands similar to the ones you’re already accustomed to. Finally, in Chapter
19 these somewhat abstract concepts are put to practical use, automating the
making and using of connections and transfer of data. The remainder of the
book is devoted to reference material.

352 Command Files, Macros, and Variables / Chapter 17

Command Files Revisited

You first encountered command files back in Chapter 2. There you learned that you could
put any Kermit commands at all in a file and then execute all of them, one after another,
no matter how many, by giving a single command, TAKE filename, at the C-Kermit
prompt. For purposes that will become clearer in Chapter 19, we will start using the terms
‘‘command file’’ and ‘‘script file’’ interchangeably. A script is a series of commands that
has been recorded in some form.

A script file is a script recorded in a file. Kermit script files can have any name at all, but
since it has become increasingly important in recent years for each application to have its
own special ‘‘filetype’’ or ‘‘extension’’ (the part of the filename after the period) for files
that it uses, we are recommending that you use ‘‘ksc’’ (Kermit Script) for Kermit script
(command) files, and hopefully no other application will lay claim to this same filetype.

In this example we compose a very short script file on a VMS system, where the CREATE

command is the easiest way to make a short text file. Of course you could also use any
text editor or word processor that is capable of creating a plain-text file.

$ create escape.ksc (Create a Kermit Script File)
set escape 29 (Enter text from the keyboard)
show escape
^Z (Ctrl-Z closes the file)
$ (System prompt reappears)

Now we execute the command file by telling C-Kermit to TAKE it:

$ kermit (Start C-Kermit)
C-Kermit 7.1.199, 29 Apr 2001, OpenVMS VAX
Type ? or HELP for help
C-Kermit>take escape.ksc
Escape character: Ctrl-] (ASCII 29, GS)
C-Kermit>

If the command file is not in your current directory, you have to supply its complete file
specification:

C-Kermit>take $disk1:[olga]escape.ksc (VMS)
C-Kermit>take /usr/olga/escape.ksc (UNIX or OS-9)
C-Kermit>take d:\olga\escape.ksc (OS/2 or Windows)
C-Kermit>take d:/olga/escape.ksc (Amiga)
C-Kermit>take :udd:olga:escape.ksc (AOS/VS)
C-Kermit>take hd80:olga:escape.ksc (Macintosh)

You can also have C-Kermit execute the command file by supplying its name as
C-Kermit’s first command-line argument:

$ kermit escape.ksc

Command Files Revisited 353

A command (script) file can include as many C-Kermit commands as you like, including
TAKE commands for other command files. The TAKE command normally executes all the
commands in the file, from the beginning to the end, or up to the first command that tells
it to stop, such as EXIT or QUIT. If a command has a syntax or execution error, C-Kermit
prints an error message and goes on to the next command in the file. For example, if you
executed a command file called TOAST.KSC that looked like this:

echo Making toast... ; Valid command
set toaster dark ; No such SET command
toast two slices ; There is no TOAST command
mail toast ; Valid command but no "toast" file
echo The toast is in the mail. ; Valid command

The result would be:

C-Kermit>take toast.ksc
Making toast...
?No keywords match - toaster
Command file: toast.ksc, line 2
?Invalid: toast two slices
Command file: toast.ksc, line 3
?No files match - toast
Command file: toast.ksc, line 4
The toast is in the mail.
C-Kermit>

But you might not want C-Kermit to be so tolerant of failing commands, especially not if
later commands depend on earlier ones succeeding. To illustrate, suppose you wanted to
send a file to another computer and then delete the original after it is transferred35:

send oofa.txt
delete oofa.txt

In this case you would not want the file to be deleted if it was not transferred successfully.

An all-or-nothing approach to error handling is offerred by SET TAKE ERROR command:

SET TAKE ERROR { ON, OFF }
OFF, the normal and default setting, means that errors in command files do not cause
termination of the command file. ON means that any command in the file that has a
syntax or execution error terminates execution of the command file.

Execution errors occur when a command is syntactically (grammatically) correct but
C-Kermit can’t carry it out successfully; for example, if you tell C-Kermit to TAKE, TYPE,
or SEND a file to which you don’t have read access.

35And you didn’t know about the MOVE command, which does exactly this.

354 Command Files, Macros, and Variables / Chapter 17

When writing and debugging long script files, it can be helpful to watch them execute:

SET TAKE ECHO { ON, OFF }
OFF means that lines from the script file are not displayed on your screen. This is the
normal and default setting. ON means that each command is displayed on your screen
at the time C-Kermit reads it from the file, together with its line number in the file, just
prior to executing it.

Of course, you can put SET TAKE commands in the script files themselves to turn echoing
on and off around interesting sections or to change the error handing.

Command File Example
To illustrate the usefulness of the TAKE command, suppose that on a certain day you need
to upload and download an odd mixture of text and binary files totaling many millions of
bytes in size. How much time are you willing to devote to this task? If you do it inter-
actively, you’ll have to sit and watch your screen constantly and enter new commands at
the right times. It could take all day.

With a command file, each command is executed when the previous one completes, no
sooner, no later; no time is wasted, and while all this is happening you can be off some-
where else doing something that may be more fun than watching Kermit’s file transfer dis-
play. Here’s a sample command file for the job; let’s call it BIGJOB.KSC.

__

; BIGJOB.KSC - Kermit Script to send and get lots of files

set take error on ; Quit if there’s an error
log transactions ; Keep a record of what happened

set file type text ; Transferring text files
send daily.* ; Upload daily reports
send weekly.* ; Upload weekly reports
send monthly.* ; Upload monthly reports
get orders.new ; Download new orders

set file type binary ; Switch to binary mode
send budget.wks ; Upload budget worksheet
send salary.wks ; Send salary worksheet

set file type text ; Back to text mode
mail ok.txt boss ; Send e-mail when done
bye ; Logout remote job
__

After you’ve composed this file with a text editor and saved it on disk, you can start Ker-
mit, make your connection to the remote computer, log in, start Kermit there, put it in
server mode, escape back to C-Kermit, and TAKE the command file:

Command Files Revisited 355

$ kermit (Start kermit)
Ready to dial... (Message from init file)
C-Kermit>dial 765-4321 (Dial the number)
C-Kermit>c (CONNECT to remote computer)
. login olga (Enter username)
Password: (Enter password)

. kermit (Start Kermit on remote computer)
Kermit-CMS>server (Put it in server mode)
Ctrl-\C (Escape back to C-Kermit)
C-Kermit>take bigjob.ksc (TAKE the command file)

Later, when you come back from wherever you went, you can examine the transaction log
to see what happened. Your electronic mail message (composed previously and stored in
the file OK.TXT) is sent to the boss only if all the files were transferred successfully. The
SET TAKE ERROR ON command ensures that any errors terminate the command file before
the message is sent so you won’t look like a fool.

Later, you will see how to automate the entire process, including making the connection
and logging in, as well as a finer-grained method of error handling.

Nested Command Files
When a command file itself contains TAKE commands, the command files are said to be
nested, one within the other. Any C-Kermit command is legal in a command file, includ-
ing TAKE. In fact, one command file can TAKE another, which TAKEs yet another, which
TAKEs still another, and so on, to any reasonable nesting depth. This feature lets you
create building-block command files that can be pieced together in different ways, pos-
sibly saving you much duplication of effort over the years.

But there can be more down-to-earth, if less obvious, reasons for nesting command files.
Suppose, for example, BIGJOB.KSC encountered an error. The command file would ter-
minate immediately, the C-Kermit prompt would return, but the connection to the remote
computer would not necessarily be broken. If your absence from the office was longer
than expected, you might have run up a large phone bill for nothing. But if you invoke
BIGJOB.KSC from a superior TAKE file, it would regain control as soon as BIGJOB.KSC com-
pleted — successfully or not. Such a ‘‘wrapper’’ file might look like this:

take bigjob.ksc ; TAKE the command file
hangup ; Hang up the phone when done

Call this two-line superior command file BIGGERJOB.KSC and start it like this:

C-Kermit>take biggerjob.ksc

Then, no matter how BIGJOB.KSC might terminate, C-Kermit hangs up the telephone with-
out delay.

356 Command Files, Macros, and Variables / Chapter 17

Macros

‘‘Macro’’ usually means ‘‘big,’’ but in computer jargon it means something small that
stands for something bigger. Kermit macros are new commands that you create by com-
bining existing commands (or even other macros). Like command files, macros give you
a way to group commands together so you can execute a bunch of them with a single
word. The command for making macros is:

DEFINE name [text]
This command creates a macro with the given name. The macro’s definition is the
text, if any, following its name. This is normally a list of C-Kermit commands (pos-
sibly including names of other macros), separated by commas, but it can be any text at
all. Example:

define noconversion set file type binary, set file names literal

No interpretation, evaluation, or verification of the text is done; the definition is taken
literally. If a macro of the given name already exists, its definition is replaced by the
one given. If no text follows the macro name, the named macro (if it exists) is
removed from C-Kermit’s ‘‘macro dictionary’’ and becomes undefined.

UNDEFINE name
Removes the definition, if any, for the macro whose name is given. This just like
DEFINE name when no text is given.

You can type these commands at the C-Kermit prompt, put them in command files, and
even put them inside other macro definitions. Again, there is nothing magic about where
commands are executed from.

If you have taken the trouble to construct a macro that you want to use frequently, the best
place to put its definition is in your C-Kermit customization file so it will be defined for
you automatically whenever you start C-Kermit in the normal way.

The macro name can be any reasonable character string that contains no spaces or control
characters, up to about 64 characters in length. Uppercase and lowercase letters are
treated equivalently. Remember that DEFINE is a command like any other and so has the
same restriction on its length. The maximum length for a C-Kermit command is usually
about 4000 characters, but can vary with the particular implementation (use SHOW

COMMAND to see the limit in your version).

Here is an example you can try if you have C-Kermit running next to your bed:

define alarm echo Good night!, sleep 6:55:00, beep, echo Wake up!

The macro’s name is:

alarm

Macros 357

The definition is:

echo Good night!, sleep 6:55:00, beep, echo Wake up!

The DEFINE command puts the ALARM macro in C-Kermit’s macro dictionary, turning it
into a new C-Kermit command:

C-Kermit>alarm
Good night.

And then at 6:55 the next morning:

<BEEP>Wake up!
C-Kermit>

The following command destroys the definition of the ALARM macro so you can’t use it
any more:

C-Kermit>undef alarm

(This is like throwing your alarm clock out the window.)

A common and straightforward use for macros is to group SET commands together to al-
low rapid switching among different kinds of connections, for example:

define vms set parity none, set duplex full,-
set flow xon/xoff, set handshake none
def ibm-linemode set parity mark, set dupl half,-
set handsh xon, set flow none

Here two macros are created, the first named VMS and the second IBM-LINEMODE.

Pay careful attention to punctuation: use commas to separate commands, and hyphen
(dash) to continue a line. Remember, DEFINE, just like any other Kermit command, is one
line, and, like other commands, it can be continued onto new lines by using hyphens as
shown. The final line of the definition, of course, must not end with a hyphen. If you ac-
cidentally omit a hyphen, the next line is taken as a new command, rather than part of the
macro definition.

If your macro definition is in a command file (including your customization file), you can
add trailing comments to each line:

define vms - ; Macro for connecting to VMS
set parity none,- ; No parity
set command byte 8,- ; 8-bit data,
set terminal byte 8,- ; from end to end
set terminal echo remote,- ; The VAX echoes
set flow xon/xoff,- ; Use Xon/Xoff flow control
set handshake none ; No line turnaround handshake

When a line is continued, trailing comments must come after the continuation character,
not before it, and must be preceded by at least one space or tab. If you put a hyphen at the
end of a trailing comment, the next line becomes a continuation of the same comment.

358 Command Files, Macros, and Variables / Chapter 17

You can find out the definition of a macro with the SHOW MACRO command:

C-Kermit>show macro ibm-linemode
ibm-linemode = set parity mark,-
set dupl half,-
set handsh xon,-
set flow none

The definition is shown one command per line, with commas separating the commands,
and hyphens showing line continuation.

If you type SHOW MACRO without giving the name of a macro, C-Kermit shows you all the
currently defined macros and their definitions. Even if you haven’t defined any macros,
you will still see definitions for some of C-Kermit predefined macros, such as FAST,
CAUTIOUS, and ROBUST.

Structured Notation for Macro Definitions
Macro definitions can be quite long, and when they are continued onto many lines, all the
commas and hyphens can become quite confusing, unsightly, and a likely source of typo-
graphical errors that produce strange effects when the macro is executed.

A more natural and familiar notation can also be used for defining macros, resembling the
block structure used in the C programming language. The rules are simple:

1. If a line (not counting any trailing comment) ends with an opening curly brace (‘‘{’’),
this begins a ‘‘block’’.

2. If a line begins with a closing curly brace (‘‘}’’), this ends a block.

Lines are significant within a block. The end of each line (after stripping any trailing
comment), is taken to be the end of a command (unless it ends with a hyphen); Kermit
combines the lines and supplies commas between the commands. Example:

define COUNT { ; optional comment
echo one ; optional comment
echo two ; optional comment
echo three ; optional comment

} ; optional comment

becomes:

define COUNT { echo one, echo two, echo three }

which is entirely equivalent to:

define COUNT echo one, echo two, echo three

The two notational styles can be mixed and matched in any desired manner, even within a
macro definition, but the block-structured style is recommended for its increased readabi-
lity and flexibility.

Macros 359

A block can contain blank lines and full-line comments, which can’t included in macro
definitions when using ‘‘comma-hyphen’’ notation:

define COUNT {

; This is a macro that prints "one", "two", and "three".

echo one ; This line prints "one"
echo two ; And so on ...
echo three

}

Block structured notation can be used with any command, if you can think of a reason to
do it. Just remember that it inserts a comma after each line line within the braces, e.g.:

echo {
one
two
three

}

prints ‘‘one, two, three’’.

We will stick with block-structured notation in this text for clarity, but you can use the
‘‘comma-hyphen’’ style too.

Using Macros
Now that you know how to create macros, you might also want to know how to use them.
There are two ways to use (invoke) a macro. The first and most natural way is simply to
type its name at the C-Kermit prompt, either in full:

C-Kermit>ibm-linemode

or abbreviated unambiguously:

C-Kermit>ib

This way works as long as your macro does not have the same name as, and is not an ab-
breviation of, a built-in C-Kermit command.

The second way is with the DO command:

DO macro-name
Invokes the macro whose name is given. The macro name may be abbreviated to any
length that still distinguishes it from the names of all other defined macros. Examples:

C-Kermit>do ibm-linemode
C-Kermit>do ibm

The DO command removes any possible confusion between macros and built-in com-
mands because it looks only in the macro dictionary. If you type a question mark at the

360 Command Files, Macros, and Variables / Chapter 17

C-Kermit prompt, the macro names are not listed. But if you type DO followed by a space
and a question mark, the names of all the defined macros are listed:

C-Kermit>do ? macro, one of the following:
ibm-linemode vax
C-Kermit>

If you have defined a macro with the same name as a built-in command, the DO command
is the only way to invoke it because C-Kermit gives priority to its built-in commands. If
you always pick original names for your macros, there is no ambiguity and the DO com-
mand need not be used.

Macro execution can be controlled in the same ways as command file execution:

SET MACRO ECHO { OFF, ON }
Controls whether commands from the macro definition are echoed on your screen as
C-Kermit reads them. MACRO ECHO is normally OFF, meaning that the commands are
not shown. You can use SET MACRO ECHO ON for debugging.

SET MACRO ERROR { OFF, ON }
Controls whether an error — syntax or execution — in a command causes C-Kermit to
terminate execution of the macro. Normally MACRO ERROR is OFF, meaning that even
when a command fails, execution proceeds to the next command, if any, in the macro
definition.

Execution of a macro can be interrupted at any time by typing Ctrl-C.

Macros That Invoke Macros
Like command files, macros can be nested to any reasonable level. Just as command files
can TAKE other command files, macros can invoke other macros. For example:

define modem set modem type microlink, set speed 57600
define computer set parity even, set term char italian
define communication modem, computer
define protocol set window 4, set rec packet-len 2000, set block 3
define setup communication, protocol

After you have executed these definitions, invoking the SETUP macro will invoke the
COMMUNICATION and PROTOCOL macros. The COMMUNICATION macro will, in turn, in-
voke the MODEM and COMPUTER macros.

Macros That Define Macros
Before proceeding, let’s stop and ask ourselves the vital question: How can we define a
macro that defines other macros? Suppose you use C-Kermit to access two different
remote computers, one of them running the VMS operating system and the other running
UNIX. Suppose also that on each computer you switch back and forth between Italian and
Russian text.

Macros 361

But the two computers use different character sets for each of these languages. You want
to have one set of macros called VMS and UNIX for switching between the two computer
systems, and another set called ITALIAN and RUSSIAN for switching between the two lan-
guages appropriately for each machine.

To illustrate how to construct macros that define macros, let’s make the VMS and UNIX

macros each define their own appropriate ITALIAN and RUSSIAN macros.

But first we must solve a small syntax problem. In the command:

def unix def italian set xfer char latin1, set file char italian

which macro, UNIX or ITALIAN, does the SET FILE CHAR ITALIAN command belong to? (As
written, it belongs to the UNIX macro; not what we intended.) We need a way of grouping
commands inside a macro definition so Kermit can tell which definition each command
belongs to. For this, we use curly braces around the definition to indicate grouping.

So using braces for both block structure and for grouping (and ignoring the question of
how fonts are switched), we define the VMS macro as follows:
__

define VMS {
set parity none ; No parity
set terminal bytesize 8 ; 8-bit characters
set terminal type vt320 ; VT320 terminal emulation

define ITALIAN {
set terminal character-set dec-mcs
set file character-set cp850
set transfer character-set latin1

}
define RUSSIAN {

set terminal character-set koi8 cp866
set file character-set cp866
set transfer character-set cyrillic

}
}
__

Note the use of indentation, spacing, blank lines, comments, and capitalization to increase
the readability of the macro definition. None of these elements are required, nor do they
make any difference in the execution of the macro; they just make it more readable.

When you execute the VMS macro, it sets the parity and terminal parameters immediately
and then defines ITALIAN and RUSSIAN macros for later use. The internal curly braces tell
Kermit which commands are part of the VMS macro definition and which ones are part of
the ITALIAN and RUSSIAN macro definitions.

362 Command Files, Macros, and Variables / Chapter 17

The corresponding UNIX macro is written for a 7-bit communications environment, in
which Italian is encoded in the 7-bit Italian version of ISO 646 and Russian is encoded in
Short KOI:
__

define UNIX {
set parity even
set terminal bytesize 7
set terminal type vt100

define ITALIAN {
set terminal character-set italian
set file character-set cp850
set transfer character-set latin1

}
define RUSSIAN {

set terminal character-set short-koi cp866
set file character-set cp866
set transfer character-set cyrillic

}
}
__

To use these macros, add their definitions to your C-Kermit customization file. Then,
whenever you have started C-Kermit, you can type ‘‘VMS’’ or ‘‘UNIX’’, to specify which
type of system you are accessing. And then you can type ‘‘ITALIAN’’ or ‘‘RUSSIAN’’ to set
up or switch between the appropriate character sets for Italian or Russian, the same way
on each system.

The On_Exit Macro
Just as C-Kermit has an initialization file for commands to be executed automatically
every time the program starts, it also has a way to execute commands of your choice auto-
matically when it exits.

If you have defined a macro called ON_EXIT, Kermit executes it when you give the EXIT or
QUIT command, just before its final acts of cleaning up and self destruction. The ON_EXIT

macro should be defined in your C-Kermit customization file. Here’s a sample that can be
used by someone who always uses C-Kermit to dial out with an external modem:

define on_exit hangup, echo Remember to turn off your modem!

To illustrate its use:

$ kermit (Start Kermit)

(Transfer some files, etc...)

C-Kermit>exit (EXIT hangs up the phone)
Remember to turn off your modem! (and prints a reminder)
$

Macro Arguments 363

Macros versus Command Files
Command files and macros can be mixed in every conceivable way. Macros can be (and
typically are) DEFINEd in command files, macros can be invoked from command files,
command files can be TAKEn from inside a macro, a macro can DEFINE another macro, and
so on. What are the differences between command files and macros?

• A command file can be any length at all, whereas a macro definition is restricted to the
length of C-Kermit’s command buffer, as shown by SHOW COMMAND.

• Macros, once defined, are available at all times while C-Kermit is running and can
be invoked simply by name, regardless of C-Kermit’s current directory.

• Macro execution can be faster, because C-Kermit executes macros out of its own
memory rather than by opening and reading a disk file.

• You can define all your macros in a single command file, which can be preferable to
cluttering up your disk with lots of command files.

• Most important, macros can have arguments.

Macro Arguments

You can furnish a macro with additional information in the form of operands, or ar-
guments , by including them after the macro name when you invoke it and separating each
argument by whitespace (one or more spaces or tabs).

You can think of a macro as a verb to which you can give different objects, like ‘‘eat
spaghetti,’’ ‘‘eat corn,’’ ‘‘eat salad.’’ Eating is a routine operation, but it can be performed
on a variety of foods.

Programmers can think of macros as ‘‘routines’’ in the programming sense: subroutines or
functions that do a routine task on whatever data is fed to them.

Here is a simple example:

C-Kermit>define eat echo Thank you for the \%1. It tastes good.
C-Kermit>eat bread
Thank you for the bread. It tastes good.
C-Kermit>eat calzone
Thank you for the calzone. It tastes good.
C-Kermit>

The arguments are real data — words, numbers, filenames, and so on — that are plugged
into special placeholders in the macro definition (\%1 in the previous example) before the
commands in the macro are executed.

364 Command Files, Macros, and Variables / Chapter 17

Here is a more complete, formal, and precise description of macro invocation:

[DO] macro-name [arg1 [arg2 [... [arg9]]]]
Sets the variable \%0 to the name of the macro. Copies the text of the arguments into
the variables \%1, \%2, ..., \%9. Sets the variable \v(argc) (explained later in this
chapter) to the number of arguments plus 1 and then executes the commands in the
definition, substituting any occurrences of these variable names in the macro defini-
tion with the values just assigned.

Let’s try that again in English. When you invoke a macro, you can also put some other
stuff — up to nine ‘‘words’’ — after the macro’s name. Each word is assigned to a
variable that has a funny-looking name: backslash-percent-digit; for example, \%2. The
digit tells the position of the word in the command you just typed: 0 for the name of the
macro itself, 1 for the first word after its name (the first argument), 2 for the second word,
and so on. If there are more than 9 arguments, the extra ones are ignored. If there are
fewer than 9, the extra variables are given a null (empty) value. Argument variable names
(\%0, \%1, etc.) that occur anywhere in your macro definition are replaced by the cor-
responding arguments when the commands in the macro are executed.

Maybe another example will help. Here is a macro definition that adds a command, TDIR

(time-order directory) to the UNIX version of C-Kermit to display a directory listing in
reverse chronological order (ls -lt), pausing at the end of each screenful (| more), by
running the the corresponding UNIX commands:

C-Kermit>define tdir run ls -lt \%1 \%2 \%3 \%4 \%5 | more

Execute this macro by typing its name, followed by zero, one, two, up to five, filenames
or wildcards:

C-Kermit>tdir (All files)
C-Kermit>tdir *.txt (All .txt files)
C-Kermit>tdir file1 file2 file3 (Three specific files)
C-Kermit>tdir oofa.txt /tmp/oofa.txt (files in different places)

When the macro is executed, \%1 is replaced by the first file specification (if any), \%2 is
replaced by the second one (if any), and so on. So the commands that Kermit actually ex-
ecutes are, respectively:

run ls -lt | more
run ls -lt *.txt | more
run ls -lt file1 file2 file3 | more
run ls -lt oofa.txt /tmp/oofa.txt | more

Kermit’s argument-passing scheme should be crystal clear to you now — so clear that you
put this book down between the last paragraph and this one, ran to your keyboard, added
even more new commands, and then translated all of Kermit’s built-in commands into
Hungarian simply by defining macros for them. If you didn’t do all that, go do it now.

Macro Arguments 365

Format of Macro Arguments
A macro argument is a string of printing characters surrounded by whitespace (spaces or
tabs). The final macro argument can be either the final string of printing (non-whitespace)
characters on the command line, or it can be followed by a trailing comment, which is ig-
nored. To illustrate, we define a macro, ARGLIST, that prints its first four arguments, and
then we invoke it in various ways:

C-Kermit>def arglist echo 1=(\%1) 2=(\%2) 3=(\%3) 4=(\%4)
C-Kermit>arglist amethyst blue red yellow green
1=(amethyst) 2=(blue) 3=(red) 4=(yellow)
C-Kermit>arglist one two
1=(one) 2=(two) 3=() 4=()
C-Kermit>arglist one two ; with a comment
1=(one) 2=(two) 3=() 4=()
C-Kermit>

If you want an argument to include (or be) spaces, enclose it in curly braces:

C-Kermit>arglist {this one has four words} { abc } { }
1=(this one has four words) 2=(abc) 3=() 4=()

As you can see, the braces are removed. If you want the braces kept, use two pair:

C-Kermit>arglist {{abc xyz}} {{}}
1=({abc xyz}) 2=({}) 3=() 4=()

You can force an argument to be empty by using an empty pair of braces:

C-Kermit>arglist first second {} fourth
1=(first) 2=(second) 3=() 4=(fourth)

The command SHOW ARGUMENTS, given inside a macro, displays the macro’s arguments:

C-Kermit>define shoargs show arguments
C-Kermit>shoargs one two {three and} four
Macro arguments at level 0
\%0 = shoargs
\%1 = one
\%2 = two
\%3 = three and
\%4 = four
C-Kermit>

Scope of Macro Arguments
The argument variables \%0 through \%9 are created when the macro is invoked and are
available to the macro throughout its execution. Arguments that are not specified are set
to null (empty) values, as shown in the previous examples.

If macro A invokes macro B, macro B gets a whole new set of arguments \%0 through
\%9, and it does not have access to macro A’s arguments at all. When macro B ter-
minates, macro A still has its own original copies of these variables. (In programming

366 Command Files, Macros, and Variables / Chapter 17

lingo, macro arguments are on the ‘‘macro call stack,’’ but not inherited.) This process is
replicated as deeply as macro invocations can be nested. To illustrate:

C-Kermit>def top show arg, middle Testing, show arg
C-Kermit>def middle show arg, bottom XXX, show arg
C-Kermit>def bottom show arg
C-Kermit>top Hello (Invoke TOP macro with arg "Hello")
Macro arguments at level 0 (Now we’re in the TOP macro)
\%0 = top (TOP macro shows its arguments)
\%1 = Hello (This is what I typed)
Macro arguments at level 1 (TOP macro invokes MIDDLE macro)
\%0 = middle (MIDDLE macro shows its name)
\%1 = Testing (and its argument)
Macro arguments at level 2 (MIDDLE invokes BOTTOM)
\%0 = bottom (BOTTOM macro shows its name)
\%1 = XXX (and its argument)
Macro arguments at level 1 (Now back to MIDDLE macro)
\%0 = middle (Its name is still the same)
\%1 = Testing (and so is its argument)
Macro arguments at level 0 (Now back to TOP macro)
\%0 = top (Its name is still the same)
\%1 = Hello (and its argument is too)
C-Kermit>

If a macro definition happens to include a TAKE command, the macro’s arguments are
available to the command file, too (the macro call stack is unchanged). To illustrate, sup-
pose the file HAYES.KSC contains:

set modem type hayes ; Specify modem type
set line /dev/cua ; Specify communication device
set speed 2400 ; Set the speed
dial \%1

Also suppose you define the following macro and then invoke it:

C-Kermit>define hayes take hayes.ksc
C-Kermit>hayes 7654321

C-Kermit executes the commands in the HAYES macro, replacing all the backslash-percent
variables by the macro’s actual arguments. Because the HAYES macro is still active while
the command file is being executed, the \%1 variable is available in the command file,
too, and so the command:

dial \%1

in HAYES.KSC becomes:

dial 7654321

before C-Kermit executes it.

So in case you wanted to create your own dialing method rather than using C-Kermit’s
built-in one, you could do it by writing a script such as this one, but replacing the DIAL

command with a series of explicit interactions with the modem, using techniques
presented in this and the following chapters.

A Macro Sampler 367

A Macro Sampler

To bring the concepts of macros and arguments down to earth, here is a brief sampling of
connection and file-transfer macros that real C-Kermit users actually use in everyday life.

Dialing Macros
Suppose you have a PC on your desk at work with communication port 1 (COM1) con-
nected to your company’s voice/data PBX, a Rolm Computerized Branch Exchange, and
with COM2 connected to a US Robotics modem on a regular telephone line. It assumes
you have left FLOW-CONTROL at its default setting, AUTO. Here is how you can define
macros to let you make connections with one or the other:

; ROLM - All the steps needed for a Rolm data call in one command
define ROLM {

set macro error on ; Quit on failure
set modem type rolm ; Modem type
set port com1 ; Device name
set speed 19200 ; Speed
set dial display on ; Watch call progess reports
dial =\%1 ; Dial the "number" literally
connect ; Only if the call is completed

}

The Rolm data communications module (DCM) uses ‘‘data group’’ names rather than
phone numbers. Notice the equals sign (=) to force Kermit to treat the name literally.

Use this macro by typing its name followed by a data group name. Note that since MACRO

ERROR is ON, the macro quits executing immediately any time there is an error so, for ex-
ample, we don’t go into CONNECT mode if the call is not completed:

C-Kermit>rolm accounting ; A data group name
C-Kermit>rolm shipping ; Another data group name

Add the DEFINE command to your C-Kermit customization file, and the ROLM macro will
be available to you whenever you start C-Kermit.

Now let’s make a similar macro for the US Robotics modem. It assumes country code,
area code, dialing prefixes, etc, are already defined appropriately in your C-Kermit cus-
tomization file:

; USR - All the steps needed for a USR modem call in one command
define USR {

set macro error on ; Quit on failure
set modem type usr ; Modem type
set port com2 ; Device name
set speed 57600 ; Speed
set dial display on ; Watch what happens
dial \%1\%2\%3\%4\%5\%6 ; Dial the number
connect ; Only if the call is completed

}

368 Command Files, Macros, and Variables / Chapter 17

In this example, we do not include the equal sign because we want C-Kermit to use its
dialing directory and handle area and country codes. And we list six macro arguments in
the DIAL command to allow you to type telephone numbers with spaces in them:

C-Kermit>usr 18005551212 ; A telephone number
C-Kermit>usr +1 (800) 555 1212 ; This works too
C-Kermit>usr compuserve ; A dialing directory entry

Here are sample macros that use ROLM and USR to place calls to specific departments or
services:

define accounting rolm accounting ; Rolm data group name
define shipping rolm shipping ; Rolm data group name
define compuserve usr compuserve ; Dialing directory name
define attmail usr attmail ; Dialing directory name
define mcimail usr +1 (800) 456 6245 ; Actual phone number

You can use these macros to call a host or service by typing just the macro name at the
C-Kermit prompt. You can even abbreviate the name:

C-Kermit>ship
C-Kermit>mci

Adapt these macros to your own setup and the hosts or services you use and put their
definitions in your C-Kermit customization file. Then let Kermit’s fingers do the walking!

Pager Macros
Refer to the discussion about how to dial numeric pagers on page 77. Now that you have
a macro to dial your modem, you can build on that to send a numeric page:

define NPAGE {
usr \%1@\%2#;
clear dial-status

}

That’s it. Remember, for most Hayes compatible modems @ means ‘‘wait for quiet
answer’’ and the semicolon makes the modem return to command mode immediately after
dialing, which makes Kermit sense that a ‘‘partial call’’ is in progress. The # terminates
the message. CLEAR DIAL-STATUS clears the partial call status so subsequent DIAL com-
mands will work normally.

The format for invocation is a bit more restrictive than for regular calls, since the macro
must be able to distinguish the phone number from the message. So the first argument is
the phone number and the second argument is the message. Recall that you can’t include
spaces within a macro argument (unless you surround it with braces). Examples:

C-Kermit>npage 5554321 7654321
C-Kermit>npage {555 4321} 7654321

Both examples call the phone number 5554321 and leave the numeric message 7654321.
Alphanumeric pagers are covered in Chapter 19.

A Macro Sampler 369

Network Macros
If you’re a network user, you can add similar macros to your C-Kermit customization file
for the network connections you commonly make. Here are macros to make the ap-
propriate settings for TCP/IP and X.25 networks. The communications and file transfer
parameters are samples only, and not necessarily optimal for all connections:

define TCP {
set macro error on
set flow none
set parity none ; (or space)
set receive packet-length 2000
set window 4
telnet \%1 \%2 ; \%2 is an optional service name or number

}
define X25 {

set macro error on
set net x.25
set flow xon/xoff
set parity mark ; (or space, even, or none)
set receive packet-length 250
set window 8
set host \%1
connect

}

And here are macros to make frequently used connections just by typing their names:

define chemsun tcp sun.chem.myu.edu ; Chemistry Department Sun
define catalog tcp locis.loc.gov ; US Library of Congress
define weather tcp madlab.sprl.umich.edu 3000 ; Today’s weather
define mcimail x25 1234567890 ; (Fictitious X.25 address)

Network Dialing Macros
Suppose your computer is on a local TCP/IP network with a ‘‘reverse terminal server,’’ al-
lowing users of the local net to Telnet to a special port (say, 2000) on the terminal server
to reach, say, a Telebit modem that can be used for dialing out. This is another excellent
use for a macro, since a number of commands must be issued in a specific order, which
who can remember? In this example, let’s say the IP hostname of the terminal server is
dialout.xyzcorp.com:

define NETDIAL {
set macro error on
set network tcp/ip
set host dialout.xyzcorp.com 2000
set modem type telebit
dial \%1\%2\%3\%4\%5\%6
connect

}

Again, note that the macro quits immediately if any command fails. Thus we don’t DIAL

if we can’t make a TCP connection to the desired port on the terminal server, and we don’t
CONNECT if the call was not completed.

370 Command Files, Macros, and Variables / Chapter 17

File Transfer Macros
Here are two simple macros for selecting and initiating text or binary mode file transfer:

define bsend set file type binary, send \%1 \%2
define tsend set file type text, send \%1 \%2

The first argument, \%1, is the name a file to send; the second (optional), \%2, is a dif-
ferent name under which to send the file. (These macros work only with single files; for
more general versions, see the standard C-Kermit initialization file.)

And here are macros for quickly switching among three different levels of file-transfer
performance:

define robust set window 1, set receive packet 90, set prefixing all
define cautious set win 4, set rec pack 1000, set prefixing cautious
define fast set win 20, set rec pack 4000, set prefixing minimal

These macros are so useful that they are predefined in C-Kermit, which means they are
always available, even if you don’t execute DEFINE commands for them. Of course you
can still undefine them or redefine them.

Where to Put Macro Definitions
Aside from C-Kermit’s several predefined macros, a macro is not defined, and therefore is
not available for use, until C-Kermit executes a DEFINE command for it. As you can see
from some of the preceding examples, a macro can be rather long and complicated, so you
certainly don’t want to type its definition at the prompt every time you run C-Kermit. So
instead, you should put the macro definition in a file. Which file?

We recommend that end users not modify the standard C-Kermit initialization file. Many
of C-Kermit’s services depend on macros that are defined there. So that leaves:

1. Your C-Kermit customization file. This is the best place to put definitions for macros
that you always want to have available. Putting macro definitions here is like adding
new, personalized commands to C-Kermit.

2. Some other file. If you record macro definitions in some other file, you have to tell
C-Kermit to TAKE the file (or, equivalently, give the file’s name as C-Kermit’s first
command-line argument) before you can use the macros defined in it. This is the
natural approach for seldom-used, special-purpose, or one-shot macros.

If you try to execute a macro that isn’t defined, C-Kermit complains ‘‘?No keywords
match’’. You can get a list of all the defined macro names with ‘‘DO ?’’. You can find out
how many macros are defined, and what the maximum number of macros is, with the
SHOW COMMAND command. You can see the definition of a particular macro with SHOW

MACRO name-of-macro.

Variables 371

Variables

Variables are things that stand for other things. At different times, the same variable
might take on different values. Its value can vary, which is why it’s called a variable, but
its name always stays the same. Macro arguments are one type of C-Kermit variable, ac-
cessible only within their own macro. This section describes several other kinds of vari-
ables, which, unlike macro arguments, can be global — meaning they are accessible to all
commands at all levels — or local, meaning they are accessible at the level at which they
are defined, and below.

Letter Variables
Letter variables are like macro arguments, but spelled with (unaccented Roman) letters in-
stead of digits: \%a, \%b, \%c, ..., \%z. The case of the letter doesn’t matter; \%a is the
same variable as \%A, so there are 26 letter variables available for your use. All of these
variables have the null (empty) value until given a definition:

C-Kermit>define \%n Fred C. Dobbs
C-Kermit>defin \%d 1(212)555-1212
C-Kermit>def \%f oofa.txt

You can find out which letter variables are defined and what their values are with the
SHOW GLOBALS command:

C-Kermit>show glob
Global variables:
\%f = oofa.txt
\%d = 1(212)555-1212
\%n = Fred C. Dobbs
C-Kermit>

You can use a letter variable almost anywhere in any Kermit command. Simply place it
where you want its value inserted:

C-Kermit>echo \%n calling \%d to transfer \%f...
Fred C. Dobbs calling 1(212)555-1212 to transfer oofa.txt...
C-Kermit>dial \%d (dial 1(212)555-1212)
C-Kermit>send \%f (send oofa.txt)
C-Kermit>

Evaluation of these variables is simply a matter of text substitution. Variables do not have
types, like integer versus character versus string. Their values are substituted in place at
the time the commands in which they appear are parsed. If the result is illegal, an error is
diagnosed in the same way it would be you had typed the illegal value in directly. To il-
lustrate:

C-Kermit>define \%x oofa (A non-numeric value)
C-Kermit>set block-check \%x (Use it in a numeric context)
?Invalid - set block oofa (Kermit doesn’t understand)

372 Command Files, Macros, and Variables / Chapter 17

C-Kermit>define \%x 2 (Try a numeric value)
C-Kermit>set block-check \%x (Use it in the same context)
C-Kermit> (No complaint)

If you want to use a variable name itself literally in a command, precede its name with a
backslash:

C-Kermit>define \%a Hello again
C-Kermit>echo My name is "\\%a". My value is "\%a".
My name is "\%a". My value is "Hello again".
C-Kermit>

You should keep in mind one restriction on C-Kermit’s text substitution. You can’t place
a variable that expands into multiple words in a command field that is required to be a
single word. For example:

C-Kermit>def \%a file type binary
C-Kermit>set \%a
?More fields required
C-Kermit>

But:

C-Kermit>def \%b file (Define each word separately)
C-Kermit>def \%c type
C-Kermit>def \%d binary
C-Kermit>set \%b \%c \%d
C-Kermit> (No complaint)

Assigning versus Defining
Variable definitions can be nested, meaning that the definition of one variable can contain
the names of other variables:

C-Kermit>define \%a My name is \%b.
C-Kermit>define \%b not \%c
C-Kermit>define \%c Olga
C-Kermit>echo \%a
My name is not Olga.
C-Kermit>

This raises an interesting question: what happens if we define a variable in terms of itself?

C-Kermit>define \%a 5 (\%a is defined to be "5")
C-Kermit>define \%a -\%a (\%a defined to be "-\%a")
C-Kermit>echo \%a (What does this do?)

Luckily, you’ll never know. This is called a circular definition and would result in the
construction of an infinitely long string of dashes in front of the 5, quickly filling up the
computer’s memory if C-Kermit didn’t notice and put a stop to it:

?Definition circular or too deep
C-Kermit>

Variables 373

But what if all we really wanted to do was replace the definition of \%a by itself with a
dash in front of it, for example to turn a positive number into a negative one? We need a
way to tell C-Kermit to copy the values of the variables in the definition, rather than their
names. This capability is provided by the ASSIGN command:

ASSIGN name [text]
This command can be used to create or give new values to either macros or variables.
Unlike DEFINE, it evaluates any variables in the text before making it the value of the
variable or macro. Synonym: ASG. Example:

C-Kermit>define \%a 5
C-Kermit>assign \%a -\%a
C-Kermit>echo \%a
-5
C-Kermit>

The difference between DEFINE and ASSIGN is important when the definition contains vari-
ables whose values might change before they are used. DEFINE copies variable names
literally, postponing their evaluation until a command actually refers to them, allowing fu-
ture references to pick up the new values, whereas ASSIGN evaluates them at the time the
assignment is made, preserving their current values.

Macros as Variables
Macros can be used as variables too. Define a macro in the normal way but, if you intend
to use it as a variable rather than as a list of commands, it can contain any text at all:

C-Kermit>define phone-number 1(212)555-1212

You can refer to it using special notation: its name preceded by \m and enclosed in paren-
theses. C-Kermit replaces this construction with the macro’s definition:

C-Kermit>echo \m(phone-number)
1(212)555-1212
C-Kermit>dial \m(phone-number)

These variables differ from letter and digit variables, like \%a and \%1, not only in the
format of their names, but also in how they are evaluated. Letter and digit variables are
evaluated recursively, meaning that if their values contain further variable references, then
those, too, are evaluated and the process repeats until all variable references are resolved.
The \m() operator, however, is replaced by the literal definition of the macro it refer-
ences. To illustrate:

C-Kermit>define \%a PAINTBUCKET
C-Kermit>define \%b \%a
C-Kermit>define \%c \%b
C-Kermit>define foo \%a
C-Kermit>echo \m(foo) = \%c
\%a = PAINTBUCKET
C-Kermit>

374 Command Files, Macros, and Variables / Chapter 17

This property is useful in dealing with DOS filenames, used not only in DOS, but also
Windows and OS/2, where the backslash character is the directory separator.

C-Kermit>define \%a C:\WINDOWS\SYSTEM.INI
C-Kermit>define filename C:\WINDOWS\SYSTEM.INI
C-Kermit>echo \%a
C:WINDOWSSYSTEM.INI
C-Kermit>echo \m(filename)
C:\WINDOWS\SYSTEM.INI
C-Kermit>

Notice how backslashes are swallowed up by the evaluation of \%a, but are preserved
when using the \m() form. Therefore you should use the \m() form for holding file-
names or any other text that is likely to contain backslashes that are to be used literally.

Local Variables and Settings
Whenever a computer program becomes even moderately complex, the danger of vari-
able-name conflicts arises. This is especially true in the Kermit language, in which there
are only 26 distinct letter variables. Meanwhile, as the corpus of programs in a particular
language grows, it becomes increasingly desirable to have a way to package up procedures
in a portable and reusable way. We have said that macros (and to some extent, command
files) are the ‘‘subroutines’’ of the Kermit language, but for subroutines to be portable,
reusable, and safe, they must be self-contained and should execute without side effects.
This can be accomplished, at least in part, by using local variables.

A local variable exists only in the context of the command level (macro or command file)
that declares it, including any macros or command files invoked from the current com-
mand level, and so on. It is ceases to exist when the macro or command file in which it
was declared exits. Thus it can have the same name as other variables outside of the
macro or command file without causing any conflict or affecting their values. Local vari-
ables are defined by the LOCAL command:

LOCAL name1 [name2 [...]]
Declares the variables whose names are listed to be local to the macro or command
file in which the LOCAL command appears, and to its ‘‘children’’ and ‘‘descendents’’
The variables may be letter variables or macro names. This command does not create
or define the variables; it merely reserves their names local use. Example:

local \%a \%b \%x filename phone-number

Here is a simple demonstration how local variables work:

define TESTING {
local \%a
define \%a This is the local value.
echo \%a

}

Variables 375

define \%a This is the original value.
print \%a
testing
print \%a

When you execute these commands, the result is:

This is the original value.
This is the local value.
This is the original value.

So you can see that defining the local copy of \%a in the TESTING macro does not affect
the global copy of \%a. Declaring \%a to be LOCAL in the macro hides and protects the
global value of \%a from the macro, and it hides the local value of \%a from the higher
levels of the program.

Kermit’s local variables are on the call stack. Unlike macro arguments, however, they are
inherited; they are invisible at higher levels but visible at lower ones. Suppose variable
\%x is defined globally. Then, if macro A declares variable \%x to be local and then in-
vokes macro B, macro B can ‘‘see’’ variable \%x unless macro B itself declares a local
variable of the same name, in which case a third copy of the variable is created, hiding
and protecting the second one, and so on.

Just as local variables can go on the command stack, so do certain settings (for a complete
list, see page 485). We have already seen some examples:

SET MACRO ERROR { ON, OFF }
SET TAKE ERROR { ON, OFF }

The SET MACRO ERROR command affects only the current macro and any macros it might
invoke (and any macros they might invoke, and so on). When the macro that issued this
command exits, the previous SET MACRO ERROR setting is restored. Thus the Kermit
macro programmer is free to change MACRO ERROR settings without having to worry
about how to restore them when the macro terminates — or for that matter, if it is inter-
rupted. Similar comments apply to SET TAKE ERROR. We will see practical applications
for local variables and ‘‘stackable’’ commands in subsequent chapters.

Arrays
An array is a global variable that has a list of values, each one with its own index, a num-
ber ranging from 0 to a maximum that you choose. An array name looks like a letter vari-
able name, except with an ampersand instead of a percent sign: \&a, \&b, ..., \&z. As
with other variable names, case doesn’t matter: \&a is the same array as \&A.

The array index goes in square brackets appended to the name: \&a[0] is the ‘‘zeroth’’
element, \&a[1] is the first element, and so on.

376 Command Files, Macros, and Variables / Chapter 17

Before you can use an array, you must DECLARE its size so Kermit can allocate the re-
quired amount of memory for it:

DECLARE array-name[number]
Creates an array of the given name, with number + 1 elements, 0 through number. For
example, the command:

C-Kermit>declare \&x[200]

creates an array named \&x that has 201 elements, numbered 0 through 200.
Synonym: DCL.

Array elements, like any other variable, can be created with the DEFINE or ASSIGN com-
mand. An array index can be a constant or any type of variable, including another array
element:

C-Kermit>dcl \&x[1000] (Declare array \&x, size 1001)
C-Kermit>def \&x[100] HUNDRED (Define 100th element of \&x)
C-Kermit>def \%i 100 (Define a global variable)
C-Kermit>ech \&x[\%i] (Use it as an index)
HUNDRED
C-Kermit>asg \&x[99] \%i (Define another array element)
C-Kermit>ech \&x[\&x[99]] (Use it as an index)
HUNDRED
C-Kermit>

You can use arithmetic in array subscripts (\%i still has a value of 100):

C-Kermit>def \&x[99] NINETY-NINE (Define 99th element of \&x)
C-Kermit>ech \&x[\%i-1] (Arithmetic in index field)
NINETY-NINE
C-Kermit>def \&x[515] FIVE-FIFTEEN
C-Kermit>def \%j 5
C-Kermit>ech \&x[(\%i+2)*\%j+5]
FIVE-FIFTEEN
C-Kermit>

C-Kermit arrays are one-dimensional. That is, you cannot create or use an array that has
more than one index. A declaration for an array that already exists destroys the previous
array and allocates a new empty one with the same name and with the given size. A dec-
laration with a size of zero destroys the array and releases its memory:

C-Kermit>declare \&x[0]

You can find out which arrays are declared with the SHOW ARRAYS command:

C-Kermit>sho arra
Declared arrays:
\&@[4]
\&a[3]
\&x[200]

We’ll see some uses for arrays in the coming chapters.

Variables 377

The C-Kermit Argument Vector Array
The array \&@[] is special. It is created automatically when Kermit starts up, and it con-
tains the program’s ‘‘argument vector’’ — the command you gave to start C-Kermit. For
example, suppose you started C-Kermit by giving the following command at the UNIX
shell prompt:36

$ kermit -l /dev/ttya
C-Kermit>echo \&@[0]
kermit
C-Kermit>echo \&@[1]
-l
C-Kermit>echo \&@[2]
/dev/ttya
C-Kermit>

Kermit does not let you change the values of the \&@[] array. They are read-only.

The Macro Argument Vector Array
The array \&_[] is also special. Whenever a macro is invoked, the elements of this array
refer to the macro’s arguments. Thus \&_[0] is \%0 (the name of the macro), \&_[1] is
\%1 (the first argument), and so on. Each macro gets its own copy of this array, and so it
too is on the call stack. You can use this array in a macro to access the arguments
programmatically rather than by name, using the techniques presented in the next chapter.

Built-in Variables
C-Kermit offers a selection of built-in, read-only, named variables. Read-only means
C-Kermit gives them their values; you can’t DEFINE or ASSIGN them yourself, you can
only use the values Kermit gives them. Built-in variables have names that look like this:

\v(name)

that is, a backslash, the letter v, and then the variable name in parentheses. Either upper-
or lowercase letters can be used.

As an aside, perhaps you can see a pattern emerging in variable name format. The name
of the variable begins with a backslash, and then the next character tells which type of
variable it is, and then the character(s) after that identify the specific variable. When the
identifier is more than one character long, as in \m(name) or \v(name), the identifier is
enclosed in parentheses so we know where it ends.

C-Kermit’s built-in read-only variables are listed in Table 17-1 at the end of this chapter.
The SHOW VARIABLES command gives you a complete list of C-Kermit’s built in variables
and their current values. In the following sections, we look at some of them in detail.

36Command-line arguments are explained in Appendix I.

378 Command Files, Macros, and Variables / Chapter 17

The Command Environment

\v(args)
The number of ‘‘words’’ you typed when you invoked C-Kermit (the size of \&@[]):

$ kermit -p e -l /dev/acu -b 2400
C-Kermit>echo \v(args)
7
C-Kermit>

\v(argc)
The number of arguments to the current macro, including its name. Example:

C-Kermit>define countwords echo Arguments: \v(argc)
C-Kermit>countwords here are some words
Arguments: 5
C-Kermit>

When no macros are active, the value of \v(argc) is 0.

\v(cmdlevel)
Current command level; 0 means interactive. Anything greater than zero means
C-Kermit is getting its commands from a command file or a macro definition.

\v(cmdsource)
The current source of commands: PROMPT (if interactive), FILE (if a command file), or
MACRO (if a macro definition).

\v(cmdfile)
The name of the current command file, if any. Example:

Echo Greetings from \v(cmdfile)!

\v(_line)
The current line in the current command file, if any:

Echo Greetings from line \v(_line) of \v(cmdfile)!

\v(macro)
The name of the current macro, if any. Same as \%0.

\v(exitstatus)
The numeric return code that C-Kermit would give to your computer’s host operating
system if you gave it the EXIT command right now. This code indicates success or
failure in various operations (explained on page 491).

\v(version)
The Kermit program’s numeric version number. For example, version 7.1.199 is
701199. Use this to construct scripts that can take advantage of commands in new
releases of C-Kermit that aren’t present in old releases.

Variables 379

Computer Environment

\v(directory)
The current (default) directory. Example:

C-Kermit>assign \%d \v(dir) (Save current directory in \%d)
C-Kermit>cd elsewhere (Change current directory)
...
C-Kermit>cd \%d (Go back to previous directory)
C-Kermit>set prompt [\v(dir)] C-Kermit>
[/usr/olga] C-Kermit>cd correspondence
[/usr/olga/correspondence] C-Kermit>

\v(home)
Your home (login) directory. For UNIX, something like /usr/olga/. For VMS,
something like $DISK1:[OLGA]. \v(home) is a portable construction suitable for
concatenation with a filename without any intervening characters; a construction like
\v(home)oofa.txt should work on all operating systems where C-Kermit runs.

\v(host)
The network host name, if any, of the computer where C-Kermit is running:

C-Kermit>set prompt \v(host):Kermit>
CHEMVAX:Kermit>

\v(platform)
The specific platform for which your version of C-Kermit was built, such as
AT&T_System_V_R4. This is the same as the system type announced in C-Kermit’s
version herald, but with spaces replaced by underscores to make it one word.

\v(program)
The name of this program, C-Kermit, as distinct from (say) MS-DOS Kermit.

\v(tmpdir)
The name of a directory that can be used for creating temporary files.

Date and Time

\v(date)
The current date, for example 8 Aug 1996. The month is the first three letters of the
month’s name. The date string contains imbedded spaces. Example:

C-Kermit>echo Today is \v(date).
Today is 8 Aug 1996.
C-Kermit>

\v(ndate)
The current date in numeric yyyymmdd format, e.g. 19960808, suitable for sorting, for
numeric comparisons, or for making filenames. For example:

C-Kermit>log transactions \v(ndate).log

380 Command Files, Macros, and Variables / Chapter 17

\v(day)
The day of the week, written as the first three letters of the weekday: Sun, Mon, ...,
Sat. Example:

C-Kermit>echo Today is \v(day), \v(date).
Today is Thu, 8 Aug 1996.
C-Kermit>

\v(nday)
The numeric value of the day of the week. 0 is Sunday, 1 is Monday, and so on until
Saturday, which is 6.

\v(time)
The current local time in 24-hour hh:mm:ss format. Example: 15:28:00.

\v(ntime)
Numeric time. The current time in seconds since midnight, local time. For example,
10:00 p.m. would be 79200.

Communications

\v(connection)
The current type of communications connection: REMOTE if C-Kermit is in remote
mode, SERIAL if it is a serial connection, TCP/IP if it is a TCP/IP connection, and so on.

\v(line)
The current communication line or device or network host name or number (the most
recent SET LINE, SET PORT, or SET HOST value).

\v(modem)
The current modem type. Also see Table 17-1 at the end of this chapter for numerous
modem and dialing related variables.

\v(local)
1 if Kermit is in local mode; that is, you have given a SET LINE, SET HOST, or TELNET

command to initiate a connection from the computer where C-Kermit is running to
another, remote computer. 0 otherwise.

\v(parity)
The current parity setting: even, odd, mark, space, or none.

\v(speed)
The current speed of the current SET LINE or SET PORT device, if any, otherwise -1.

Variables 381

\v(ttyfd)
The file descriptor of the communication device or connection selected in the most
recent SET LINE or SET HOST command. Use this to construct command lines to make
the communication connections device available to other programs via RUN command.

File Transfer

\v(protocol)
The current file transfer protocol: Kermit, ZMODEM, etc, as established in the most
recent SET PROTOCOL command.

\v(packetlen)
The current SET RECEIVE PACKET-LENGTH value.

\v(window)
The current SET WINDOW value.

\v(ftype)
The current SET FILE TYPE value, such as ‘‘text’’ or ‘‘binary’’.

\v(download)
The current download directory, if any, as established in the most recent SET FILE

DOWNLOAD-DIRECTORY command.

\v(filespec)
The file specification from your most recent file transfer. Useful for referring to the
same group of files again for other purposes, for example:

C-Kermit>send x*.*
C-Kermit>echo \v(filespec)
x*.*
C-Kermit>remote dir \v(filespec)

\v(fsize)
The size of the file most recently transferred, in bytes.

\v(tfsize)
The total size of the file group most recently transferred, in bytes.

\v(cps)
The speed of the most recent file transfer in characters per second.

\v(crc16)
The 16-bit cyclic redundancy check of the file or file group most recently transferred.

382 Command Files, Macros, and Variables / Chapter 17

Environment Variables
Environment variables are global variables that certain computer operating systems or ap-
plication environments make available to application software (such as C-Kermit) at run-
time. An environment variable has a name and a value. C-Kermit gives you access to
your computer’s environment variables (if it has any) with variables of the form:

\$(name)

that is, backslash and dollar sign followed by the name of the environment variable
enclosed in parentheses. Which, if any, variables are available depends on your computer
system and your own setup, which is entirely unknown to C-Kermit. Those commonly
available on UNIX and VMS include:

\$(HOME) Your home directory

\$(USER) Your login username

\$(TERM) Your terminal type

Alphabetic case is usually significant in environment variable names. Example (with
results shown for both UNIX and VMS):

C-Kermit>echo HOME=\$(HOME), USER=\$(USER), TERM=\$(TERM)
HOME=/usr/olga, USER=olga, TERM=vt320
HOME=$disk1:[olga], USER=OLGA, TERM=vt300-80

In UNIX, DOS, Windows, and OS/2, you can find out what environment variables are
currently defined by issuing the command ‘‘set’’ at the shell prompt, or by using the
C-Kermit command:

C-Kermit>run set

In UNIX, you can define an environment variable like this:

$ MYNAME=Olaf ; export MYNAME (sh or ksh)
% setenv MYNAME Olaf (csh)

In VMS, C-Kermit treats logical names and symbols as environment variables:

C-Kermit>echo \$(SYS$SYSTEM)
SYS$SYSROOT:[SYSEXE]

You can list the defined logical names with the VMS SHOW LOGICALS or SHOW SYMBOL

command, and you can define new ones with the VMS DEFINE command:

$ define MYNAME "Olaf"
$ show logical myname

"MYNAME" = "Olaf" (LNM$PROCESS_TABLE)
$ kermit
C-Kermit>echo Hello there, \$(MYNAME).
Hello there, Olaf.
C-Kermit>

Variables 383

Defining versus Assigning Revisited
Some of C-Kermit’s \v() variables change depending on conditions. For example,
\v(directory) changes whenever you give a CD command; the \v(time) variable
changes every second, all by itself. These variables serve nicely to illustrate the distinc-
tion between DEFINE and ASSIGN, in case it is still in doubt. Let’s create a variable \%a

that includes a reference to \v(time) in its value. First with the DEFINE command,
which copies the name of the \v(time) variable into the definition of \%a:

C-Kermit>DEFINE \%a The time is \v(time)
C-Kermit>show globals (Check the value of \%a)
\%a = The time is \v(time)
C-Kermit>echo \%a (Evaluate it)
The time is 13:25:03
C-Kermit>sleep 60 (Let one minute pass)
C-Kermit>echo \%a (Look again)
The time is 13:26:03 (See how it changed)

And again, but with the ASSIGN command, which evaluates the \v(time) variable and
copies its value into the \%a definition:

C-Kermit>ASSIGN \%a The time is \v(time)
C-Kermit>sho globals (Check the value)
\%a = The time is 13:31:47 (No \v(time))
C-Kermit>echo \%a (Evaluate \%a)
The time is 13:31:47
C-Kermit>sleep 60 (Sleep one minute)
C-Kermit>echo \%a (Check again)
The time is 13:31:47 (Time stands still!)

So, once again, the rule is: use ASSIGN to get the current value of a variable whose value
might change before you want to use it. Use DEFINE to ensure that whenever you refer-
ence a variable, you get its latest value. When the definition text does not contain vari-
ables, DEFINE and ASSIGN are equivalent.

Transmission of Variables between Client and Server
When two Kermit programs have a client/server relationship and both have variables, and
both support this optional feature of the Kermit protocol, the client program can both set
and query the values of the server’s variables. As of this writing, MS-DOS Kermit and
C-Kermit (including Kermit 95, Kermit/2, and Macintosh Kermit) support this feature.
The commands are:

REMOTE QUERY { KERMIT, SYSTEM, USER } variable-name
Asks the server to send the value of the variable of the given type that has the given
name. If the query succeeds, the value is displayed on the client’s screen and it is also
stored in the client’s \v(query) variable. If the query fails, an error message is
printed and the \v(query) variable is set to the empty string.

384 Command Files, Macros, and Variables / Chapter 17

In C-Kermit and MS-DOS Kermit, KERMIT variables are the \v(name) kind, such as
\v(time), \v(version), \v(date), as well as \f...() built-in functions, which are
discussed in the next chapter. SYSTEM variables are DOS or UNIX environment variables,
such as PATH, USER, HOME, or VMS logical names or symbols, or the equivalent, if
any, on other operating systems. USER variables are everything else — the letter variables
\%a–\%z, macro names, and even macro arguments (in case the SERVER command was
executed from within a macro).

The name of a KERMIT or SYSTEM variable must be given in an implementation-independ-
ent format without special syntax, e.g. TIME, DATE, VERSION, PATH, USER, etc, rather than
(say) \v(time), \$(PATH). Similarly for functions (discussed in the next chapter):

C-Kermit> remote query kermit files(oofa.*)

rather than:

C-Kermit> remote query \ffiles(oofa.*)

Alphabetic case might or might not be significant in system variables, depending on the
system (in UNIX, for example, it makes a difference). The name of a USER variable is
given in the syntax of the server’s command language, e.g. \%a. Examples:

C-Kermit>remote query kermit time
13:25:18
C-Kermit>echo The server’s time is: \v(query)
The server’s time is: 13:25:18
C-Kermit>rem q k dir (Note, abbreviations allowed)
/usr/olga/letters
C-Kermit>echo The server’s current directory is: \v(query)
The server’s current directory is: /usr/olga/letters
C-Kermit>rem q system USER
olga
C-Kermit>echo user = \v(query)
user = olga
C-Kermit>

The command with which the client defines or changes variables in the server is:

REMOTE ASSIGN name [value]
Asks the server to assign the given value to the remote USER variable denoted by
name. The value is fully evaluated locally before being sent to the server. The max-
imum length for the value is governed by the maximum negotiated packet length, i.e.
the server’s RECEIVE PACKET-LENGTH. Synonym: REMOTE ASG.

Examples:

C-Kermit>rem asg myname Olga (Define server’s myname macro)
C-Kermit>remote query user myname (Get its value)
Olga
C-Kermit>echo \v(query)
Olga

Variables 385

C-Kermit>remote assign \%a \v(time) (Assign my time to server’s \%a)
C-Kermit>remote query user \%a
13:41:18 (This is the client’s time)
C-Kermit>

To force a variable name to be sent literally, use two backslashes:

C-Kermit>remote assign \%a \\v(time) (Assign "\v(time)" to server’s \%a)
C-Kermit>remote query user \%a
13:41:18 (This is the server’s time)
C-Kermit>

You can disable and enable the server’s handling of REMOTE QUERY and ASSIGN with the
commands:

DISABLE QUERY The server should not respond to REMOTE QUERY commands
DISABLE ASSIGN The server should not respond to REMOTE ASSIGN commands
ENABLE QUERY The server should respond to REMOTE QUERY commands
ENABLE ASSIGN The server should respond to REMOTE ASSIGN commands

By default, like most other ENABLE/DISABLE items, the initial state is ENABLEd.

Here is a practical application in which we use the \v(crc16) variable to assure oursel-
ves that a binary-mode file transfer succeeded. If it did succeed, the original and the trans-
ferred copy of the file (or files) should be identical. The CRC is a 16-bit number cal-
culated from all the bytes in the file, which is extremely likely to be different for two files
that are not identical, and which is the same for two files that are identical. The math-
ematics and statistics are explained in numerous references, such as [53, 55].

When you transfer a file between two Kermit programs that have a \v(crc16) variable,
you can check its value on each end after the transfer. This is particularly easy in a client/
server setting:

C-Kermit> send kermit.exe
C-Kermit> echo \v(crc16)
22835
C-Kermit> remote query kermit crc16
22835
C-Kermit>

If the numbers don’t agree, then you probably have transferred the file in text mode. Files
are rarely identical after text-mode transfer, since its purpose is to furnish any required
record-format or character-set conversions.

386 Command Files, Macros, and Variables / Chapter 17

Summary of Built-in Variables
Table 17-1 lists C-Kermit’s built-in \v(name) variables alphabetically.

Table 17-1 Built-in Variables

Variable Description

\v(_line) Line number in current command file

\v(apcactive) 1 if APC command active, otherwise 0

\v(argc) Number of arguments to current macro, plus 1; 0 if no macro

\v(args) Number of command-line arguments, plus 1

\v(charset) Current file character-set

\v(cmdfile) Name of current command file, if any

\v(cmdlevel) Current command level, 0 = top level

\v(cmdsource) ‘‘prompt’’, ‘‘macro’’, or ‘‘file’’

\v(cols) Number of columns on screen, or -1 if unknown

\v(connection) Type of connection: ‘‘remote’’, ‘‘serial’’, ‘‘tcp/ip’’, ‘‘x.25’’, etc.

\v(count) Current value of SET COUNT counter.

\v(cps) Speed of most recent file transfer, characters per second.

\v(cpu) Type of central processing unit in this computer, if known

\v(crc16) 16-bit Cyclic Redundancy Check of most recent file transfer

\v(d$ac) SET DIAL AREA-CODE value

\v(d$cc) SET DIAL COUNTRY-CODE value

\v(d$ip) SET DIAL INTL-PREFIX value

\v(d$lp) SET DIAL LD-PREFIX value

\v(date) Current date, e.g. ‘‘6 Sep 1996’’

\v(day) Day of week, e.g. ‘‘Fri’’

\v(dialnumber) Number or name most recently given to DIAL command

\v(dialresult) Dial result message or code from modem

\v(dialstatus) Numeric code for result of most recent DIAL command, Table 5-3

\v(directory) Current directory

\v(download) Download directory

\v(errno) System error number of most recent error

\v(errstring) Error message associated with \v(errno)

\v(evaluate) Result of most recent EVALUATE command

Variables 387

Table 17-1 Built-in Variables (continued)

Variable Description

\v(exedir) Directory where the Kermit executable resides

\v(exitstatus) Current C-Kermit EXIT status

\v(filespec) File specification from most recent file transfer

\v(fsize) Size of file most recently transferred

\v(ftype) SET FILE TYPE value, e.g. text or binary

\v(home) Your home directory

\v(host) Hostname, if any, of your computer

\v(input) Current contents of the INPUT command buffer

\v(inchar) Single-character INPUT value

\v(incount) Count of characters processed by most recent INPUT command

\v(inidir) Directory where the C-Kermit initialization file was found

\v(instatus) Status of most recent INPUT command

\v(ipaddress) IP address, if any, and if known, of your computer

\v(keyboard) Keyboard type (Windows, OS/2)

\v(line) SET LINE, SET PORT, or SET HOST value

\v(local) 1 if C-Kermit is in local mode, 0 if in remote mode

\v(macro) Name of currently active macro, if any

\v(minput) MINPUT command value indicating which item was matched

\v(modem) SET MODEM TYPE value

\v(m_aa_off) AUTOANSWER OFF command for current modem type

\v(m_aa_on) AUTOANSWER ON command for current modem type

\v(m_dc_off) COMPRESSION OFF command for current modem type

\v(m_dc_on) COMPRESSION ON command for current modem type

\v(m_dial) DIAL command for current modem type

\v(m_ec_off) ERROR-CORRECTION OFF command for current modem type

\v(m_ec_on) ERROR-CORRECTION ON command for current modem type

\v(m_fc_hw) HARDWARE-FLOW command for current modem type

\v(m_fc_no) NO-FLOW-CONTROL command for current modem type

\v(m_fc_sw) SOFTWARE-FLOW command for current modem type

\v(m_hup) HANGUP command for current modem type

388 Command Files, Macros, and Variables / Chapter 17

Table 17-1 Built-in Variables (continued)

Variable Description

\v(m_init) INIT-STRING command for current modem type

\v(m_pulse) PULSE command for current modem type

\v(m_tone) TONE command for current modem type

\v(ndate) Numeric date, yyyymmdd, e.g. 19960906

\v(nday) Numeric day of the week, 0=Sunday, 1=Monday, ..., 6=Saturday

\v(newline) Line terminator used in text files on your computer

\v(ntime) Numeric time of day, seconds since midnight

\v(packetlen) SET RECEIVE PACKET-LENGTH value

\v(parity) Current parity setting: none, even, space, mark, or odd

\v(password) SET LOGIN PASSWORD value

\v(platform) Specific operating system of your computer, e.g. Solaris

\v(program) Always ‘‘C-Kermit’’

\v(query) Result of most recent REMOTE QUERY command

\v(prompt) Current SET LOGIN PROMPT value

\v(protocol) Current file transfer protocol: Kermit, ZMODEM, etc.

\v(return) Value of most recent RETURN command

\v(rows) Number of rows (lines) on your terminal

\v(speed) Speed of current communications device, -1 if unknown or N/A.

\v(space) Amount of free space on current disk

\v(startup) C-Kermit’s startup directory

\v(status) Status of most recent command, 0=success, nonzero=failure.

\v(sysid) Internal Kermit code for local operating system type

\v(system) Generic operating system name, e.g. UNIX

\v(terminal) Current terminal type

\v(tfsize) Total size of file group most recently transferred

\v(time) Current time hh:mm:ss, 24-hour notation

\v(tmpdir) Pathname of a temporary directory

\v(ttyfd) File descriptor of SET LINE/PORT/HOST device

\v(userid) SET LOGIN USERID value

\v(version) numeric C-Kermit version number, e.g. 701199

Variables 389

Table 17-1 Built-in Variables (continued)

Variable Description

\v(window) Current SET WINDOW value

\v(xversion) Platform-specific C-Kermit version number

390

391

Chapter 18

Programming Commands

Command files, macros, and variables are useful tools, but by themselves they are little
more than conveniences. However, if they are used within the framework of a program-
ming language, they can open up all sorts of new possibilities. Programming language?
If you’re not a programmer, don’t be alarmed. The language we’re talking about is noth-
ing more than the Kermit commands you are already familiar with, plus a few additional
ones for decision-making, for skipping other commands, for repeatedly executing groups
of commands, for reading and writing file data, and for getting information from the user.

The IF Command

Let’s begin by introducing Kermit’s decision-making command.

IF condition command
If the condition is true, the command is executed. If the condition is not true, the com-
mand is ignored and not executed.

IF NOT condition command
If the condition is not true, the command is executed. If the condition is true, the com-
mand is ignored.

The command can be any C-Kermit command, including another IF command, but not an
ELSE command (see page 393), and it can also be a macro invocation or a TAKE command.
It is on the same line as the IF command, separated from it by one or more spaces, and
without commas, braces, or other punctuation. The condition is a statement that can be
true or false, consisting of one to four ‘‘words’’ separated by spaces. Example:

392 Programming Commands / Chapter 18

if equal {\%a} {Rumpelstiltskin} echo You guessed my name!

The condition is:

equal {\%a} {Rumpelstiltskin}

and the command is:

echo You guessed my name!

Note how \%a and Rumpelstiltskin are enclosed in braces. This is a trick to protect
against the error that would occur if \%a were not defined, in which case there would be a
missing field, or if ‘‘Rumpelstiltskin’’ had any spaces in it, in which case there would be
extra fields. The braces force each field to be exactly one ‘‘word.’’ The following sec-
tions describe C-Kermit’s IF conditions.

Comparing Numbers
Let’s begin with the IF commands that compare numbers. The numbers in the following IF

conditions can be constants (literal numbers) or variables of any kind whose values are
whole numbers, positive or negative. If these comparisons are used with nonnumeric
values or numbers containing decimal points, they give a syntax error message and fail.

IF = number1 number2 command
If number1 is equal to number2, the command is executed. Example:

C-Kermit>define \%a 2
C-Kermit>if = ? First number or variable name
C-Kermit>if = \%a ? Second number or variable name
C-Kermit>if = \%a 3 echo They are equal (Nothing happens)
C-Kermit>if = \%a 2 echo They are equal (Condition is true)
They are equal (Command is executed)
C-Kermit>

IF NOT = number1 number2 command
If number1 is not equal to number2, the command is executed. Example:

C-Kermit>define \%a 2
C-Kermit>if not = \%a 2 echo Not equal (Nothing happens)
C-Kermit>if not = \%a 3 echo Not equal (Condition is true)
Not equal (Command is executed)
C-Kermit>

IF < number1 number2 command
If number1 is less than number2, the command is executed. Example:

C-Kermit>define \%a 2
C-Kermit>if < \%a -5 echo It’s less (Nothing happens)
C-Kermit>if < \%a 100 echo It’s less (Condition is true)
It’s less (Command is executed)
C-Kermit>

The IF Command 393

IF NOT < number1 number2 command
If number1 is not less than (is greater than or equal to) number2, the command is ex-
ecuted. Example:

C-Kermit>define \%a 2
C-Kermit>if not < \%a 1 echo Not less (Condition is true)
Not less (Command is executed)
C-Kermit>if not < \%a 2 echo Not less (Nothing happens)
C-Kermit>

IF > number1 number2 command
If number1 is greater than number2, the command is executed. Example:

C-Kermit>define \%a 2
C-Kermit>if > \%a 1 echo Greater (Condition is true)
Greater (Command is executed)
C-Kermit>if > \%a 2 echo Greater (Nothing happens)
C-Kermit>

IF NOT > number1 number2 command
If number1 is not greater than (is less than or equal to) number2, the command is ex-
ecuted. Example:

C-Kermit>define \%a 2
C-Kermit>if not > \%a 2 echo Not greater (Condition is true)
Not greater (Command is executed)
C-Kermit>if not > \%a 1 echo Not greater (Nothing happens)
C-Kermit>

IF number command
Executes the command if the number is not 0, and does not execute the command if
the number is 0. The number can, of course, be a variable that contains a number.

IF NOT number command
Executes the command if the number is zero, does not execute the command if the
number is not zero.

The ELSE Command
The IF command can be followed on the next line by an ELSE command:

ELSE command
Executes the command if the preceding command was an IF command and its con-
dition was not true.

Example:

C-Kermit>if = 1 2 echo 1 = 2 (Not true)
C-Kermit>else echo 1 is not 2 (So ELSE is executed)
1 is not 2
C-Kermit>

394 Programming Commands / Chapter 18

The ELSE command causes an error if it is executed after any command other than IF. IF

and ELSE are separate commands, not two parts of the same command (a more flexible
XIF-ELSE construction is described later in this chapter). They are intended primarily for
use within command files and macros, but they can also be executed at the C-Kermit
prompt, in which case you should not be alarmed if another prompt suddenly appears after
the IF condition:

C-Kermit>if = 1 2 echo Strange... (False, nothing happens)
C-Kermit>if = 1 1 (True, new prompt appears)
C-Kermit>echo As expected... (ECHO command is executed)
As expected...
C-Kermit>

When the condition is true, C-Kermit prompts you for a command to be executed. If the
condition is not true, C-Kermit treats the rest of the IF command as a comment. Here is an
example of using IF and ELSE in a macro:

C-Kermit>def add if = \%1 1 if = \%2 1 echo 2, else echo Too hard!
C-Kermit>add 1 1
2
C-Kermit>add 2 2
Too hard!

The comma separating the IF and ELSE commands is necessary because IF and ELSE are
separate commands. This example also shows how an AND effect can be achieved by
combining multiple IF commands on the same line.

Here is an example of a compound IF construction that obeys the rule that ELSE can only
follow IF but the ELSE command can be any command at all, even another IF:

if < \v(ntime) 43200 define \%x morning (Before noon)
else if < \v(ntime) 61200 def \%x afternoon (Before 5)
else def \%x evening (After 5)
echo Good \%x!

String Comparisons
The following commands compare character strings just as the IF =, IF <, and IF > com-
mands compare numbers, and you can use NOT in these commands the same way. Note
that EQUAL does not equal =. For example, ‘‘1’’ and ‘‘01’’ are = but they are not EQUAL.

IF EQUAL string1 string2 command
Executes the command if the two character strings are equal, meaning they are the
same length and contain the same characters in the same order. string1 and string2
may be literal strings or variables. Examples:

if equal \%1 secret echo You guessed the secret word!
if not equ \%1 secret echo Sorry, wrong again.

Remember the IF condition consists of three fields: the comparison operator (EQUAL in
this case) and two strings. If one or both of the strings is undefined, there won’t be

The IF Command 395

enough fields, and the first word or two of the COMMAND will be misinterpreted as one
or both of the comparison strings. On the other hand, if either of the strings contains
(or evaluates to a string that contains) more than one word, there will be too many
fields, again resulting in undesired effects. To guard against both situations, enclose
both strings in braces:

C-Kermit>define \%a This is a string
C-Kermit>if equal {\%a} {This is a string} echo It’s a string!
It’s a string!
C-Kermit>

IF LLT string1 string2 command
Executes the command if string1 is ‘‘lexically’’ less than (LLT) string2, in other
words; if string1 would be alphabetized before string2 according to the ASCII collat-
ing sequence or, more precisely, according to the codes used to represent the charac-
ters in the string. Example:

if llt {\%a} {zyzzniak} echo It’s less.

IF NOT LLT means ‘‘lexically greater than or equal to.’’

IF LGT string1 string2 command
Executes the command if string1 is lexically greater than (LGT) string2. Example:

if lgt {\%a} {aardvark} echo It’s greater.

IF NOT LGT means ‘‘lexically less than or equal to.’’

The treatment of alphabetic case in string comparisons is governed by the command:

SET CASE OFF
In all C-Kermit’s string comparison and matching commands — IF and others still to
come — causes uppercase and lowercase letters to be treated equivalently: ‘‘A’’ is the
same as ‘‘a’’, ‘‘aardvark’’ equals ‘‘AARDVARK’’ equals ‘‘Aardvark’’, etc.

SET CASE ON
Causes upper- and lowercase to be treated as distinct: ‘‘A’’ and ‘‘a’’ are different
characters. In the ASCII character set, the code for ‘‘A’’ (65), and other uppercase let-
ters, is less than the code for ‘‘a’’ (97) and other lowercase letters. See Table VII-1.

SET CASE is a ‘‘stackable’’ command. That is, you can give this command in a command
file or macro without affecting the SET CASE value at higher levels in the call stack.

Unless you tell Kermit otherwise, alphabetic case is ignored.

WARNING: caseless string comparisons, for example in the IF EQUAL, IF LLT,
and IF LGT commands, work only for 7-bit ASCII characters. For international
(accented and/or non-Roman) characters, you must use case-sensitive com-
parisons. Even then, there is no guarantee that IF LLT or IF LGT will work cor-
rectly (but IF EQUAL will).

396 Programming Commands / Chapter 18

Checking for Success and Failure
One of the most useful features of C-Kermit’s programming language is the ability to take
different actions depending on whether a command succeeded or failed. For example, if a
command doesn’t work as expected, you might want to print a message and stop or try a
different command instead of going on to the next command or terminating the current
script file or macro immediately. Every C-Kermit command except COMMENT and SHOW

STATUS sets the SUCCESS/FAILURE indicator and the \v(status) variable when it com-
pletes; \v(status) is 0 if the most recent command succeeded, nonzero otherwise.

IF SUCCESS command
Executes the command if the previous command succeeded. Equivalent to IF NOT

FAILURE. Synonym: IF OK. Example:

send oofa.txt
if success echo The SEND command succeeded.
else echo The SEND command failed.

You can inquire about the success or failure of the previous command with the SHOW

STATUS command:

C-Kermit>type oofa.txt
?File not found - oofa.txt
C-Kermit>show status
FAILURE
C-Kermit>set file type binary
C-Kermit>show status
SUCCESS
C-Kermit>

IF FAILURE command
Executes the command if the previous command failed (i.e. if \v(status) is not 0).
Equivalent to IF NOT SUCCESS. A command fails not only if it doesn’t work, but also if
it has a syntax error. Synonym: IF ERROR.

Checking Files and Directories
The following IF commands let you check whether files exist, or one file is newer than
another, or whether a file is a directory:

IF EXIST filename command
Executes the command if a single, regular, readable file of the given name exists and it
is not a directory or a wildcard file group specification. Here’s an example in which
we add the UNIX more command to the UNIX version of C-Kermit:

define MORE {
if not def \%1 echo more what? ; Make sure filename was given
else if exist \%1 run more \%1 ; If file exists...
else echo "\%1" not found ; If file doesn’t exist...

}

The IF Command 397

IF NEWER filename1 filename1 command
Executes the command if the file whose name is filename1 is newer than the file
whose name is filename2, according to the modification or creation dates of the two
files. Both files must exist. Example:

if newer /usr/olga/\%f /usr/olaf/\%f send /usr/olga/\%f
else send /usr/olaf/\%f

IF DIRECTORY filename command
Executes the command if the filename refers to a directory. Here is an example show-
ing how to ensure that a directory exists, creating it if it doesn’t, and then making it the
current directory:

if not directory \%d if not exist \%d mkdir \%d
if not directory \%d end 1 ERROR: \%d is not a directory
cd \%d
if fail end 1 Failure to change directory to \%d

(The END command is explained on page 401.)

Checking the Time
The SET ALARM and IF ALARM commands can be used to check whether a certain amount
of time has elapsed or a specific time of day has passed:

SET ALARM [{ number, hh:mm:ss }]
Establishes a time in the future, either number seconds from now or the specific time
given by hh:mm:ss (time of day in 24-hour time format), for use with subsequent IF

ALARM statements. If the time-of-day format is used and the time is earlier than the
current time, then it is taken to indicate the given time in the next day. If no time is
given, then any pending alarm is cleared.

IF ALARM command
If the time established by the most recent SET ALARM command has passed, the
command is executed. If the time is still in the future or if no alarm has been set, the
COMMAND is not executed.

SHOW ALARM
Displays the date and time at which the current alarm, if any, expires.

Example:

echo Press any key to cancel - you have 10 seconds...
set alarm 10
pause 5
if fail end 1 Canceled
echo You have 5 more seconds...
pause 5
if not alarm end 1 Canceled
else echo Proceeding...

398 Programming Commands / Chapter 18

Other IF Commands

IF DEFINED name command
Executes the command if name is the name of a macro, a macro argument, a letter
variable, a user-defined variable, a built-in variable, an environment variable, an in-
vocation of a built-in function, or an array element that is defined and has a nonempty
value. Example:

C-Kermit>define \%a foo (Define a variable)
C-Kermit>if def \%a echo It’s defined
It’s defined
C-Kermit>undefine \%a (Undefine it)
C-Kermit>if def \%a echo It’s defined
C-Kermit>if not def \%a echo Not defined
Not defined
C-Kermit>

IF NUMERIC name command
Executes the command if name consists only of digits, or is a variable whose value
consists only of digits, possibly with a leading plus or minus sign.

IF FOREGROUND command
(UNIX) Executes the command if Kermit is running in the foreground; that is, if its
standard input is coming from the keyboard and its standard output is going to the
screen. Example:

send oofa.txt
if success if foreground echo Transfer succeeded.

This command can be used to control whether messages are printed on the screen
during execution of a command file or macro. If Kermit is running in the background,
you probably don’t want messages interfering with your foreground work.

IF BACKGROUND command
(UNIX) Executes the command if Kermit is running in the background, and/or with its
standard input and/or output redirected. IF BACKGROUND is the same as IF NOT

FOREGROUND.

IF COUNT command
This command is used for counted loops (explained later in this chapter). The COUNT

variable may be referred to only as an IF condition, whereas the variable \v(count)
can be used anywhere.

IF VERSION number command
Executes the command if C-Kermit’s numeric version number is greater than or equal
to the number given. The numeric version number is displayed by the VERSION

command:

The IF Command 399

C-Kermit>version
C-Kermit 7.1.199, 29 Apr 2001
Numeric: 701199
C-Kermit>

The IF VERSION command gives C-Kermit command files and macros independence
from the program version. For example, suppose a future release of C-Kermit — say,
710300 — has a new command SET BLOCK-CHECK 6 (the current release does not). If
you guard new commands within IF VERSION statements, older releases of C-Kermit
will not attempt to execute them:

if version 710300 set block-check 6
else set block-check 3

This would let the same script run on both newer and older versions of C-Kermit and
select the highest available block check type without causing an error. You can refer
to C-Kermit’s numeric version in other contexts with the built-in variable
\v(version):

if not < \v(version) 710300 set block-check 6
else echo No block-check 6 in version \v(version).

IF REMOTE-ONLY command
Executes the command if the ‘‘-R’’ (remote only) option was given on the command
line or this version of C-Kermit can run only in remote mode. Used, for example, in
initialization files to skip over sections that apply only to local mode, such as reading
in the services directory. This allows C-Kermit to start faster when it is only going to
be used in remote mode.

IF TRUE command
Always executes the command.

IF NOT TRUE command
Never executes the command.

IF FALSE command
Never executes the command.

IF NOT FALSE command
Always executes the command.

IF NOT NOT FALSE command
Never executes the command.

IF NOT NOT NOT FALSE command
Always executes the command.

And so on . . .

400 Programming Commands / Chapter 18

An EDIT Macro
Now we have all the tools we need to construct somewhat smart macros that are both use-
ful and friendly. This one is called EDIT, and it lets you edit a file directly from C-Kermit
command level with your favorite editor, returning you to the C-Kermit prompt when you
are finished editing. The first time you use the EDIT macro, you must furnish the name of
a file to edit. The next time, if you leave out the filename, the macro uses the same name
as before. If you supply a new filename, the macro uses that one instead of the old one.

define myeditor emacs (Name of my editor)
undefine myfile (No edit file specified yet)
define EDIT { (Define the EDIT macro)

if > \v(argc) 2 echo WARNING: \%2 \%3 \%4 \%5 \%6... ignored
if = \v(argc) 1 assign myfile \%1
if not defined myfile echo Edit what?
else run \m(myeditor) \m(myfile)

}

What’s happening here? First, we defined a macro, MYEDITOR, to be the name of the sys-
tem command that starts our favorite editor. If yours isn’t EMACS, replace the word
emacs with whatever you want. Then we ensured that the macro, MYFILE, is not defined.

Then we defined the EDIT macro itself, using block-structured style. If the argument count
\v(argc) is greater than 2, we print a warning that extra arguments are ignored. If it is
at least 2 — the macro name itself plus one argument — the argument \%1 is taken as the
name of a file to edit, and the value of this variable is assigned to the global macro
MYFILE, which will hold our filename even after the EDIT macro completes. Next, we
check to see if the MYFILE variable is defined. If it isn’t, the user must have typed EDIT

without giving the name of a file and had not specified a file name in any earlier EDIT

command. So we just print a message and quit. But if MYFILE is defined, we execute the
ELSE command, which runs our chosen editor on the file. Examples:

$ kermit (Start Kermit)
C-Kermit>edit (No previous filename)
Edit what? (Error message)
C-Kermit>edit oofa.txt

(oofa.txt is edited...)

C-Kermit>edit (No filename given)

(oofa.txt is edited, EDIT macro remembers last filename...)

C-Kermit>

Notice that we did not use IF EXIST to check if the argument was a real file. That was on
purpose, to allow the EDIT command to create new files.

The STOP and END Commands 401

The STOP and END Commands

Macros and command files normally are terminated after C-Kermit reads and executes all
their commands, or if they contain an EXIT or QUIT command, or if an error occurs and
you have SET MACRO ERROR ON or SET TAKE ERROR ON. There are also two other ways to
explicitly terminate execution of a macro or command file at any point:

STOP [number [text]]
This command returns you to the C-Kermit command prompt immediately from any
level of command file or macro execution, no matter how deeply nested. When given
at the C-Kermit prompt, the STOP command has no effect. If a number is given, it is
used as a return code. If text is also given, it is printed on the screen. For example,
here is a command file called TESTSTOP.KSC:

echo Testing the STOP command...
stop 1 This is an error message from the STOP command.
echo You shouldn’t see this.

Now we execute it:

C-Kermit>take teststop.ksc
Testing the STOP command...
This is an error message from the STOP command.
C-Kermit>show status
FAILURE
C-Kermit>

The number 1 in ‘‘STOP 1’’ is what caused the failure. STOP 0 would have resulted in
success.

END [number [text]]
This command causes the current macro or command file to return immediately to the
command level from which the current command file or macro was invoked. Thus it
‘‘returns’’ one level up the call stack, to its caller. The optional number is a return
code, and the optional text is a message to be printed. Synonym: POP.

The default number is 0 (for success) for both commands. The text message cannot be
printed unless a number is included before it.

The return code lets a macro or command file declare whether it succeeded or failed. For
example, suppose you have defined a macro called SENDTWOFILES and you invoke it from
inside a command file:

sendtwofiles
if success echo Macro succeeded.

The message will always appear, even if the macro failed, because the (implied) DO com-
mand itself succeeded. DO or TAKE commands fail only when the given macro or com-
mand file can’t be found. To make the macro pass along a failure code, use the END or
STOP command with a return code, as in this macro definition:

402 Programming Commands / Chapter 18

Figure 18-1 Returning from Nested Command Files

define SENDTWOFILES {
set macro error off ; This macro does its own error checking
set file type text
send oofa.txt
if failure end 1 Can’t send oofa.txt ; Return a failure status
set file type binary
send oofa.exe
if fail end 1 Can’t send oofa.exe ; Return a failure status
else end 0 ; Return success

}

To illustrate the difference between STOP and END, suppose we have a command file
called DAILY.KSC, which we run every day. This command file performs its daily tasks
and then checks (using \v(day) or \v(nday)) to see if it is Friday. If so, it TAKEs
another command file, WEEKLY.KSC, which in turn checks to see if it is the first week of
the month,37 and if so TAKEs MONTHLY.KSC. So our command files are nested 3 deep.
Now suppose MONTHLY.KSC encountered an error and could not continue. If it gives the
END command, WEEKLY.KSC will resume executing after its TAKE MONTHLY.KSC com-
mand. If MONTHLY.KSC gives the STOP command, C-Kermit will cancel all the command
files and return to its prompt, as shown in Figure 18-1.

37By extracting the day of the month from \v(date) or \v(ndate). We’ll learn about substrings later
in this chapter.

The GOTO Command 403

The GOTO Command

So far we’ve used the decision-making capability of the IF statement in a very limited
way: to execute or not execute a single command. But often, we would like to decide
whether to execute whole groups of commands. There are two ways to do this. The way
you know already is to group statements in macros or command files, because DO and
TAKE count as single commands. Examples:

if equal \%a yes do this ; "this" is a macro name
else take that.ksc ; "that.ksc" is a command file

The new way is the GOTO command. It changes the order in which Kermit executes com-
mands in a command file or a macro:

GOTO label-name
In a command file or a macro, go immediately to the first command after the first oc-
currence of the label in the current macro or command file and begin executing com-
mands at that point. If the label is not found, return to the previous level (macro or
command file) on the call stack and look there. Repeat this process until the label is
found or the search fails. If the label is never found, C-Kermit returns to its prompt
and issues an error message. In case of duplicate labels within a command file or
macro, the first one is used.

The GOTO command has no effect as an interactive command or when piped into
C-Kermit’s command processor from standard input, except to cause an error message:

C-Kermit>goto sleep
?Sorry, GOTO only works in a command file or macro
C-Kermit>

A label is a character string of your choosing. It must begin with a colon (:), and it must
be on a line by itself (but it can have a trailing comment). Here is an example of a com-
mand file that uses GOTO commands and labels to do what the MOVE command does, but
with some additional messages:

set exit status 0 ; Clear any previous exit status
set file type text ; Select text-mode transfers
send oofa.txt ; Send a text fail
if failure goto bad ; Handle failure
delete oofa.txt ; Worked OK - delete it
echo oofa.txt sent and deleted. ; Print message
goto done ; Skip around error handler
:BAD
echo oofa.txt was not sent. ; Print error messages
echo Keeping oofa.txt. ; and "fall through"
:DONE
end \v(exitstatus) Finished. ; Return the transfer status

404 Programming Commands / Chapter 18

In this example, BAD and DONE are labels. If the file is sent successfully, it is deleted and
the messages in the BAD section are skipped. If the file was not sent, it is not deleted and
the messages in the BAD section are displayed. In both cases, the ‘‘Finished’’ message is
displayed and the \v(exitstatus) variable, which becomes nonzero automatically if a
file-transfer command fails, is used as the return code of the script.

Here is the same example converted to a macro that takes the filename as an argument:

define MYSEND {
local rc ; Local variable for return code
send \%1 ; Send the file
assign rc \v(status) ; Remember the result
if not \m(rc) goto bad
delete \%1
echo \%1 sent and deleted.
goto done

:BAD
echo \%1 was not sent.
echo Keeping \%1.

:DONE
end \m(rc) Finished.

}

You can use the MYSEND macro to send and delete any file:

C-Kermit>mysend oofa.txt
C-Kermit>mysend oofa.zip

The label-name by which the GOTO command refers to the label should be the same as the
label, except that the colon can be omitted. Alphabetic case is always ignored when
searching for labels. The following GOTO statements are all equivalent, meaning they all
look for the same label, BEGIN:

goto begin
GoTo :begin
GOTO :BEGIN

GOTO label references can be (or contain) variables. This lets you execute different groups
of commands depending on the value of a variable:

echo Setting parameters for \v(system)...
goto \v(system)
:UNIX
set parity even
set file character-set italian
end 0
:VMS
set parity none
set file character-set dec-mcs
end 0
; (and so on...)

The GOTO Command 405

Finally, here is an example that shows how Kermit peels back macro invocation levels to
find the GOTO label:

define first :loop, echo \%0, do second
define second echo \%0, do third
define third echo \%0, goto loop
do first

If you put these commands into a command file and then TAKE it, you will soon see that it
repeats forever: first, second, third, first, second, third, first, and so on. This is called a
loop. Programmers call loops that go on forever infinite loops. You can terminate this in-
finite loop by typing Ctrl-C. But a way is also needed to terminate loops automatically,
without human intervention.

But first, a brief note about performance. If you are writing a very long script — say,
hundreds of lines — you should know that GOTO works by ‘‘rewinding’’ the current com-
mand file or macro and searching for the label from the beginning. This can slow down
the execution of the script considerably under certain circumstances. But if you know that
the target label is ahead of the GOTO, you can skip the rewinding:

FORWARD label-name
Just like GOTO, but commences its search at the next command in the current com-
mand file or macro, rather than going back to the beginning.

Programming purists will find FORWARD an even greater atrocity than GOTO, and for good
reason: if chunks of code are ever rearranged, they might easily stop working. Neverthe-
less, when performance is critical, this command can make a big difference. Later in this
chapter, we’ll present other mechanisms not only more structured but also more efficient
than GOTO and FORWARD.

Counted Loops Using GOTOs
A somewhat more practical use of the GOTO command lets you repeat selected portions of
a command file or macro a specified number of times. Before you can do this, you need a
counting mechanism. C-Kermit offers several of these. The simplest one is the SET

COUNT / IF COUNT construction:

SET COUNT number
Sets the variable called COUNT to the given number, which must be greater than 0, for
example:

C-Kermit>set count 5

IF COUNT command
Subtracts 1 from the COUNT variable. If the new value of COUNT is greater than 0, the
command is executed.

406 Programming Commands / Chapter 18

The SET COUNT and IF COUNT commands can be combined with the GOTO command to
form a counted loop:

set count 10
:loop
echo \v(count)
if count goto loop
echo Zero!

If you put these commands in a command file and TAKE the file, they print ‘‘10, 9, 8, 7, 6,
5, 4, 3, 2, 1, Zero!’’ You can do the same thing in a macro:

def COUNTDOWN -
set count 10,:loop,echo \v(count),if count goto loop,echo Zero!

The COUNT ‘‘variable’’ is usable only as the condition of an IF statement. In other con-
texts, use the \v(count) variable, as shown. Referring to the \v(count) variable does
not change its value; only IF COUNT does that.

Structured Programming

The SET COUNT / IF COUNT / GOTO mechanism is easy to use, but modern programming
practice calls for a more structured approach. C-Kermit includes a selection of structured
programming constructs, including a block-structured ‘‘extended’’ IF-ELSE command, a
FOR loop, a WHILE loop, and SWITCH-CASE construction. Each of these allows groups of
commands to be executed conditionally or repeatedly without the use of GOTOs.

The XIF Command
The XIF (extended IF) command lets you group multiple commands in the IF and ELSE

parts, thus allowing groups of commands, rather than a single command, to be executed
depending on the condition:

XIF condition { command [, command...] } [ELSE { command [, command...] }]
If the condition is true, execute the command or commands enclosed in the first set of
curly braces. If an ELSE-part is provided, and the condition is not true, execute the
commands inside the second set of curly braces. The conditions are the same as for
the regular IF command. Examples:

xif < \%a \%b { echo \%a is less} else { echo \%b is less}

xif not exist oofa.txt { echo no oofa.txt!, stop } -
else { send oofa.txt, echo oofa.txt sent ok. }

Note that whereas IF and ELSE are separate commands, the XIF-ELSE construction is a
single command and therefore must be written on a single line or hyphenated for continua-
tion as in the examples above.

Structured Programming 407

You can also use block structure when writing XIF-ELSE commands. Here are the same
XIF commands again, written in a more legible way and documented with comments:

xif < \%a \%b { ; If \%a is less than \%b
echo \%a is less ; then print the value of \%a

} else { ; otherwise
echo \%b is less ; print the value of \%b

}

xif not exist oofa.txt { ; If the file doesn’t exist
echo no oofa.txt! ; print a message
stop ; and stop

} else { ; otherwise
send oofa.txt ; transfer it
echo oofa.txt sent ok ; and print a message

}

When using block structure, remember the rules: a block begins when a left curly brace is
the last non-comment, non-whitespace character on a line, and ends when a right curly
brace is the first non-whitespace character on line. Thus:

} else {

both ends the previous block and begins the next one.

The commands within the blocks can be any commands at all, including other XIF com-
mands. Here is a truly silly example of a macro that uses a nested, multipart XIF command
to find the smallest of its three arguments:

def SMALLEST {
local result
xif < \%1 \%2 { ; Compare first two args

echo \%1 is less than \%2 ; First one is smaller
xif < \%1 \%3 { ; Compare 1st with 3rd

echo \%1 is less than \%3 ; The first is smaller
asg result \%1 ; Copy to result

} else { ; 1st arg is not smaller
echo \%1 is not less than \%3 ; Say so
asg result \%3 ; Copy to result

}
} else { ; Otherwise

echo \%1 is not less than \%2 ; The 2nd is smaller
xif < \%2 \%3 { ; Compare it with 3rd

echo \%2 is less than \%3 ; The 2nd is smaller
asg result \%2 ; Copy to result

} else { ; The 3rd is smaller
echo \%2 is not less than \%3
asg result \%3 ; Copy it to result

}
}
echo So the smallest is \m(result). ; Announce the winner

}

408 Programming Commands / Chapter 18

If you have stored this macro definition in a file called SMALLEST.KSC, you can issue a
TAKE command to read the definition, and then you can try it out:

C-Kermit>take smallest.ksc (This defines the macro)
C-Kermit>smallest 6 4 9 (Try it)
6 is not less than 4
4 is less than 9
So the smallest is 4.
C-Kermit>

FOR Loops
The FOR-loop construction lets you repeat one or more commands based on a counter,
without using GOTOS, and also with a more flexible counter than the one used by SET

COUNT / IF COUNT:

FOR variable initial final increment { command [, command...] }
Repeats the commands that are enclosed in braces a certain number of times, governed
by the values of initial, final, and increment, which must all be numbers or variables
with numeric values. First, the initial value is assigned to the variable. If the value
has not passed the final value, the commands are executed. Then the increment is
added to the variable and the process is repeated until the variable finally passes the
final value. Passes means ‘‘becomes greater than’’ if the increment is positive, and it
means ‘‘becomes less than’’ if the increment is negative. So the number of times the
commands are executed is:

n = + 1
final − initial

increment

If n is 0 or less, the commands are not executed at all.

Here are some simple examples:

for \%i 1 5 1 { echo hello } ; Prints "hello" five times

You can read this as, ‘‘Counting from 1 to 5 by ones, echo the word hello.’’

for \%j 2 10 2 { echo \%j } ; Counts to 10 by twos

Meaning: ‘‘Counting from 2 to 10 by twos, echo the counter.’’ It prints 2, 4, 6, 8, and 10.

for \%k 10 0 -1 { echo \%k } ; Counts backwards

This one means ‘‘Counting backwards from 10 to 0 by -1, print the counter.’’ It prints 10,
9, 8, ..., 0.

Here’s an example in which we have an array \&f[] containing the names of files to be
sent and then deleted, with appropriate messages printed. There are \%n filenames in the
array. A file is deleted only if it is sent successfully. Since this loop is moderately long,
we use block structure for ease of reading:

Structured Programming 409

set file display none
for \%i 1 \%n 1 {

echo Sending file \%i: \%f[\%i]...
send \&f[\%i]
xif success {

echo OK - deleting \&f[\%i]
delete \&f[\%i]

} else {
echo Failed - \&f[\%i] not deleted

}
}

We use a ‘‘loop variable,’’ \%i, to index the elements of an array; it increases by 1 (the in-
crement) with each trip through the loop, thus accessing the next array element. We can
use the same technique to print the command line and macro argument arrays. Recall that
the array \&@[] contains the command-line arguments, and its highest element is one less
than the value of the built-in variable \v(args); \&_[] is the macro argument array,
highest element \v(argc) minus 1:

for \%k 0 \v(args)-1 1 { echo \\&@[\%k] = "\&@[\%k]" }
for \%k 0 \v(argc)-1 1 { echo \\%\%k = "\&_[\%k]" }

These examples show how arithmetic can be used on the loop variables.

FOR loops can contain many commands and can be nested. This example sorts the array
\&x, which has \%n text elements, using the ‘‘Programming 101’’ bubble sort algorithm:

local \%i \%j \%t ; Local variables
for \%i 1 \%n-1 1 { ; Outer loop: i from 1 to n-1

for \%j \%i \%n 1 { ; Inner loop: j from i to n
xif lgt \&x[\%i] \&x[\%j] { ; Compare array elements

asg \%t \&x[\%i] ; If out of order,
asg \&x[\%i] \&x[\%j] ; exchange them
asg \&x[\%j] \%t

}
}

}
for \%i 1 \%n 1 { echo \&x[\%i] } ; All sorted - print them

WHILE Loops
The SET COUNT / IF COUNT and FOR-loop constructions let you execute groups of com-
mands a certain number of times. But it is also sometimes desirable to loop until a certain
condition is satisfied. That’s what the WHILE loop is for:

WHILE condition { command [, command...] }
Executes the commands as long as the condition is true.

The loop is entered only if the condition is true. Each time the end of the loop is reached,
the WHILE command goes back to the top and evaluates the condition again and, if it is
still true, executes the commands again, and so on until the condition becomes false or the
loop is terminated some other way.

410 Programming Commands / Chapter 18

Here’s how to print a message every minute, but only up until 11:00 p.m.:

while < \v(ntime) 82800 {
echo The time is \v(time)
sleep 60

}

And here is an example that uses C-Kermit’s file transfer recovery feature to keep trying
to send a file until it is completely transferred (we’ll have a real-life example of this for
you in the next chapter):

set file type binary ; Transfer in binary mode
send bigfile.zip ; Send this file
while failure { ; If it failed

resend bigfile.zip ; Send the rest
} ; and so on until complete

Sometimes it is desirable to have an infinite loop. Suppose, for example, you want to
have a Kermit receive files forever. That’s where the TRUE condition comes in handy:

while true { receive }

In an XIF, FOR, or WHILE command, the part within the braces is called the object com-
mand list. In case you’re curious, the XIF, FOR, and WHILE commands are implemented as
Kermit macros (SHOW MACROS will display their definitions — don’t try to understand
them or you’ll get a headache). The object command list is a single macro argument — so
now you know why it’s enclosed in braces.

Altering Loop Execution
The following commands let you exit from FOR or WHILE loops early or skip parts of them
and go back to the top:

BREAK
Exits immediately from a SWITCH statement (next page) or a FOR or WHILE loop. The
following example tries to send a file until it succeeds, up to 10 tries:

for \%i 1 10 1 { send bigfile.zip, if success break }

If loops are nested, BREAK exits from the innermost enclosing loop. BREAK is an il-
legal command if it is executed outside a SWITCH statement or a FOR or WHILE loop.

CONTINUE
Causes the next cycle of the enclosing FOR or WHILE loop to begin immediately, skip-
ping any commands between the CONTINUE command and the end of the loop. Here’s
an example in which the array \&f[50] contains names of files, some of which might
exist, others might not. This loop transfers the files that exist:

for \%i 1 50 1 { if not exist \&f[\%i] continue, send \&f[\%i] }

CONTINUE is illegal outside a FOR or WHILE loop.

Structured Programming 411

The SWITCH Statement
The SWITCH statement is a convenient way to execute a specific group of commands based
on the value of a variable, similar to the C-language switch() statement:

SWITCH variable { case-list }
The variable name must be the type that starts with a backslash, e.g. \%a, \%1,
\&a[1], \m(foo), \v(day), and so on. The case-list is a series of C-Kermit labels
and commands. The SWITCH statement searches for a label in the case list that
matches the value of the variable, and if it is found, executes all the statements after
the label up to the first BREAK (or END, STOP, EXIT, etc) command, if any, or the end of
the case list, whichever comes first. You may include a DEFAULT label for statements
to be executed when no labels match the variable’s value.

If you leave the BREAK command off the end of a case, Kermit ‘‘falls through’’ to the next
case, as in case 2 in the following example, in which we print the name of the current day
of the week in German:

switch \v(nday) {
:0, echo Sonntag, break
:1, echo Montag, break
:2, echo Dienstag und zunächst kommt...
:3, echo Mittwoch, break
:4, echo Donnerstag, break
:5, echo Freitag, break
:6, echo Samstag, break
:default, echo Invalid day - \v(nday)!

}

Like other structured programming commands, SWITCH statements may be nested. There
should be no statements between SWITCH and first label — if there are, they will not be
executed. The DEFAULT label, if any, should be last. Alphabetic case in matching the
variable contents against the labels follows your INPUT CASE setting. Switch labels can be
strings of any reasonable length, but they must be constants, not variables.

Like XIF, FOR, and WHILE, SWITCH is implemented internally as a macro. Therefore com-
mas within the case list delimit commands (and labels). So be careful about using com-
mas for other purposes, as in ECHO commands:

:default, echo Sorry, Invalid day - \v(nday)!

This makes Kermit complain about an invalid command called ‘‘Invalid’’. Instead use:

:default, echo {Sorry, Invalid day - \v(nday)!}

C-Kermit’s structured programming constructs are intended for use within command files
or macros and are not very handy to type interactively, but you can do it if you want to.
You will find that question-mark help does not work on object commands, because they
are just text passed as arguments to macros.

412 Programming Commands / Chapter 18

Built-in Functions

You’re almost a full-fledged Kermit programmer. You have mastered decision making,
GOTOs, loops, and structured programming. Next comes the function call. All program-
ming languages offer a variety of built-in functions to perform operations on numbers or
character strings, and C-Kermit’s script language is no exception.

A function is a kind of ‘‘black box’’ into which you place some information and that
returns a result based on that information. The items you give to the function are its
arguments. There can be zero, one, two, or more arguments but only one result.

C-Kermit’s built-in functions have names that look like this:

\fname()

That is, backslash, the letter F, the name of the function, and then a pair of parentheses to
enclose its arguments. The F and the name can be upper- or lowercase. The name can be
abbreviated to any length that distinguishes it from other built-in function names. The
arguments are separated by commas, and can be constants or variables. For example, in:

\fmax(\%a,100)

the function’s name is ‘‘max’’ and there are two arguments, \%a and 100. The arguments
are evaluated before the function is called; thus functions can not change the value of an
argument variable.

The function reference is replaced by its return value. In this example, \fmax() is a
function that returns the larger of its two arguments, which must be numeric:

C-Kermit>define \%a 333
C-Kermit>echo The maximum of \%a and 100 is "\fmax(\%a,100)".
The maximum of 333 and 100 is "333".
C-Kermit>

If the function call is illegal in any way, its result is null (empty):

C-Kermit>define \%a oofa
C-Kermit>echo The maximum of \%a and 333 is "\fmax(\%a,333)".
The maximum of oofa and 333 is "".
C-Kermit>

There is no other error indication, so in cases where there is some doubt whether an ar-
gument is legal, check it first:

if numeric \%a echo The maximum of \%a and 333 is "\fmax(\%a,333)"
else echo Error: "\%a" is not numeric

Function arguments can be literal strings of characters, variable names, macro arguments,
array elements, backslash character codes, invocations of other functions, or any combina-
tion of these, but they are legal only if they represent the type of data required for the par-
ticular function argument.

Built-in Functions 413

Numeric arguments can be numbers like 0, -3, or 128, or they can be variables that have
numeric values, or they can be arithmetic expressions containing any combination of num-
bers and variables. Examples:

C-Kermit>define \%x 7
C-Kermit>define \%y 8
C-Kermit>echo \fmax(7,8)
8
C-Kermit>echo \fmax(\%x,8)
8
C-Kermit>echo \fmax(\%x,\%y)
8
C-Kermit>echo \fmax(\fmax(\%x,55),\%x*\%y)
56
C-Kermit>echo \fmax(\%y+2,((\%x^2)/(\%y-1))+4)
11
C-Kermit>

The notation used in mathematical expressions is the natural one. The specific rules and
notation are given later in this chapter, starting on page 420.

The function argument list normally should not contain spaces, but you can get away with
it in contexts where the function reference is not in a single-word field:

C-Kermit>if = \fmax(8,7) 8 echo EQUAL
EQUAL
C-Kermit>if = \fmax(8, 7) ?Invalid: "if = \fmax(8,"
C-Kermit>echo The maximum of 8 and 7 is \fmax(8, 7).
The maximum of 8 and 7 is 8.
C-Kermit>

Function arguments that contain commas, parentheses, or leading or trailing spaces must
be enclosed in braces:

C-Kermit>echo "\fsubst({1, 2, 3,)4, 5},7,3)"
"3,)"
C-Kermit>

You can list of C-Kermit’s built-in functions with the SHOW FUNCTIONS command:

C-Kermit>sho func

The following functions are available:

\Fbasename() \Fdate() \Flength() \Fpathname() \Fspan()
\Fbreak() \Fdefinition()\Fliteral() \Frepeat() \Fsubstring()
\Fcapitalize() \Fevaluate() \Flower() \Freplace() \Ftod2secs()
\Fcharacter() \Fexecute() \Flpad() \Freverse() \Ftrim()
\Fchecksum() \Ffiles() \Fltrim() \Fright() \Funhexify()
\Fcode() \Fhexify() \Fmaximum() \Frindex() \Fupper()
\Fcontents() \Findex() \Fminimim() \Frpad() \Fverify()
\Fcrc16() \Fipaddress() \Fnextfile() \Fsize()

C-Kermit>

414 Programming Commands / Chapter 18

Evaluation Functions
The following functions are used for evaluating their character-string arguments in
specific ways:

\Fliteral(arg)

Copies its argument literally, preventing any evaluation of variables (or other func-
tions) from taking place. Example:

C-Kermit>def \%a foo
C-Kermit>echo \flit(\%a) = \%a
\%a = foo
C-Kermit>

\Fcontents(variable-name)

Returns the current contents (definition) of a \% (letter or macro argument) variable.
If the definition includes variable names or function references, these are copied
literally, not replaced by their values. Thus, this function forces ‘‘1-level deep’’
evaluation of the kinds of variables that are usually evaluated ‘‘all the way down.’’
Example:

C-Kermit>def \%a I like \%b.
C-Kermit>def \%b pizza
C-Kermit>echo \%a
I like pizza.
C-Kermit>echo \fcont(\%a)
I like \%b.
C-Kermit>

\Fdefinition(macro-name)

Returns the literal definition of the named macro. This is equivalent to the \m() nota-
tion for macro names. Example:

C-Kermit>define xxx echo \%1
C-Kermit>echo \fdef(xxx)
echo \%1
C-Kermit>echo \m(xxx)
echo \%1
C-Kermit>

Note how different degrees of textual replacement can be achieved by using (or not using)
the \fliteral() and \fcontents() functions:

C-Kermit>def \%a foo (\%a is "foo")
C-Kermit>def \%b I like \%ad. (\%b includes \%a)
C-Kermit>echo \%b (Full replacement)
I like food. (Nested variables are handled)
C-Kermit>echo \fcont(\%b) (Contents of \%b)
I like \%ad. (Nested variables not handled)
C-Kermit>echo \flit(\%b) (Take it literally)
\%b (No replacement at all)
C-Kermit>

Built-in Functions 415

To force full evaluation of a macro, assign it to a letter variable and then use the letter
variable wherever you want full evaluation to occur:

C-Kermit>define \%a Olga
C-Kermit>define whoiam My name is \%a.
C-Kermit>echo \fdef(whoiam)
My name is \%a.
C-Kermit>assign \%x \fdef(whoiam)
C-Kermit>echo \%x
My name is Olga.

Character Functions
The two functions in this category convert between single characters and their internal
numeric representations:

\Fcharacter(number)

Returns the byte whose numeric code is given. The code must be in range 0–255. If
you give a negative number or a number larger than 255, only the low-order 8 bits are
used. Example:

C-Kermit>echo \fchar(79)\fchar(79)\fchar(70)\fchar(65)!
OOFA!
C-Kermit>

Characters in the range 128–255 depend on the character set. Here is a way to display
your terminal’s 8-bit character set (if you have an 8-bit connection to C-Kermit):

set command bytesize 8
for \%i 0 255 1 { echo \%i: [\fchar(\%i)] }

\Fcode(character)

Returns the numeric code of the given character, for example \fcode(A) is 65, the
ASCII value of uppercase letter A. If the argument is longer than one character, the
numeric code of the first character is returned. If there is no argument, an empty
string is returned.

Note that \fcode(\fchar(\%a)) = \%a and \fchar(\fcode(\%b)) = \%b.

Character String Functions
The functions in this category are used for manipulating character strings. Their handling
of alphabetic case is governed by the most recent SET CASE command. By default, al-
phabetic case is ignored.

\Fbreak(text,string)

Returns the given text up to the first occurrence of any character that is also in the
given string. If no characters from the string also occur in the text, or the string is
omitted, the entire text is returned. Examples:

C-Kermit>def digits 0123456789

416 Programming Commands / Chapter 18

C-Kermit>def \%a abcdefghijklmnop0123456789
C-Kermit>echo "\fbreak(\%a,d)"
"abc"
C-Kermit>echo "\fbreak(\%a,z)"
"abcdefghijklmnop123456789"
C-Kermit>echo "\fbreak(\%a,\m(digits))"
"abcdefghijklmnop"
C-Kermit>

Also see \fspan() and \fverify().

\Fcapitalize(text)

Returns the text with its initial letter uppercased and all subsequent letters lowercased.
Synonym: \Fcaps(). Example:

C-Kermit>define \%a 1. this IS a LINE.
C-Kermit>echo "\fcaps(\%a)"
"1. This is a line."
C-Kermit>

This function is not guaranteed to work on accented or non-Roman letters.

\Fhexify(text)

Returns the hexadecimal representation of the given text. Example:

C-Kermit>echo "\fhex(Oofa!)"
4F6F666121
C-Kermit>

\Findex(string1,string2 [,number])

Looks for a string, string1, in another string, string2, and tells its starting position:

C-Kermit>echo \find(ss,Mississippi) (Find "ss" in Mississippi)
3
C-Kermit>

This means that the first occurrence of the string ‘‘ss’’ starts at position 3 in the string
‘‘Mississippi’’. You can also make this function start looking at a specified position in
the string instead of starting from the beginning, by including the optional third ar-
gument, number, which must be a number or a variable that has a numeric value:

C-Kermit>echo \findex(ss,Mississippi,4) (Find second "ss")
6
C-Kermit>

Character positions are numbered starting from 1. The first character is at position 1,
the second character at position 2, and so on. If the string string1 is not found in
string2, the return value is zero:

C-Kermit>echo \findex(sss,Mississippi)
0
C-Kermit>

Any of the arguments can be variables of any kind (macro arguments, letter variables,
array elements, or built-in variables), or even functions. In this example we find the
position of the first ‘‘i’’ in ‘‘Mississippi’’ that comes after the first ‘‘s’’:

Built-in Functions 417

C-Kermit>def \%a Mississippi
C-Kermit>echo \findex(i,\%a,\findex(s,\%a)+1)
5
C-Kermit>

The example shows the \Findex function calling itself, which is permissible. For
searching from the right, see \frindex(), ‘‘reverse index.’’

\Flength(string)

Returns the length of the argument string, after evaluation of any variables or func-
tions it might contain. Example:

C-Kermit>def \%a oofa! (Define a variable)
C-Kermit>echo \flen(\%a) (Length of its value)
5 (The length is 5)
C-Kermit>

\Flower(text)

Converts all uppercase letters in the text to lowercase, for example:

C-Kermit>define \%a FINE
C-Kermit>echo This is a \fLower(\%a Mess).
This is a fine mess.
C-Kermit>

\Flpad(text,number,character)

Left-pads the text to length number with character. If the character is omitted, blank
(space) is used. Handy for lining things up. Examples:

C-Kermit>def xx echo \flpad(\%1,10)
C-Kermit>xx 20

20
C-Kermit>xx 1996

1996
C-Kermit>echo \flpad($50,10,*)
*******$50
C-Kermit>

Also see \frpad().

\Fltrim(text,string)

‘‘Left trim.’’ Returns the string that is obtained by removing all characters from the
left of the text that are also in the string, stopping with the first character that is not in
the string. If the string is omitted, spaces and tabs (‘‘whitespace’’) are removed. Also
see \Ftrim().

\Frepeat(text,number)

Repeats the first argument the number of times given by the second argument:

C-Kermit>echo \frepeat(=,10)
==========
C-Kermit>echo +\frep(-+,10)
+-+-+-+-+-+-+-+-+-+-+

418 Programming Commands / Chapter 18

\Freplace(text,string1,string2)

Returns the string obtained by replacing all occurrences of string1 in the given text
with string2. string2 can be omitted, in which case all occurrences of string1 are
removed from the text. If string1 is empty or omitted, the result is the text argument,
unchanged. Examples:

C-Kermit>echo \freplace(oofa,o,O)
OOfa
C-Kermit>echo \freplace(oofa,o,oo)
oooofa
C-Kermit>echo \freplace(oofa,o)
fa
C-Kermit>echo \freplace(oofa,fa,ps)
oops
C-Kermit>echo \freplace(oofa)
oofa
C-Kermit>

or (more practically for DOS, Windows, and OS/2):

C-Kermit>echo \freplace(\v(cmdfile),\\,/)
c:/kermit/scripts/login.ksc
C-Kermit>echo \freplace(\v(cmdfile),\\,\\\\)
c:\\kermit\\scripts\\login.ksc
C-Kermit>

\Freverse(text)

Reverses the order of the characters in its text argument, for example:
\frev(mupeen) is neepum.

\Fright(text,length)

Is replaced by the rightmost length characters of the text, or the entire text, whichever
is shorter. Example:

C-Kermit>echo "\fRight(kermit.exe,4)"
".exe"
C-Kermit>

\Frindex(string1,string2 [,number])

Right index. Searches for string1 in string2 starting from the right. If the optional
number is included, the rightmost number characters of string2 are skipped before
commencing the search. Returns the 1-based position in string2 of the string that was
found or 0 if none was found. Also see \findex().

\Frpad(text,number,character)

Right-pads the text to length number with character. If character is omitted, blank
(space) is used. Also see \flpad().

\Fspan(text,string)

Returns as much of the given text, starting from the left, that contains only characters
that are also in the given string. Example:

Built-in Functions 419

C-Kermit>define digits 0123456789
C-Kermit>define \%a 73751 El Camino Real
C-Kermit>echo "\fspan(\%a,\m(digits))"
"73751"
C-Kermit>

Also see \fbreak().

\Fsubstring(text,start,length)

The result of this function is the portion of the text argument that starts at position
start and is length characters long; text can be any text and can also be, or include,
variable names, other functions, etc.; start and length must be numbers or variables or
functions that have numeric values. The start position is 1 for the first character, 2 for
the second, and so on. Example:

C-Kermit>echo "\fsubst(hello there,7,3)"
"the"
C-Kermit>

If the length argument is omitted, all of the characters from the starting position to the
end are returned:

C-Kermit>def \%a 123456789
C-Kermit>ech \fsub(\%a,4)
456789
C-Kermit>

\Ftrim(text,string)

Returns the string that is obtained by removing all characters from the right of the text
that are also in the string, stopping with the first character that is not in string. If the
string is omitted, spaces and tabs (‘‘whitespace’’) are removed. Also see \Fltrim().

\Funhexify(hexadecimal-string)

Returns the text obtained from decoding the hexadecimal-string. Example:

C-Kermit>echo "\funhex(4F6F666121)"
"Oofa!"
C-Kermit>

If the string contains any non-hex characters (i.e. other than 0–9, a–f, or A–F), or has
an odd length, the empty string is returned. Also see \fhexify().

\Fupper(text)

Converts all lowercase letters in its text argument to uppercase. Also see \flower().

\Fverify(string1,string2,number)
Returns the 1-based position of the first character in string2 that is not also in string1.
If a number is given, the characters in string2 at positions 1 through number are ig-
nored. If no characters in string2 are not also in string1, 0 is returned. Use this func-
tion for preverifying hexadecimal numbers, phone numbers, and so on:

if \fverify(01234567,\%a) echo "\%a" - not an octal number.

420 Programming Commands / Chapter 18

Integer Arithmetic Functions and Commands
These functions require numeric arguments — whole numbers, or variables or functions
whose values are whole numbers — which can be positive or negative. If the arguments
are illegal in any way, these functions return the null (empty) string.

\Fmax(n1,n2)

Returns the maximum of its two numeric arguments. Examples:

C-Kermit>define \%x 9
C-Kermit>echo \fmax(12,\%x)
12

\Fmin(n1,n2)

Returns the minimum of its two numeric arguments.

\Fmod(n1,n2)

Returns the modulus of the two arguments; that is, remainder after dividing n1 by n2.
Example:

C-Kermit>echo \fmod(\v(ntime),60)
27
C-Kermit>

\Fevaluate(expression)

Evaluates the given arithmetic expression. The precedence is the normal, intuitive al-
gebraic (or programming) precedence, and can be altered by the use of parentheses,
which have higher precedence than any other operator. Spaces may be used to
separate operators from operands, but they are not required. Examples:

C-Kermit>def \%x 6
C-Kermit>def \%y 10

C-Kermit>echo \feval(\%x)
6
C-Kermit>echo \feval(\%x + 2)
8
C-Kermit>echo \feval((\%x+2) * \%y)
80
C-Kermit>echo \feval(\%x + (2*\%y))
26

Table 18-1 shows the mathematical operators accepted by \feval(). The heading
marked Fix tells where the operator goes in relation to its operands. The choices are in
(the operator goes in between its operands, for example 2 + 2); pre (it goes before its
operand, for example −1, minus one); post (it goes after its operand, for example 3!, three
factorial); or circum (it goes around its operands, for example (2 + 2), two plus two in
parentheses). The Precedence column shows the precedence of the operator: the lower the
number, the higher the precedence. For example, * has higher precedence than + so:

\feval(2 * 3 + 4 * 5)

is 26 because the multiplications are done before the addition (as you learned in school).

Built-in Functions 421

Table 18-1 \Feval() Operators

Operator Fix Precedence Operation Example Result

\%a = 2, \%b = -3, \%c = 7, \%d = 27

() circum 1 Group (\%a + 3) * (\%b-5) -40

! post 2 Factorial \%c! 5040

~ pre 3 Logical NOT ~1 -2

- pre 3 Negate -\%a -2

^ in 4 Raise to power 2^\%c 128

* in 5 Multiply \%c * 5 35

/ in 5 Divide \%d / 5 5

% in 5 Modulus \%d % 5 2

& in 5 Logical AND \%d & 7 3

+ in 6 Add \%a + \%c 9

- in 6 Subtract 31 \%c 24

| in 6 Logical OR \%c | 4 4

in 6 Exclusive OR \%d#7 28

@ in 6 Greatest
Common
Divisor

\%d @ 51 3

As you can see from the table, parentheses have the highest precedence of all, so you can
use them to change the order of evaluation:

\feval(2 * (3 + 4) * 5)

This makes Kermit evaluate the expression in parentheses, (3 + 4), first, so the result is 70
rather than 26.

Only integer arithmetic is available: no fractions, no decimals, no scientific notation. The
remainder of an integer division operation is discarded (except, of course, by the modulus
operator, which discards the quotient).

Note that the # Exclusive OR operator is the same as one of Kermit’s comment intro-
ducers, so you can’t use it in an \feval() function unless you make sure it is not fol-
lowed by a space:

C-Kermit>echo \feval(7 # 2)
?Invalid echo \feval(7 #
C-Kermit>echo \feval(7#2)
5

See the rules for comments on page 25.

422 Programming Commands / Chapter 18

Several Kermit commands are also available to perform simple arithmetic on variables:

EVALUATE expression
This command evaluates the given expression, printing the result and also assigning it
to the \v(evaluate) built-in variable. Examples:

C-Kermit>eval \v(ntime) / 3600
16
C-Kermit>echo Today is already \v(eval) hours long...
Today is already 16 hours long...
C-Kermit>

INCREMENT name [value]
Adds the value to the named variable. If the value is omitted, adds 1. If the variable
does not have a numeric value, prints an error message and fails. Examples:

C-Kermit>def \%a 9
C-Kermit>increment \%a
C-Kermit>echo \%a
10
C-Kermit>incr \%a 5
C-Kermit>echo \%a
15
C-Kermit>incr \%a -20
C-Kermit>echo \%a
-5
C-Kermit>

DECREMENT name [value]
Subtracts the value from the named variable. If the value is omitted, subtracts 1. If
the variable does not have a numeric value, prints an error message and fails. This ex-
ample is a loop that counts down from 10 to 0:

def \%i 10
while not < \%i 0 { echo \%i, decr \%i }

The value given in the INCREMENT and DECREMENT commands need not be a constant.
You can include variables:

C-Kermit>define \%n 1
C-Kermit>while < \%n 5000 { echo \%n, increment \%n \%n }
1 2 4 8 16 32 64 128 256 512 1024 2048 4096
C-Kermit>

And you can use any other item that C-Kermit can evaluate into a number: backslash
character codes, array references, function invocations, environment variables, or built-in
variables, even expressions:

C-Kermit>define \%x 24
C-Kermit>decrement \%x (\v(ntime)+1800)/3600
C-Kermit>echo { Hours remaining till midnight: \%x}
Hours remaining till midnight: 8
C-Kermit>

Built-in Functions 423

File Functions
C-Kermit offers the following functions for expanding ‘‘wildcard’’ file-group notation into
lists of files and for obtaining information about files:

\Ffiles(filespec)

Returns the number of files that match the given file specification, for example:

C-Kermit>echo \ffiles(ck*.c)
37
C-Kermit>

If no files match, the result is 0. If too many files match, the result is -1.

\Fnextfile()

Returns the next filename that matches the \Ffiles() file specification, until none
are left, or you use \Ffiles() again, or you execute any command (such as SEND,
TYPE, or OPEN) that parses a filename. \Ffiles() and \Fnextfile let you write
loops that process a selected group of files.

\Fpathname(filespec)
Returns the full pathname of the given file specification. The filespec can be wild, and
it can refer to a file that does not exist. Example:

C-Kermit>pwd
/usr/olga/budget
C-Kermit>echo \fpathname(fy9697.wks)
/usr/olga/budget/fy9697.wks
C-Kermit>

\Fbasename(filespec)
Returns the filename portion of the file specification; directory, device, and other
fields are removed; opposite of \fpathname().

\Fdate(filename)
Returns the creation or modification date of the file in yyyymmdd hh:mm:ss format:

C-Kermit>echo \fdate(oofa.txt)
19960906 23:23:00
C-Kermit>

\Fsize(filename)
Returns the size in bytes of the given file:

C-Kermit>echo \fsize(oofa.txt)
162
C-Kermit>

Here’s an example showing how to make a do-it-yourself MYDIRECTORY command, that
produces a nice lined-up listing with totals at the end:

424 Programming Commands / Chapter 18

__

define MYDIRECTORY {
local \%f \%n \%x size ; Local variables
echo Directory of \fpathname(\%1): ; Print heading
assign size 0 ; Initialize total size
assign \%n \ffiles(\%1) ; How many files match
for \%i 1 \%n 1 { ; Loop for each file

asg \%f \fnextfile() ; Get next file
asg \%x \fsize(\%f)
echo \frpad(\%f,16) \flpad(\%x,8) \fdate(\%f)
increment size \%x

}
echo {Total files: \%n, Total bytes: \m(size)}

}
__

The next example defines a macro called AUTOSEND that you can use to send a wildcard
group of files to a Kermit server, switching between text and binary modes automatically
for each file. In this case, binary mode is used if the last four characters of the file’s name
are .exe.
__

define AUTOSEND {
local \%n
assign \%n \ffiles(\%1) ; How many files match
echo files = \%n ; Print a message
declare \&f[\%n] ; Make an array for names
for \%i 1 \%n 1 { ; Copy names into array

asg \&f[\%i] \fnextfile()
}
for \%i 1 \%n 1 { ; Loop for each file

if eq {.exe} {\fright(\&f[\%i],4)} { ; If suffix is .exe
set file type binary, ; use binary mode
echo Sending \&f[\%i] (binary) ; print a message

} else { ; Otherwise
set file type text ; use text mode
echo Sending \&f[\%i] (text) ; print a message

}
send \&f[\%i] ; and send the file

}
}
__

Invoke this macro with a command like:

C-Kermit>autosend oofa.*

Replace oofa.* with the file specification of your choice. Of course, this example
depends on the receiving Kermit’s ability to switch automatically between text and binary
mode based on the Attribute packet sent by C-Kermit (see Table -FEATURZ).

Built-in Functions 425

Miscellaneous Functions

\Fipaddress(string,number)

Returns the first IP address found in the string, searching from the left, starting at pos-
tion number, or from the beginning if the number is omitted. Useful for getting your
IP address from a SLIP server’s message. Typically used on the \v(input) variable
after an INPUT command, explained in the next chapter.

\Ftod2secs(hh:mm:ss)

Converts a time of day in hours:minutes:seconds format into seconds since midnight
and returns the result.

User-Defined Functions
A user-defined function is a macro that returns a value, invoked as if it were a built-in
function. To return a value, a new command is needed:

RETURN [value]
Terminates the execution of the current macro and makes the value available to the
caller (that is, the command level from which the macro was invoked). If the RETURN

command is used in a command file, it can not return a value; only macros may return
values. If the RETURN command is given without a value, an empty (null) value is
returned, in which case it is equivalent to the END 0 command.

To illustrate, here is a simple function that returns the first character of its argument:

define first return \fsubstr(\%1,1,1)

Its return value is made available in the built-in variable \v(return):

C-Kermit>first oofa
C-Kermit>echo The first character of "oofa" is "\v(return)".
The first character of "oofa" is "o".
C-Kermit>

But, more usefully, it also becomes the return value of the \fexecute() function:

\Fexecute(macro[,arguments...])

Executes the macro whose name is given, with the given arguments, if any, and
returns the macro’s RETURN value, or the empty string if the macro does not return a
value. The macro name and arguments are separated by commas or spaces. Example:

C-Kermit>echo The first character of \%a is "\fexec(first,\%a)".
The first character of oofa is "o".
C-Kermit>define paste return (\%1)(\%2)(\%3)
C-Kermit>echo "\fexec(paste,One,Two,{Three,Four,Five})"
"(One)(Two)(Three,Four,Five)"
C-Kermit>

The last one shows how to use braces to protect commas within macro arguments from be-
ing taken for the commas that separate macro arguments.

426 Programming Commands / Chapter 18

Functions that Call Themselves
‘‘In order to understand recursion, first we must understand recursion.’’ – anon.

A user-defined function can call upon built-in functions and other user-defined functions,
and it can even call upon itself. Here, for example, is a function that adds all the numbers
from 1 up to and including its argument:38

def SUM {
if not def \%1 return ; Make sure there is an argument
if not numeric \%1 return ; Make sure argument is numeric
if not > \%1 0 return ; Make sure argument is positive
if = \%1 1 return 1 ; If argument is 1, the sum is 1
else return \feval(\%1+\fexec(sum,\feval(\%1-1)))

}

Translated into English, it reads something like this: If you ask me to add up all the num-
bers from 1 to 1, I can tell you right away the answer is 1. If the number is larger than 1,
the answer is the number you gave me plus the sum of all the numbers less than that. The
process repeats to get the sum of ‘‘all the numbers less than that,’’ until we reach 1, and
then the results are returned up the call stack and accumulated along the way. This
process is called recursion. To give yourself a better idea how it works, try working
through the SUM function for the number 4.

You can write a simple macro to call the SUM function and print its value:

C-Kermit>def addemup echo sum = \fexec(sum,\%1)
C-Kermit>addemup 6
sum = 21
C-Kermit>addem 11
sum = 66
C-Kermit>

This is just an illustration of how recursion works and is not intended for practical applica-
tions. Recursion depth is limited to the size of C-Kermit’s macro call stack (as revealed
by SHOW COMMAND), so if you need a version of SUM that works satisfactorily for larger
numbers, do it Carl’s way:

define SUM return \feval(\%1*(\%1+1)/2)

One final note about user-defined functions: any Kermit action commands (like SEND,

CONNECT, etc) are ignored by \fexecute(). This is because the \fexecute() function
is parsed and executed in the middle of another command, and affairs would become quite
confused if a file transfer display or terminal emulation screen suddenly popped up before
the command containing the \fexecute() was finished.

38Of course, we all know there is a closed solution to this problem: n × (n + 1) / 2, compliments of the
7-year-old Carl Friedrich Gauss (1777–1855).

Can We Talk? 427

Can We Talk?

You can already carry on a dialog with C-Kermit. It prompts you for a command, you
type a command, it prompts you for another one, and so on. You can do this because you
know what C-Kermit’s commands are. But suppose you want to set up a procedure for
someone who is not familiar with Kermit. Here are the commands you can use to issue
prompts on the screen and read responses from the keyboard:

ASK variable [text]
Prints the text on the screen and reads what the user types in response, up to a carriage
return. Stores what the user types in the named variable, without the carriage return.
The variable can be a letter variable (\%a-z), a macro argument (\%1-9), an array ele-
ment (\&a-z[]), or a macro name. The user’s characters echo on the screen as they
are typed.

ASKQ variable [text]
‘‘Ask Quietly.’’ Just like ASK, but does not echo what the user types. Use ASKQ to
read passwords or other sensitive information.

Example:

C-Kermit>ask name What is your name\?
What is your name?Olaf
C-Kermit>askq \%p Hello, \m(name), what’s your password\?
Hello Olaf, what’s your password?
C-Kermit>

As you can see, Kermit strips leading and trailing blanks from the ASK and ASKQ prompts,
and it requires you to quote any question marks in the prompt with backslash (an unquoted
question mark gives a help message at top level, but not in command files or macros). If
you want to have leading or trailing spaces in the prompt, enclose it in curly braces:

C-Kermit>ask name { What is your name\? }
What is your name? Olaf you idiot

C-Kermit>askq \%p { Hello, \m(name), what’s your password\? }
Hello Olaf you idiot, what’s your password?

C-Kermit>

When the user responds to the prompt, all of Kermit’s special command editing keys are
active: Delete, Backspace, Ctrl-W, Ctrl-U, Ctrl-R, etc., so the user doesn’t have to worry
about not making mistakes.

In an interactive dialog with a user, it is common to ask a question that requires a Yes or
No answer. A friendly program does not care if the user spells these words out in full or
abbreviates them, or about their alphabetic case. And neither does C-Kermit’s GETOK

command:

428 Programming Commands / Chapter 18

GETOK [text]
Asks the user a yes-or-no question. The text is the question. If you omit the text, Ker-
mit supplies the question ‘‘Yes or no?’’ The user can answer by typing Yes, No, or
OK in upper or lowercase, abbreviated or in full. Any other answer results in an error
message and a repetition of the question. The GETOK command succeeds if the user
gives an affirmative answer and fails if the answer is negative. Here is an example in
which the user is asked whether temporary files should be deleted, and then the files
are deleted or not according to the answer:

getok Should I delete your temporary files\?
xif success {

echo Deleting temporary files *.tmp...
delete *.tmp

} else {
echo OK, I won’t.

}

To include leading or trailing blanks, enclose the question text in curly braces:

C-Kermit>getok \%a { OK to proceed\? }
OK to proceed? ok
C-Kermit>sho status
SUCCESS
C-Kermit>

You can also prompt the user for a single character:

GETC variable [text]
Prints the text, waits for the user to type a character, and stores the character in the
given variable. The character is not echoed. Example:

getc \%a Press any key to continue:

Calculators and Adding Machines
Here is a macro you can use to have Kermit evaluate arithmetic expressions for you inter-
actively. Kermit’s answer to the pocket calculator:

define CALC {
echo Press Return to exit ; Say how to exit
def \%1 1 ; Initial condition for loop
while defined \%1 { ; Loop until they want to exit

ask \%1 { expression: } ; Ask for an expression
echo \flpad(\feval(\%1),10) ; Evaluate and print answer

}
echo Back to... ; All done

}

To use the calculator, first execute this macro definition.39 Then just type CALC at any

39You’ll find a copy in the command demonstration file, CKEDEMO.KSC, that is distributed with C-Kermit.

Can We Talk? 429

time at the C-Kermit prompt. You can type any kind of arithmetic expression listed in
Table 18-1, and the operands can be either integer constants or variables that have integer
values.

$ kermit (Start Kermit)
C-Kermit 7.1.199, 29 Apr 2001
Type ? or HELP for help
C-Kermit>def \%a 7 (Define some variables)
C-Kermit>def \%b 9
C-Kermit>calc (Start the calculator)
Press Return to exit

expression: 1+1 (Add 1 and 1)
2

expression: 6! (6 factorial)
720

expression: 2^16 (2 to the 16th power)
65536

expression: (\%a + 3) * (\%b 5) (Expression with variables)
40

expression: (Press Return to exit)

Back to...
C-Kermit>

Here is a small interactive program that imitates an adding machine, illustrating the use of
ASKQ along with functions that line things up, WHILE loops, and other items you learned in
this chapter. But first, let’s learn one more command:

XECHO [text]
Just like ECHO, but does not supply a carriage return and linefeed at the end of the text.
For use only in scripts; if you use it at the prompt, the next prompt is likely to over-
write whatever you just XECHOed. Synonym: WRITE SCREEN.

Now here’s the adding machine, in which we use XECHO to avoid cluttering up the screen
with blank lines:

define ADDINGMACHINE {
local \%s
echo Adding machine.
echo Type numbers or press Return to quit...
assign \%s 0 ; Initialize the sum
while true { ; Loop till done

askq \%1 ; Wait for a number
if not def \%1 break ; Return quits loop
increment \%s \%1 ; Add it to the sum
xecho \flpad(\%1,10)\flpad(\%s,10) ; Print results

}
echo Total\flpad(\%s,15,.)

}

Once this macro is defined (for example, by TAKEing the C-Kermit demo file) you can add
up a column of numbers any time you want (integers only, positive or negative): just type
ADDINGMACHINE at the C-Kermit prompt.

430 Programming Commands / Chapter 18

Using Escape Sequences

When commands like ECHO and ASK print your text on the screen, they evaluate all vari-
ables and other backslash codes first. This lets you achieve special effects on the screen.
For example, you can send escape sequences for clearing the screen, positioning the cur-
sor, highlighting text, changing colors, and so on. Kermit itself has no built-in knowledge
of terminal control sequences, so you’re on your own for this. A common terminal type is
the DEC VT100 series [27], and some useful escape sequences (which also apply to the
VT200, 300, and higher series) are listed in Table 18-2. For other types of terminals, see
your terminal manual.

Several of the entries in the table require you to insert specific values. The escape se-
quence to position the cursor to a specific row and column needs the row and column
number, separated by a semicolon (;). The rows and columns are numbered from 1. So,
to position the cursor in the upper left corner of the screen:

xecho \27[1;1H

and to put it in row 17, column 53:

xecho \27[17;53H

To ‘‘home’’ the cursor and clear the screen:

xecho \27[1;1H\27[2J

The escape sequence for setting the scrolling region requires the row numbers of the top
and bottom lines; for example, to use lines 7 through 24:

xecho \27[7;24r

To make the whole screen the scrolling region, use:

xecho \27[r

The escape sequences for setting foreground and background color are from ANSI
X3.64 [4] and usable with most terminal emulators in ANSI or VT terminal mode. The x
in the escape sequence is replaced by a digit between 0 and 7 to select the color (0 = black,
1 = red, 2 = green, 3 = orange, 4 = blue, 5 = amethyst, 6 = turquoise, 7 = white), for ex-
ample:

xecho \27[36m\27[45m

results in turquoise characters on an amethyst background.

Here is an example for you to try. If you have a color-capable ANSI or VT terminal
emulator (such as MS-DOS Kermit, Kermit 95, or Kermit/2), the results will be in tech-
nicolor. Put these commands in a file and TAKE the file from C-Kermit:40

40A copy of this file is distributed with C-Kermit as CKEVT.KSC so you don’t have to type it in.

Using Escape Sequences 431

Table 18-2 Selected VT100 Escape Sequences

Escape Sequence Kermit Notation Description

Ctrl-H \8 Backspace cursor

Ctrl-I \9 Horizontal tab

ESC # 3 \27#3 Double height/width line, top half

ESC # 4 \27#4 Double height/width line, bottom half

ESC # 6 \27#6 Double width line

ESC D \27D Moves cursor down one line

ESC M \27M Moves cursor up one line

ESC [r ; c H \27[r;c H Moves cursor to row r, column c

ESC [t ; b r \27[t;b r Sets scrolling region from row t to row b

ESC [0 J \27[0J Erases from cursor to end of screen

ESC [1 J \27[1J Erases from start of screen to cursor

ESC [2 J \27[2J Erases entire screen

ESC [0 K \27[0K Erases from cursor to end of line

ESC [1 K \27[1K Erases from start of line to cursor

ESC [2 K \27[1K Erases entire line

ESC [? 5 h \27[\?5h Reverse video, whole screen

ESC [? 5 l \27[\?5l Normal video, whole screen

ESC [0 i \27[0i Prints current screen

ESC [4 i \27[4i Stops transparent printing

ESC [5 i \27[5i Starts transparent printing

ESC [0 m \27[0m Regular characters

ESC [1 m \27[1m Bold characters

ESC [2 m \27[2m Underscored characters

ESC [5 m \27[5m Blinking characters

ESC [7 m \27[7m Reverse-video characters

ESC [3x m \27[3xm Selects foreground color (x = 0 through 7)

ESC [4x m \27[4xm Selects background color (x = 0 through 7)

ESC Z \27Z Terminal type query (host to terminal)

ESC [? 1 c \27[\?1c VT100 terminal ID (terminal to host)

ESC [? 6 c \27[\?6c VT102 terminal ID (terminal to host)

ESC [? 62 c \27[\?62c VT200 terminal ID (terminal to host)

ESC [? 63 c \27[\?63c VT300 terminal ID (terminal to host)

ESC _ text ESC \ \27_text\27\ Application Program Command

432 Programming Commands / Chapter 18

define on_exit echo \27[r\27[0m\27[1;1H\27[2JGoodbye!
define \%g \27[0m\27[32m\27[7m\frepeat(=,80)\27[0m\27[34m
echo \27[1;1H\27[2J\%g\27[47m
ask \%n { What is your name\? \27[30m\27[7m}
echo \%g
echo \27[35m\27[5m Welcome to Kermit, \27[30m\27[5m\%n\13\10\%g
echo \13\10\27[0J\27[7;24r\27[22;1H
set prompt {\%g\13\10 \27[33mWhat is your command\? \27[34m}

Without giving away any secrets, it can be observed that this program does some unusual
things to VT-series terminals. Note the use of the ON_EXIT macro to put the terminal back
to normal when C-Kermit exits.

PC Printing
Here is a simpler but perhaps more practical use for escape sequences. It lets C-Kermit
print a file on your local printer if you have a VT100-series terminal (VT102 or higher), or
a PC running a VT terminal emulator, with a printer attached. We define a macro,
VTPRINT, to send the escape sequence to turn on ‘‘transparent printing,’’ then display the
file, which should cause your terminal or emulator to send the text to the printer instead of
the screen, and then send the escape sequence to turn off transparent printing:

define VTPRINT xecho \27[5i, type \%1, xecho \27[4i

Execute this macro definition, and then print files on your local printer like this:

C-Kermit>vtprint oofa.txt

Some printers might require a formfeed (ASCII 12) at the end to force the last or only
page out of the printer. In that case:

define vtprint xecho \27[5i, type \%1, xecho \12\27[4i

Sending APC Commands
Recall from Chapters 8 and 13 that Application Program Command escape sequences can
be used to send commands to Kermit programs through their terminal emulators (if you,
the user of the local Kermit program, have enabled APCs with SET TERMINAL APC ON).
This opens the door to all sorts of interesting possibilities. For example, any application
can customize the local Kermit program’s key map.

Suppose, for example, the application is C-Kermit, and the terminal emulator is MS-DOS
Kermit. C-Kermit can assign shortcuts to PC hot keys (note the double backslashes;
remember, use two backslashes to when you need to refer to one backslash literally):

define mykeys apc {set key \\4424 \\2, set key \\4432 \\14}
def on_exit apc {set key \\4424 \\kpuparr, set key \\4432 \\kpdnarr}

In this example, C-Kermit sets the PC’s gray up- and down-arrow keys to send Ctrl-B and
Ctrl-N, respectively, which are C-Kermit’s command recall keys. And by defining the
ON_EXIT macro appropriately, it also ensures that when C-Kermit exits it restores the nor-
mal definitions for these keys.

Using Escape Sequences 433

Some software vendors distribute files with hundreds of SET KEY commands, to be used
by the Kermit terminal emulator when accessing the vendor’s application. When the
vendor’s application starts, it issues an APC sequence containing a TAKE command for its
keymap file, rather than issuing hundreds of SET KEY commands inside of APC sequences.

APCs are seeing increasing use by ‘‘system integrators,’’ who write automated scripts al-
lowing users to perform specific tasks without having to type (or know) any Kermit com-
mands. A question that is frequently asked by these script writers is, ‘‘How can I make
Kermit return from CONNECT mode automatically?’’

CLEAR APC
An APC is a macro sent to the terminal emulator to be executed, with automatic return
to CONNECT mode. The CLEAR APC command clears the APC status of the macro, so
when it finishes executing, it does not reCONNECT, but rather, executes the next com-
mand from its current command source (command file, macro, or prompt).

APCs can be used to initiate file transfers, but it’s easier to rely on the emulator’s
autodown/upload capability (see Chapters 8 and 13). Nevertheless, for illustrative pur-
poses, here is a pair of macros to let C-Kermit initiate transfers automatically with any lo-
cal Kermit program whose emulator supports APCs, and has them enabled:
__

COMMENT - PCSEND macro. Arguments:
; \%1 = Name of file to send, \%2 = Optional name to send it with.
;
def PCSEND {

local \%n
asg \%n \ffiles(\%1) ; See how many files match
if not \%n - ; If none match

end 1 {\%1 - not found} ; give message and fail
apc receive ; Tell local Kermit to receive
if = 1 \%n send \%1 \%2 ; Single file with as-name
else send \%1 ; or wildcard with no as-name

}
COMMENT - PCGET macro. Arguments:
; \%1 = Name of file to get, \%2 = Optional name to store it under.
;
def PCGET {

local tmp
apc server ; Put local Kermit in server mode
xif def \%2 { ; If we have an "as-name"

get, \%1, \%2 ; use multiline GET
} else { ; Otherwise

get \%1 ; use regular GET
}
asg tmp \v(status) ; Remember status
finish ; FINISH the server
end \m(tmp) ; Return status from GET command

}
__

434 Programming Commands / Chapter 18

Once C-Kermit has these macros defined, e.g. by reading their definitions from its in-
itialization file, the user can initiate file transfers from the C-Kermit> prompt without
having to escape back, type commands, or re-CONNECT:

C-Kermit>pcsend oofa.txt (Single file)
C-Kermit>pcsend oofa.txt x.txt (Single file with as-name)
C-Kermit>pcsend oofa.* (Multiple files)
C-Kermit>pcget oofa.txt (Single file)
C-Kermit>pcget oofa.* (Multiple files)
C-Kermit>pcget oofa.txt x.txt (Single file with as-name)

Reading and Writing Files and Commands

Like any conventional programming language, C-Kermit lets you open, read, write, and
close files. Computer people call this I/O (Input/Output). The commands, not surpris-
ingly, are OPEN, READ, WRITE, and CLOSE.

OPEN { READ, WRITE, APPEND } filename
Opens the given file in READ, WRITE, or APPEND mode. A READ file must already ex-
ist and is opened for reading only. A WRITE file is created as a new file, overwriting
any existing file of the same name. An APPEND file, if it already exists, will have new
information added to the end of it. If it does not exist, it is created as a new file.

open read oofa.txt ; Read from the file oofa.txt
open write oofa.new ; Create the file oofa.new
open append oofa.log ; Write to end of oofa.log

These commands fail if the file can’t be found or can’t be opened in the desired mode,
for example if a file is protected against you.

OPEN { !READ, !WRITE } command
You also can open files that aren’t files at all, but system commands or programs, and
then read from their output or write to their input. Here’s an example for use in VMS:

open !read dir /except=(*.doc,*.hlp) /after=yesterday ck*.*

This causes VMS to produce a list of all the files in the current directory whose names
start with CK, except the ones with filetypes of .DOC or .HLP, created since yesterday.
C-Kermit can read this list and use it, for example, to send the selected files.

The next example shows how Kermit can write lines of text to the UNIX, OS/2, or
Windows SORT utilities directing the sorted output to the file alpha.txt:

open !write sort > alpha.txt

Only one READ or !READ file can be open at once, and only one WRITE, !WRITE, or
APPEND file can be open at once. Reading from and writing to subprocesses works
only with operating systems that support straightforward methods of input and output
redirection.

Reading and Writing Files and Commands 435

Now that we know how to open files and processes for reading and writing, we also need
to get data into and out of them. For this, we use the READ and WRITE commands:

READ variable-name
Reads the next line of text from the current OPEN READ or OPEN !READ file and makes
the line of text, without its line terminator, the value of the named variable, for ex-
ample:

read line

If no more lines remain in the file, the command fails and the file is closed automati-
cally. Here is an example that reads and displays an entire file:

open read oofa.txt
if fail stop 1 Can’t open oofa.txt
read line
while success { echo \m(line), read \m(line) }

WRITE file text
Writes the text to the indicated log or file. The text can include backslash codes, vari-
ables, etc., which are fully evaluated before the text is written. The text is not ter-
minated by a line terminator in the output file unless you include one explicitly, for
example:

write debug-log { Here is where the trouble starts...\13\10}

For portability, however, you should not include literal line terminators in your scripts, so
you can use the \v(newline) variable instead; its value is the appropriate text-file line
terminator for whatever platform C-Kermit is running on:

write debug { Here is where the trouble starts...\v(newline)}

For the common case, in which a line is to be written, rather than a fragment of a line, you
can use:

WRITE-LINE file text
Writes the text to the indicated file, and supplies the appropriate line terminator at the
end. Pascalisches Synonym: WRITELN. Example:

writeln debug-log { Here is where the trouble starts...}

The file can be any of the following files or logs, which must already be open:

DEBUG-LOG
The C-Kermit debugging log (opened with LOG DEBUG).

FILE
The currently open WRITE, !WRITE, or APPEND file.

436 Programming Commands / Chapter 18

PACKET-LOG
C-Kermit’s packet log (opened with LOG PACKETS).

SCREEN
Your screen. WRITE SCREEN is the same as XECHO; WRITELN SCREEN is just like
ECHO. The SCREEN ‘‘file’’ is always open, so C-Kermit does not give you a command
to open or close it.

ERROR
Just like SCREEN, but uses standard error rather than standard output. Useful on sys-
tems like UNIX that separate the two, especially when output redirection has been
done on one but not the other.

SESSION-LOG
C-Kermit’s session log (opened with LOG SESSION).

TRANSACTION-LOG
C-Kermit’s file transfer transaction log (opened with LOG TRANSACTIONS).

When you are finished reading or writing a file (or process), you should close it. The
command is:

CLOSE name
Closes the named file: DEBUG-LOG, PACKET-LOG, SESSION-LOG, TRANSACTION-LOG,

READ, or WRITE. A READ or !READ file is closed automatically when end-of-file (EOF)
is encountered during a READ operation, but it does no harm to close it again. WRITE,

!WRITE, and APPEND files should be closed explicitly with CLOSE WRITE. All files are
closed automatically when you EXIT or QUIT from C-Kermit.

Here is a C-Kermit program that reads lines from one file, OOFA.TXT, and writes them
into another file, NUMBERED.TXT, with line numbers added:

local \%c line
set take error off ; So EOF can be handled
open read oofa.txt ; Open input file "oofa.txt"
if fail end 1 Failure to open input file
open write numbered.txt ; Open output file "numbered.txt"
if fail end 1 Failure to open output file
define \%c 0 ; Start line counter at 0
while true { ; Loop to read all lines

read line ; Read one line into "line"
xif fail { ; End of file

close write ; Close the files
end 0 Lines copied: \%c. ; Print a message

}
increment \%c ; Count the line
writeln file \flpad(\%c,3). \m(line) ; Format and write it

}

Programming Considerations 437

A Mass Mailing
In this example we use C-Kermit’s file input/output feature on a UNIX computer to send
annual review letters to our employees via electronic mail — the personal touch! These
are form letters that look like this:

Dear \m(name),
You have done a \m(word) job this year.
Keep up the \m(word) work.

This is called a boilerplate, and we have stored it in a file called BOILER. It contains
C-Kermit variables to be filled in by our program for each employee, based on records in
another file, EMPLOYEES, that look like this:

name address comment

In each record, name is the employee’s name, address is the employee’s electronic mail
address, and comment is a word characterizing the employee’s performance for the year,
for example:

Olga ole great
Olaf oop swell
Ivan itt terrible

Figure 18-2 on page 438 lists the program that reads and processes the records, sending
personalized mail to each employee. Store it in a file and then TAKE the file.

Now you have fulfilled your managerial responsibilities, spending mere seconds on a task
that normally takes weeks. While your employees are contemplating their review letters,
you can go back to playing video games on your PC.

Programming Considerations

C-Kermit’s programming language is the result of a series of additions to its original com-
mand language, each with an eye toward backward compatibility and also compatibility
with MS-DOS Kermit. Thus command files written for MS-DOS Kermit or C-Kermit as
far back as the mid-1980s should still work with little or no alteration.

The tradeoff is a certain awkwardness that is not present in real programming languages
like C, Pascal, or Algol. This is also true for most other scripting languages, in which
items such as variables and looping constructs are grafted on top of an existing command
language, as in the UNIX shell. The advantage of a scripting language is that it is the
same as the command language, and therefore relatively approachable and easy to learn;
the disadvantage is its sometimes awkward appearance and quoting rules.

GOTOs were first implemented in MS-DOS Kermit many years ago. Even though they
were ‘‘considered harmful’’ [29], GOTOS (when used in combination with IF) transformed

438 Programming Commands / Chapter 18

__

; File REVIEWS.KSC
; A Kermit Script to send personalized review letters to the staff.

local \%d \%i \%m \%n line ; Local variables
local name user word split ; More local variables
define \%d 100 ; Maximum lines in a letter
declare \&z[\%d] ; Array for lines
set take error off ; Catch errors ourselves

def SPLIT { ; SPLIT macro assigns words in its
asg name \%1 ; argument to separate variables
asg user \%2
asg word \%3

}
open read boiler ; Open the boilerplate file
if fail stop 1 Can’t open boilerplate file

; Loop to read each line of boilerplate file.
;
for \%n 1 \%d 1 { ; \%n is the line number

read \&z[\%n] ; Store this line in the array
if fail break ; Stop at end of file

}
if = \%n \%d - ; If too many lines before end of file,

end 1 Your letter is too long ; stop here

; Read employee records
;
def \%m 0 ; Employee counter
open read employees ; Open the employee file
if fail - ; Handle failure

end 1 Can’t open employee file
while true { ; Loop for each employee

read line ; Read a record
if fail break ; Failure means we’re done
increment \%m ; Got a record, count the employee

split \m(line) ; Get name, address, and comment

; Write boilerplate lines to mail program, making substitutions

open !write mail \m(user) ; Start the mail program
for \%i 1 \%n 1 { ; Write lines 1 through \%n

writeln file \&z[\%i] ; to the mail program "file"
}
close write ; Close the mail program

}
echo Done, letters: \%m ; Print completion message
__

Figure 18-2 Mass Mailing Script

Summary of Built-in Functions 439

the strictly linear command language into a programming language. We carry them for-
ward for compatibility with older releases of MS-DOS Kermit, but they can almost always
be avoided by using XIF-ELSE, FOR, WHILE, or SWITCH.

Structured statements should be used in preference to GOTO (and its even more evil twin,
FORWARD) if for no other reason than because they execute more quickly. Suppose the
following fragment appears toward the bottom of a long command file:

assign \%i 1
:loop
read \&a[\%i]
if fail goto done
increment \%i
if not > \%i \%n goto loop
:done

Each GOTO LOOP ‘‘rewinds’’ the command file to the beginning and searches line by line
until it finds the LOOP label. If you recode the loop as follows:

for \%i 1 \%n 1 {
read \&a[\%i]
if fail break

}

it goes much faster, it’s shorter, it’s easier to read, and best of all, it’s politically correct.
Any sort of loop can usually be recoded in this manner. Should block contents become
too big, portions of the block can be extracted into a macro that can be called with negli-
gible extra expense from within the block. This has the side benefit of making the
program more readable and modular.

Summary of Built-in Functions

Table 18-3 lists C-Kermit’s built-in functions alphabetically, showing their arguments and
the type of value returned.

Table 18-3 Built-in Functions

Name Returns Description

\Fbasename(filespec) text Filename extracted from filespec

\Fbreak(s1,s2) text s1 up to first character that is in s2

\Fcapitalize(s1) text s1 with first letter capitalized

\Fcharacter(n) character Character whose numeric code is given

\Fchecksum(s1) number Checksum of text s1

\Fcode(c) number Numeric code value of character c

\Fcontents(variable) text Value of variable, unevaluated

440 Programming Commands / Chapter 18

Table 18-3 Built-in Functions (continued)

Name Returns Description

\Fcrc16(text) number CRC-16 of text s1

\Fdate(file) text Creation or modification date of file

\Fdefinition(macro) text Definition of macro

\Fevaluate(expression) number Value of arithmetic expression

\Fexecute(macro args) any Return value of macro execution

\Ffiles(filespec) number Number of files that match filespec

\Fhexify(s1) hex-string s1 encoded in hexadecimal

\Findex(s1,s2,n) number Position of leftmost s1 in s2 starting at n

\Fipaddress(s1,n) ip-address Extracts first IP address from s1 starting at n

\Flength(s1) number Length of s1

\Fliteral(s1) text Literal s1, no evaluation

\Flower(s1) text Letters in s1 converted to lowercase

\Flpad(s1,n,c) text s1 left-padded to length n with char c

\Fltrim(s1,s2) text s1 with all characters from s2 trimmed from left

\Fmaximum(n1,n2) number Larger of the two numbers

\Fminimum(n1,n2) number Smaller of the two numbers

\Fmodulus(n1,n2) number n1 modulus n2

\Fnextfile() filename Next filename from \Ffiles() list

\Fpathname(file) filename Full pathname of file

\Frepeat(text,n) text n repetitions of text

\Freverse(text) text text reversed

\Fright(text,n) text Rightmost n characters of text

\Frindex(s1,s2,n) number Position of rightmost s1 in s2 starting at n

\Frpad(text,n,c) text text right-padded to length n with character c

\Fsize(file) number Size in bytes of file

\Fspan(s1,s2) text s1 up to 1st char that is not in s2

\Fsubstring(text,n1,n2) text Substring of text starting at n1, length n2

\Ftod2secs(hh:mm:ss) number Converts time of day to seconds since midnight

\Ftrim(s1,s2) text s1 with all chars from s2 trimmed from the right.

\Fupper(s1) text Letters in s1 converted to uppercase

\Fverify(s1,s2,n) number Pos of 1st char in s2 starting at n that’s not also in s1

441

Chapter 19

Script Programming

You’re probably wondering what Chapters 17 and 18 have to do with data communica-
tions and file transfer. On the surface, not much. But the programming techniques intro-
duced there — repetitive loops, decision making, and so on — resemble the things you do
yourself when you are interacting with a computer. In this chapter, you will use these
techniques to teach C-Kermit to do automatically exactly what you do when you use it by
hand to connect to, log in to, and use a remote computer or service. You’ll even see how
to do things you couldn’t have done by hand.

Anything you do with Kermit — whether at the command prompt or in CONNECT mode —
in a routine and repetitive way is a good candidate for automation. A certain sequence of
commands is always required for dialing out or for making a network connection. A cer-
tain dialog is required for logging in to a particular remote computer or service. Automat-
ing these routine procedures has all sorts of benefits. It makes them easier and more
robust, it makes them easily accessible to the computer-shy, and it lets computers talk to
each other even when no humans are around: late at night when phone rates are lowest,
the computers can call each other up and exchange data automatically.

❍ ❍ ❍ ❍

The material in this chapter is primarily for those who use C-Kermit in local
mode; that is, for dialing out or making network connections from C-Kermit to
remote computers or services. If you will be using C-Kermit only in remote
mode, skip ahead to the appendices starting on page 489 and skim through them
to see the types of reference material that are available to you.

442 Script Programming / Chapter 19

Automated Connection Establishment

Before you can use a remote computer or service, you must establish a connection to it
from your local computer. C-Kermit supports three primary types of connections: direct,
network, and dialed, all described in Chapter 3, plus the network dialing method described
in Chapter 6.

Let’s write macros to automate the connection task, one for each type of connection. First
we’ll handle direct serial connections. For this kind of connection, Kermit only needs to
know the device name and the connection speed. Let’s define a macro that takes these
two items as arguments, issues the appropriate commands, and checks to make sure the
commands were successful:

COMMENT - SERIAL macro. Arguments:
; \%1 = device name
; \%2 = speed
;
define SERIAL {

if < \v(argc) 3 end 1 Usage: SERIAL device speed
set line \%1 ; OK, try to SET LINE
if failure end 1 Can’t open device: \%1 ; Failed
set speed \%2 ; Try to set the speed
if fail end 1 Unsupported speed: \%2 ; Failed
end 0 Connection successful. ; Succeeded

}

\%1 is the device name and \%2 is the connection speed in bits per second. Both are re-
quired; there are no defaults; if you omit them, the macro gives a helpful usage message
and fails. Use the SERIAL macro like this:

C-Kermit>serial /dev/tty01 9600 (UNIX)
C-Kermit>serial txa5 2400 (VMS)
C-Kermit>serial com1 19200 (Windows or OS/2)
Connection successful.
C-Kermit>

Now let’s define a NET macro for making network connections. The required items are
the network type (such as TCP/IP or X.25) and the network host name or address:

COMMENT - NET macro. Arguments:
; \%1 = network type
; \%2 = host name or address
;
define NET {

if < \v(argc) 3 end 1 Usage: NET network host
set network \%1 ; Set network type
if fail end 1 unsupported network: \%1 ; Failed
set host \%2 ; Make the connection
if fail end 1 can’t reach host: \%2 ; Failed
end 0 Connection successful. ; Succeeded

}

Automated Connection Establishment 443

For TCP/IP connections, the second argument can include a service port name or number,
attached with a colon. You can use the NET macro like this:

C-Kermit>net tcp/ip oofacorp.com (Internet)
C-Kermit>net tcp/ip oofacorp.com:3000 (Internet with port)
C-Kermit>net x.25 31182120010300 (X.25)
Connection successful.
C-Kermit>

For dialed connections, Kermit needs to know the modem type, the name of the device the
modem is connected to, the speed for dialing, and the phone number. If the phone number
is busy or doesn’t answer, the call is redialed according to your SET DIAL RETRIES and SET

DIAL INTERVAL settings41. Here is our CALL macro:

COMMENT - CALL macro. Arguments:
; \%1 = modem type
; \%2 = device name
; \%3 = speed
; \%4 = phone number
;
define CALL {

if < \v(argc) 5 - ; All arguments present?
end 1 Usage: CALL modem device speed number

set modem \%1 ; Set modem type
if fail end 1 unknown modem type: \%1
set line \%2 ; Communication device
if fail end 1 can’t open device: \%2
set speed \%3 ; Communication speed
if fail end 1 unsupported speed: \%3
set dial retries 10 ; Try up to 10 times
dial \%4 ; Dial the number
if fail end 1 Can’t place call: \%4
end 0 Connection successful.

}

Again, all arguments are required:

C-Kermit>call
Usage: CALL modem device speed number
C-Kermit>call telebit /dev/acu 38400 555-9876
Connection successful.
C-Kermit>

The macro issues the DIAL-related commands in the proper order, verifies that each com-
mand was executed successfully, and then places the call. If the call completes success-
fully within your DIAL RETRIES limit, the macro issues the ‘‘Connection successful’’ mes-
sage and exits successfully, otherwise it fails.

41Set these in your C-Kermit customization file according to your own needs and local laws and
regulations. Note that the phone number can also be a dialing directory entry.

444 Script Programming / Chapter 19

How about dialing out with a network-resident ‘‘reverse terminal server?’’ Here we com-
bine network access with modem dialing by making a TCP/IP connection to a specific
port on a terminal server that is on the local network. Most terminal servers can be con-
figured to provide this kind of service, which is on a specific TCP port. If you make a
TCP connection to that port, you get a dialout modem in command mode. This technique
was explained back in Chapter 6 on page 146. Here we construct a TCPCALL macro to
place the call.

COMMENT - TCPCALL macro. Arguments:
;
; \%1 = server:port
; \%2 = modem type
; \%3 = phone number
;
def TCPCALL {

if < \v(argc) 4 - ; All arguments present?
end 1 Usage: TCPCALL server[:port] modem number

set net tcp/ip ; Which network to use
if fail end 1 unsupported network: tcp/ip
set host \%1 ; Access server and port
if fail end 1 can’t access server \%1
set modem \%2 ; Set modem type
if fail end 1 unknown modem type: \%2
dial \%3 ; Dial the number
if fail end 1 Can’t place call: \%3
end 0 Connection successful.

}

The port number, if any, must be concatenated with the terminal server hostname,
separated by a colon (:). For example, if you have a terminal server whose hostname is
DIALOUT and the TCP service port is 2000:

C-Kermit>tcpcall dialout:2000 telebit 7654321

These four macros, which are included in the standard C-Kermit initialization file, let you
make different kinds of connections without having to remember which commands are
needed and in what order — which is especially important for modem dialing, where the
order can make all the difference.

When you give a SERIAL, NET, CALL, or TCPCALL command and receive the ‘‘Connection
successful’’ message in return, Kermit is ready to communicate. Now you can give a
CONNECT command and go through your normal login procedure.

Or you can have Kermit log in for you automatically.

Synchronization Commands 445

Synchronization Commands

The connection-establishment macros are useful in their own right, but they are only the
first step in automating online access. Now let’s take the next step and automate the login
procedure, in which you get the remote computer’s attention and identify yourself to it.
The method differs for each type of computer or service, but each time you connect to a
particular one, you usually perform the same steps.

How do you know what to put in a login script? The best way to construct a successful
script is to go through the connection and login procedure once by hand, observing exactly
which characters are sent and received, in what order, and with what timing.

To illustrate, let’s use our new CALL macro to dial a VMS computer, then CONNECT to it
and log in:

C-Kermit>call hayes /dev/cua 2400 7654321
Connection successful. (Get confirmation message)
C-Kermit>connect (Connect to the VMS system)
<CR> (Type a carriage return)
Welcome to the Complaint Department
The more you complain, the longer you get to live.

Username: olga (See prompt, type username)
Password: (See prompt, type password)

Welcome to VMS V5.5-1

Last interactive login on Wednesday, 6-SEP-1996 23:23
Last non-interactive login on Thursday, 8-FEB-1996 20:02

$ (See system prompt)

Observe what you type and what VMS sends back in return. The VMS system sends two
types of text to your terminal: informational or greeting messages, and prompts that you
should reply to. In this example, the prompts are:

Username:

and:

Password:

The login process is complete when you see the system prompt:

$

That’s a dollar sign, followed by a space, on the left margin (\13$\32).

How can we automate this procedure? Let’s clear up one misconception right away. You
can’t use the CONNECT command to send precomposed text to the remote computer. The
CONNECT command always reads from the keyboard, never from a file. To illustrate, the
following command file:

446 Script Programming / Chapter 19

set line /dev/ttyh8
set speed 9600
connect
olga
secret

does NOT log the user Olga in to the remote computer. It does not send the strings ‘‘olga’’
and ‘‘secret’’ out the communication device. When you put a CONNECT command in a
command file or macro, it does exactly what it does when you issue it interactively: it con-
nects your keyboard and screen to the remote computer. The previous example will do
just that; then when you escape back from CONNECT mode, Kermit will try to execute the
commands ‘‘olga’’ and ‘‘secret,’’ which are not C-Kermit commands at all.

We can’t simply blast text at the remote computer, expecting it to be processed correctly
and at the right time. We have no guarantee this will happen, and practically every as-
surance that it won’t. Instead, we want Kermit to do what we do: look for a particular
prompt, send the appropriate text, look for the next prompt, and so on, ignoring (just as we
do) all the informational and greeting messages. We should synchronize our responses
with the remote computer’s prompts; we should not send text to the remote computer until
it has issued a prompt for it.

Synchronization is important for many reasons. For example, you must not send charac-
ters on a half-duplex connection until the remote system has given you permission by
sending you its line turnaround character, such as Ctrl-Q (Xon). If you (or Kermit) do not
wait for the Xon, the characters sent prematurely are lost.

Even on full duplex connections there might be times when ‘‘typeahead’’ is not allowed.
When you log in to UNIX, for example, the login program clears the input buffer of
typeahead after issuing the ‘‘Password:’’ prompt and before reading your password, as a
security measure; any part of your password that you send before the prompt appears is
lost and your login fails.

So before we can write our login scripts, we must learn how to synchronize Kermit’s
responses with the prompts and actions of the remote computer.

The OUTPUT and INPUT Commands
A script program is a lot like a movie script containing a dialog between two actors. In a
C-Kermit script, the actors are the two computers, and their lines are spoken and read,
respectively, by C-Kermit’s OUTPUT and INPUT commands. These commands do what
you would do if you were interacting manually with the other computer during a CONNECT

session: CONNECT requires a person at the controls, whereas INPUT and OUTPUT work on
automatic pilot. OUTPUT ‘‘types’’ what you would type and INPUT reads the computer’s
responses:

Synchronization Commands 447

output \13 (Send a carriage return)
input 5 login: (Wait 5 seconds for login prompt)
output olaf\13 (Send my user ID and <CR>)
input 5 Password: (Wait for password prompt)

OUTPUT text
Sends the text out the current communication path (serial port, modem, network, or if
C-Kermit is in remote mode, its controlling terminal). Example:

C-Kermit>output I am not really typing this text.

The text may contain any of the backslash codes, variables, or functions described in
Chapters 2 and 17–18, e.g.:

C-Kermit>out The local time is \v(time).\13

It can also include the special codes \B, which means to send a BREAK signal (the
letter B can be upper- or lowercase); \L (upper- or lowercase) to send a Long BREAK
signal;42 or \N (upper or lower) to send a NUL (ASCII 0):

C-Kermit>output \b (Send a BREAK signal)

If you want to include leading or trailing spaces in the text, enclose it within curly braces:

C-Kermit>output { hello }

The enclosing braces are removed by C-Kermit’s command processor, so the command
just shown sends the word hello with a leading blank and a trailing blank.

If you want to output text that actually begins and ends with curly braces, use two of each:

C-Kermit>output {{ hello }} (sends "{ hello }")

If you need to output a literal backslash, use two of them:

C-Kermit>output AT\\Q3\13 (sends "AT\Q3<CR>")

Kermit does not add a carriage return or linefeed to the end of the OUTPUT text. You must
include the appropriate backslash code for any control characters that you would have
typed, for example:

C-Kermit>output hello\13 (Include a carriage return)

The OUTPUT command succeeds unless there is a device output error, for example if the
connection was broken.

42On a serial connection, a BREAK is a 0.275-second spacing (0) condition and a Long BREAK is a
1.5-second spacing condition. On a TCP/IP TELNET connection, both \B and \L send the TELNET

BREAK command to the remote TELNET server.

448 Script Programming / Chapter 19

In some cases, the device you are OUTPUTting characters to might break if the characters
arrive too close to each other. In such cases, you can slow down the rate at which OUTPUT

sends its text:

SET OUTPUT PACING number
This tells Kermit to pause for the given number of milliseconds (thousandths of a
second) between each character in the text of subsequent OUTPUT commands. The
default OUTPUT PACING is 0, i.e. no pauses. Example:

set output pacing 500
output ATZ\13

Note: to OUTPUT a relatively large volume of characters all at once, put them in a file and
use TRANSMIT to send it in either binary or text mode, as appropriate; see Chapter 15.

INPUT number [text]
Waits up to the given number seconds for the specified text to arrive on the communi-
cation connection or, if C-Kermit is in remote mode, from the keyboard. The text may
contain backslash codes, variables, or functions, which are evaluated before the arriv-
ing characters are scanned, but it may not include NUL (ASCII 0) characters, which
serve only to terminate the text. To include leading or trailing spaces in the text, or if
the text ends with a hyphen (-), enclose the text in curly braces. Alphabetic case in the
text is ignored unless you have SET CASE ON.

The 8th bit of each character is ignored if your current PARITY setting is anything but
NONE (NONE is the default) or if your TERMINAL (if in local mode) or COMMAND (remote
mode) BYTESIZE is set to 7. If the text arrives within the specified interval, the command
succeeds. If the specified number of seconds passes without the text arriving, the com-
mand terminates automatically and fails. Here is an example of how to test whether INPUT

succeeds or fails:

input 10 login: ; Wait for login prompt
if failure end 1 No login prompt

If you omit the text from the INPUT command, it waits the given interval for any character
at all, including NUL:

input 10 ; Wait for any character
if failure end 1 No input

The last character that was read by the INPUT command, whether it succeeded or not, is
available in the \v(inchar) variable. The number of characters read by the most recent
INPUT command is given by the \v(incount) variable.

If C-Kermit is in local mode, you can interrupt an INPUT command in progress by typing
any character (such as space), which causes INPUT to fail and, if a script is active, to
proceed to the next command in the script. You can also interrupt it, like all other com-
mands, by typing Ctrl-C, which returns C-Kermit directly to its prompt.

Synchronization Commands 449

You can also get additional details about the most recent INPUT command from the
\v(instatus) variable\v(return), whose values are:

-1 No INPUT command given yet
0 Succeeded
1 Timed out
2 Interrupted by user
3 Internal error
4 I/O error or connection lost

The INPUT and OUTPUT commands are hooked into the session log. If you have given a
LOG SESSION command, all characters processed by INPUT and OUTPUT are recorded in the
session log, just as if they had been captured during CONNECT mode, except that no con-
versions take place (character-set translation, removal of linefeeds, and so on).

When you combine the INPUT and OUTPUT commands with the decision-making powers of
the IF command, you can make Kermit imitate your own behavior: it ‘‘types’’ what you
would have typed, it reads the responses, and makes the same decisions you would make.

Using the INPUT Buffer
Characters that are read by the INPUT command are copied to the INPUT buffer, which you
can refer to at any time using the built-in variable \v(input), and you can also look at
text accumulated by recent INPUT commands with the REINPUT command:

REINPUT number text
Works like INPUT except that it scans the INPUT buffer for the text rather than reading
new characters from the connection. If the requested text is present, REINPUT succeeds
immediately, otherwise it fails immediately. The timeout interval is ignored.

Here’s a small script program in which Kermit dials a Hayes 2400 bps modem, reads the
modem’s response, and takes various actions depending on the response. The modem’s
response is a string of characters surrounded by linefeed characters (\10).
__

450 Script Programming / Chapter 19

set speed 2400 ; Use 2400 bps
output atdt7654321\13 ; Dial the number
input 40 \10 ; Wait 40 sec for first linefeed
if failure end 1 No response ; Timed out, quit
input 20 \10 ; Wait 20 sec for next linefeed
if failure end 1 Timed out ; It didn’t come
reinput 0 BUSY ; Got response, was it "BUSY"?
if success end 1 Line is busy ; Quit with message
reinput 0 CONNECT ; Was it "CONNECT"?
if failure end 1 No CONNECT ; No, give up
reinput 0 CONNECT 1200 ; Yes, did modem speed change?
if success set speed 1200 ; Yes, change Kermit’s too
__

(This example is illustrative only, since you would normally use C-Kermit’s DIAL com-
mand for this, and also because the modem has many other responses not shown here.)

The example shows that a script program can contain any Kermit commands at all, not
just INPUT, REINPUT, IF, OUTPUT, and ECHO; for example, the SET SPEED command used to
change the computer’s interface speed in response to advice from the modem.

The INPUT buffer has a certain size, 256 characters unless you change it. Each INPUT com-
mand adds new material where the last INPUT command left off. When the end of the
buffer is reached, new material wraps around to the beginning, overwriting what was there
before (computer folks call this a circular buffer). Thus, the words or phrases you are
looking for might have wrapped around too. The INPUT and REINPUT commands know
how to cope with this situation, but if you are searching the \v(input) variable yourself
with \findex(), you can use a trick like this:

assign myipaddress \fipaddress(\v(input)\v(input))
if def myipaddress echo My IP address is \m(myipaddress).
else echo IP address not found

To handle the possibility that the item we are searching for, in this case an IP address
(such as might be printed by a terminal server before entering SLIP mode), wrapped
around, we concatenate the input buffer to itself. This pastes the beginning of the possibly
broken address at the end of the buffer to the end of the address at the beginning of the
buffer, in case it is split in half (clear?).

Speaking of clear, you can erase the entire INPUT buffer with the CLEAR command:

CLEAR [{ INPUT-BUFFER, DEVICE-BUFFER, BOTH }]
The CLEAR command erases the contents of the INPUT command buffer, the com-
munications device input buffer, or both (the default is BOTH).

Synchronization Commands 451

In the following example, the CLEAR INPUT command ensures that each line that is INPUT

from the communication device starts at the beginning of the input buffer, so it can be pro-
cessed as a line of text (in this case, simply displayed) without any extraneous characters
before or after it. The loop stops if a line starts with ‘‘$’’.

__

set input echo off ; Echo lines ourselves
while true { ; Loop for each line

clear input ; Clear INPUT buffer
input 5 \10 ; Read a line
if eq \fsubstr(\v(input),1,1) $ break
xecho \v(input) ; Display the line

}
__

The MINPUT Command
As in our Hayes-modem dialing example, it is sometimes necessary to look for several
possible responses, not just one. When dialing a modem, for example, there can be many
different result messages: CONNECT, BUSY, NO DIALTONE, and so on. To look for several
strings at once, use the MINPUT command:

MINPUT number [text1 [text2 [text2 [...]]]]
Waits up to the given number of seconds for any of the text strings to arrive. If any of
them does arrive within the time limit, the command succeeds and sets the variable
\v(minput) to 1 if it was text1, 2 if it was text2, and so on. If none of the strings ar-
rives within the time limit, the command fails and \v(minput) is set to 0. The
strings are constants or variables, separated by spaces (not commas). Strings contain-
ing spaces must be enclosed in braces. Example:

define \%a CONNECT
define \%b NO CARRIER
minput 20 \%a {\%b} BUSY {NO DIALTONE}

The \v(input), \v(inchar), \v(incount), and \v(instatus) variables are set
by MINPUT in the same way they are set by INPUT.

Let’s recode our Hayes dialing script using MINPUT and SWITCH:

452 Script Programming / Chapter 19

__

define \%x 0
set speed 2400
output atdt7654321\13
clear input
minput 40 BUSY {CONNECT 1200} {CONNECT 2400} {NO CARRIER}
switch \v(minput) {

:0, echo {No response from modem}, break
:1, echo {Line is busy, try again later}, break
:2, set speed 1200
:3, def \%x 1, break
:4, echo {No carrier, try again later}, break
:default, echo {Unexpected response: \v(input)}

}
xif \%x { echo SUCCESS } else { echo FAILURE }
__

Is this a bit clearer? When the SWITCH statement is finished, the variable \%x is 0 if the
call failed and 1 if it succeeded. This can be used to decide what to do next. Notice the
trick at case 2 (CONNECT 1200); we change Kermit’s speed to 1200 and ‘‘fall through’’ to
case 3 (CONNECT 2400, where we don’t need to change the speed). It’s just a trick; case 2
could just as easily (but more redundantly) have been written as:

:2, def \%x 1, set speed 1200, break

If a command file or macro is terminated automatically because of an INPUT failure when
TAKE (or MACRO) ERROR was ON, the TAKE or (implied) DO command also fails.

Controlling the INPUT Command
You can use the SET INPUT command to control how the INPUT, MINPUT, and REINPUT

commands match character sequences, display their progress, and so forth:

SET INPUT BUFFER-LENGTH number
Changes the size of the INPUT buffer to the given number of bytes. This might be
needed for REINPUT, in case the items you are looking for are so widely separated that
they do not fit into the regular 256-byte buffer.

SET INPUT CASE { IGNORE, OBSERVE }
Tells whether the INPUT command should pay attention to alphabetic case when com-
paring its text to the characters that arrive from the communication device. The
default is IGNORE. Caseless comparison is possible only for unaccented Roman letters
(A–Z = a–z). Synonym: SET CASE { OFF, ON }.

SET INPUT ECHO { OFF, ON }
Tells whether the INPUT command should display the characters from the communica-
tion device on your screen as it receives them. The default is ON, meaning that arriv-
ing characters are displayed.

Synchronization Commands 453

SET INPUT SILENCE number
Tells C-Kermit the longest interval of silence, in seconds, that will be tolerated by the
INPUT command. If number is less than the timeout interval given in the INPUT com-
mand, and if number seconds pass without any characters at all arriving during the
INPUT timeout interval, the INPUT command fails. If number is 0, which is the default,
there is no silence constraint and only the INPUT timeout interval applies. Silence is
broken by the arrival of any character at all, including NUL.

SET INPUT TIMEOUT-ACTION { PROCEED, QUIT }
Tells whether a failure of the INPUT command to match its text within the specified
timeout interval should cause the current macro or command file to be terminated
automatically. SET INPUT TIMEOUT QUIT is equivalent to following every INPUT com-
mand with IF FAILURE END 1. The default is PROCEED, so you can use IF SUCCESS or IF

FAILURE to decide what to do after each INPUT command.

International Character Sets
Character set translation is not done by INPUT, REINPUT, and OUTPUT commands. If you
want to OUTPUT a non-ASCII character, include a backslash code with the appropriate
numeric value in the OUTPUT command, for example ‘‘output Gr\252\233e\13’’, to
send Grüße and a carriage return to a host that uses the Latin-1 alphabet. Similarly, if you
need to match international characters from the remote host in an INPUT command, you
should also use backslash codes to express their values in the character set used on the
remote host. See Tables VII-4–VII-7 for the character code values.

The PAUSE and WAIT Commands
Kermit scripts are often used to navigate through a series of devices until a final destina-
tion is reached. For example, a number is dialed; the call is answered by a port selector
that, after a dialog, connects to a terminal server for another dialog, and from there to a
front end, more dialog, and finally the desired host. Switching from device to device can
take time; if Kermit sends characters before the switching is finished, they might be lost.
You can use the PAUSE and WAIT commands to get past these periods of transition:

PAUSE [{ number, hh:mm:ss }]
Does absolutely nothing for the specified number of seconds, or until the given time.
If no number or time is given, PAUSE pauses for 1 second. If a time of day is given
that is earlier than the current time, it is taken to be tomorrow’s time. Synonym:
SLEEP. Examples:

C-Kermit>pause 10 (Pause 10 seconds)
C-Kermit>pause 14:30:00 (Until 2:30 pm)
C-Kermit>paus \%s (Use value of variable)
C-Kermit>pau (Pause 1 second)

The PAUSE command can be interrupted by typing any character on your keyboard.
Interruptions can be detected by an IF FAILURE command:

454 Script Programming / Chapter 19

echo Please wait for 20 seconds...
pause 20
if failure end 1 Please don’t touch the keyboard!
else echo Thank you for your patience.

The PAUSE command turns out to be surprisingly useful. Many a nonfunctioning
script can be made to work by inserting PAUSEs at strategic locations.

MSLEEP [{ number, hh:mm:ss }]
Sleeps (pauses) for the given number of milliseconds (thousandths of seconds), or until
the given time of day. Synonym: MPAUSE.

WAIT [{ number, hh:mm:ss } [{ CD, CTS, DSR } . . .]]
Waits up to the specified number of seconds or until the given time of day for all of
the given modem signals to appear on the currently selected (SET LINE) serial com-
munication device. If no modem signals are included, WAIT is equivalent to PAUSE. If
all the specified modem signals don’t appear within the prescribed interval, or if there
is an interruption from the keyboard, the WAIT command fails. Examples:

wait 45 cd
if fail end 1 No carrier
wait 5 dsr cts
if fail end 1 Modem not ready

When given with modem signals, the WAIT command fails immediately if C-Kermit is in
remote mode, or the communication device is not a serial device, or the underlying operat-
ing system is not capable of reporting modem signal status, or a system error occurs while
trying to obtain the modem signals.

Constructing a Login Script for VMS

Let’s look again at the procedure for logging in to a VMS computer:

C-Kermit>call hayes /dev/cua 2400 9876543
Connection successful. (Get confirmation message)
C-Kermit>connect (Connect to VMS)
<CR> (Type a carriage return)
Welcome to the Complaint Department
The more you complain, the longer you get to live.

Username: olga (See prompt, type username)
Password: (See prompt, type password)

Welcome to VMS V5.5-1

Last interactive login on Wednesday, 6-SEP-1996 23:23
Last non-interactive login on Thursday, 8-FEB-1996 20:02

$ (See system prompt)

Now let’s see if we can use the INPUT and OUTPUT commands to automate the process.
We’ll begin by writing a C-Kermit command file called VMS.KSC :

Constructing a Login Script for VMS 455

set input timeout quit ; INPUT failures are fatal
set input echo off ; Work quietly
output \13 ; Send a carriage return
input 10 Username: ; Wait 10 sec for username prompt
output olga\13 ; Send username and carriage return
input 5 Password: ; Wait 5 sec for password prompt
pause ; Don’t send password too soon
output secret\13 ; Send password and carriage return
input 100 {\13$ } ; Wait 100 sec for system prompt

This is a straightforward translation of our actions and decisions into a Kermit script
program. We don’t know yet whether it actually works, but even on the surface it has one
extremely serious flaw: the user’s password is stored in the command file.

Never store a password in a file!

This is easy to fix. Just have the script program prompt for the password

askq \%p Password: ; Make the user type the password

and then use this variable when it is needed:

input 5 Password: ; Wait 5 sec for password prompt
output \%p\13 ; Send password and carriage return

Now let’s run our script and see what happens:

C-Kermit>call hayes /dev/cua 2400 987-6543
Connection successful.
C-Kermit>take vms.ksc
Password:
?Input timed out

It didn’t work. Why not?

The first step in debugging a script program is to SET INPUT ECHO ON so we can watch it in
action. Since there was a SET INPUT ECHO OFF command in the VMS.KSC file, we simply
remove it and TAKE the file again:

C-Kermit>call hayes /dev/cua 2400 987-6543
Connection successful.
C-Kermit>take vms.ksc
Password:
Welcome to the Complaint Department
The more you complain, the longer you get to live.

Username: olga
Password:

Welcome to VMS V5.5-1

Last interactive login on Wednesday, 6-SEP-1996 23:23
Last non-interactive login on Thursday, 8-FEB-1996 20:02

456 Script Programming / Chapter 19

?Input timed out
C-Kermit>

It looks like the script program logged us in correctly, but we never got the system
prompt. Don’t panic. Scripts like this usually work. The failure of this one gives us a
chance to track down and fix a subtle problem. In this case, there was an invisible conver-
sation between VMS and your terminal, using control characters and escape sequences
that did not appear on your screen when you logged in by hand.

To view these elusive fragments, use Kermit’s SET TERMINAL DEBUG ON command to dis-
play control characters in ^X notation rather than passing them along literally to your ter-
minal emulator. In this example, we log in to a VMS computer again:

C-Kermit>set line /dev/ttyb
C-Kermit>set terminal debug on
C-Kermit>connect
(Debugging Display...)
^M^J^G^M^J^M^JWelcome to the Complaint Department^M^JThe more
you complain, the longer you get to live.^M^J^M^JUsername: O
LGA^M^J^MPassword: ^M^JYou again? Welcome to VMS V5.5
-1^M^J^M^JLast interactive login on Wednesday, 6-SEP-1996 23
:23^M^JLast non-interactive login on Thursday, 8-FEB-1996 20:
02^M^J^[Z^[[c^[[0c^M^J%SET-W-NOTSET, error modifying TWA26:^M
^J-SET-I-UNKTERM, unknown terminal type^M^J^M$ Ctrl-\C
(Back at Local System)
C-Kermit>

^M represents Carriage Return, ^J is Linefeed, and ^[is Escape (see Table VII-1 on page
593). The user typed in her username and password, and then after the ‘‘last login’’ mes-
sages were printed, the characters ^[Z appeared on the screen: Escape followed by the let-
ter Z, which is VMS’s terminal identification query. Normally, you don’t see this; your
terminal or terminal emulator intercepts it and replies automatically with its ID (see Table
18-2 on page 431). But your terminal did not respond this time because the Escape
character was translated by Kermit’s debugging display to ^[(Circumflex and Left
Bracket), so VMS timed out after several seconds and sent additional terminal ID requests
in different formats. Finally VMS gave up and complained that your terminal type was
unknown. The same thing happens when using the INPUT command, and this prompts us
to state a very important rule:

The terminal emulator is not active during an INPUT
command.

Therefore, any escape sequences that arrive do not have their normal and intended effects.
These include not only terminal identification queries, but possibly also terminal status
report requests (like ‘‘how big is your screen?’’), setting of tabs, colors, and so forth. Now
having stated this very important rule, we must state the equally important exception:

Constructing a Login Script for VMS 457

Except when the Kermit program includes its own
terminal emulator.

So, for example, Kermit/2 and Kermit 95 users can ignore the talk about escape sequences
during scripts. But let’s continue for the benefit of those who use the UNIX, VMS, and
other non-terminal-emulating versions. Why should we have to write the script differently
depending on which version of C-Kermit we have? We don’t:

IF EMULATION command
Executes the command only if this version of C-Kermit has emulation active during
the execution of scripts. And, obviously, IF NOT EMULATION executes the command if
a terminal emulator is not active.

So the debugging display has shown us all we needed to know to correct our script
program and automate our VMS logins. The new VMS.KSC file handles the terminal ID re-
quest and includes several other improvements. For example, it tries three times to get the
VMS Username: prompt in case there was noise on the communication line.

COMMENT - C-Kermit command file VMS.KSC.
;
; Log in to a VMS system
;
local \%i \%p ; Local variables
askq \%p Password: ; Make user type in password
for \%i 1 3 1 { ; Allow 3 tries to log in

output \13 ; Send a carriage return
input 5 Username: ; Wait for login prompt
if fail continue ; Try again

}

if > \%1 3 end 1 No login prompt
output olga\13 ; Send my username
input 5 Password: ; Wait for password prompt
if fail end 1 No password prompt
msleep 500 ; Not so fast!
output \%p\13 ; Send password, carriage return
xif not emulation { ; No emulator built in?

minput 10 {\27Z} {\27[c} {\27[0c} ; Get terminal ID query
if success output \27[?1c ; Send VT100 terminal ID

}
input 200 {\13$ } ; Wait for system prompt
echo Login successful.

This command file should work. Let’s try it:

C-Kermit>call hayes /dev/cua 2400 987-6543
Connection successful.
C-Kermit>take vms.ksc
Password:
Login successful.
C-Kermit>

458 Script Programming / Chapter 19

It works, but it still has some shortcomings. First, it works only for user Olga. Each user
would have to edit this file to substitute the appropriate username. And then there is the
fact that the script is a command file. Suppose you change your default directory and try
to run it again:

C-Kermit>cd articles
C-Kermit>call hayes /dev/cua 2400 987-6543
Connection successful.
C-Kermit>take vms.ksc
?No files match - vms.ksc
C-Kermit>

Kermit can’t find it. You could solve this problem by giving the full pathname of the
command file in your TAKE command. Or you could define a macro to do it:

define govms take ~olga/kermit/vms.ksc ; (UNIX)
define govms take [olga.kermit]:vms.ksc ; (VMS or OpenVMS)
define govms take c:\\kermit\\vms.ksc ; (OS/2)
define govms take :udd:olga:kermit:vms.ksc ; (AOS/VS)
etc...

But now you need different definitions of the GOVMS macro depending on which operat-
ing system you are running it from. If you keep the file in your home (login) directory,
you can use C-Kermit’s portable notation:

define govms take \v(home)vms.ksc ; (All systems)

This statement should work on any computer that C-Kermit runs on.

But you can fix the problems with this command file even more simply by rewriting it as a
macro and putting its definition in your C-Kermit initialization file. That way, it is always
ready for use, and the username and password can be passed to it as macro arguments.
The complete, real-life, production quality VMSLOGIN macro is listed in Figure 19-1.
Let’s dissect it. The first command:

if < \v(argc) 2 -
end 1 Usage: \%0 userid [password [prompt]]

checks to make sure you specified a user ID. If not, it gives you a usage message and
fails. The next command is a short WHILE loop:

while not defined \%2 {
askq \%2 { \%1’s password: }

}

If the \%2 password variable is not already defined, C-Kermit prompts for a password and
reads it from the keyboard into the \%2 variable without echoing it. A WHILE loop is used
here rather than a simple IF command to make sure the user actually types in a password.
If the user just hits the Return (Enter) key, the password prompt comes back, and the
process repeats until some nonblank characters have been entered. The next section:

Constructing a Login Script for VMS 459

set parity none ; Set communication parameters
set duplex full
set handshake none

establishes the appropriate communication parameters. Some of them happen to be iden-
tical to C-Kermit’s defaults, but we set them here deliberately to ensure the right settings
in case they have been changed. Now we can start to send and read characters. The fol-
lowing section:

in 5 Username: ; Is prompt already there?
xif fail { ; No

for \%i 1 3 1 { ; Try 3 times to get it.
out \13 ; Send carriage return
in 5 Username: ; Look for prompt
if success break ; Success, go log in

}
if > \%i 3 end 1 No Username prompt

}

looks first to see if the prompt is already waiting for us, as normally would be the case on
a network connection. If not, the script sends a carriage return and waits 5 seconds for the
Username: prompt. If the prompt does not appear within the 5-second time limit, the
process repeats up to 3 times. If the prompt does not appear after 3 tries, the VMSLOGIN

macro fails (END 1).

If the prompt does appear, we proceed to the next section:

out \%1\13 ; Send username, carriage return
inp 5 Password: ; Wait 5 sec for this prompt
if fail end 1 No password prompt
pause ; Wait a sec
out \%2\13 ; Send password

which sends the user ID and a carriage return (\%1 is the user ID and \13 is the carriage
return), waits five seconds for the Password: prompt, waits another second in case the
VMS system clears its input buffer after giving its password prompt, and then sends the
password (\%2).

Next comes the tricky bit:

xif not emulation { ; No emulator built in?
set input echo off ; Protect terminal from this
minput 10 {\27Z} {\27[c} {\27[0c} ; Get terminal ID query
xif success { ; Got one

output \27[\?1c ; Send VT100 terminal ID
in 2 \27[6n ; Screen size query?
if succ out \27[\v(rows);\v(cols)R ; Send dimensions

}
set input echo on ; Echo input again

}

If this version of C-Kermit does not have a built-in emulator to handle escape sequences

460 Script Programming / Chapter 19

__

COMMENT - VMSLOGIN macro. Arguments:
; \%1 = VMS user ID
; \%2 = Password. If password not supplied, it is prompted for.
; \%3 = System prompt. If omitted a default is supplied.
;
define VMSLOGIN {

if < \v(argc) 2 -
end 1 Usage: \%0 userid [password [prompt]]

while not defined \%2 {
askq \%2 { \%1’s password: }

}
set parity none ; Set communication parameters
set duplex full
set handshake none
set input timeout proceed ; Handle timeouts ourselves
in 5 Username: ; Is prompt already there?
xif fail { ; No.

for \%i 1 3 1 { ; Try 3 times to get it.
out \13 ; Send carriage return
in 5 Username: ; Look for prompt
if success break ; Success, go log in

}
if > \%i 3 end 1 No Username prompt

}
out \%1\13 ; Send username, carriage return
inp 5 Password: ; Wait 5 sec for this prompt
if fail end 1 No password prompt
pause ; Wait a sec
out \%2\13 ; Send password
xif not emulation { ; No emulator built in?

set input echo off ; Protect terminal from this
minput 10 {\27Z} {\27[c} {\27[0c} ; Get terminal ID query
xif success { ; Got one

output \27[\?1c ; Send VT100 terminal ID
in 2 \27[6n ; Screen size query?
if succ out \27[\v(rows);\v(cols)R ; Send dimensions

}
set input echo on ; Echo input again

}
if not def \%3 - ; If we were not given a prompt
asg \%3 {\v(prompt)} ; use the SET LOGIN PROMPT value

if not def \%3 - ; If we still don’t have a value
asg \%3 {\13$\32} ; use this one as the default.

reinp 0 \%3 ; INPUT got the prompt already?
if fail inp 60 \%3 ; No, look now.
end 0 Login successful.

}
__

Figure 19-1 The VMSLOGIN Macro

Constructing a Login Script for VMS 461

that arrive during execution of this script, the script must handle them itself. We wait up
to 10 seconds for any of several possible terminal-type queries to arrive. If one of them
does, then we respond with the escape sequence that identifies a VT100 (exercise for the
reader: use the \v(terminal) variable and SWITCH command to select a more ap-
propriate response), and then we wait to see if the VMS system will also send <ESC>[6n,
which requests the terminal to send its dimensions (newer versions of VMS are likely to
send this query; older ones do not). We respond with an escape sequence constructed
from our built-in \v(rows) and \v(cols) variables. INPUT ECHO is turned off during
this period to prevent your terminal from seeing the terminal type query, in which case it
too might respond and matters would become very confused indeed.

Finally, regardless of whether we have handled the escape sequences ourselves or the
emulator handled them for us, we wait for the system prompt:

if not def \%3 - ; If we were not given a prompt
asg \%3 {\v(prompt)} ; use the SET LOGIN PROMPT value

if not def \%3 - ; If we still don’t have a value
asg \%3 {\13$\32} ; use this one as the default

reinp 0 \%3 ; INPUT got the prompt already?
if fail inp 60 \%3 ; No, look now.
end 0 Login successful.

If the caller did not provide a special prompt when invoking VMSLOGIN, then if a
\v(prompt) value has been set by SET LOGIN PROMPT, we use that; otherwise we supply
a default: dollar sign on the left margin followed by a space ({\13$\32}).43

We check to see if the prompt is already in our INPUT buffer, which could happen in the
previous section if we were waiting for an escape sequence that did not arrive. If it’s not
there, then we wait for it to come. If it does, the VMSLOGIN macro completes successfully
(END 0). If not, it completes at the end of the timeout interval and returns a failure code
(but your connection is still there). If the 60-second wait does not allow ample time for
system messages to be displayed and your login command procedure to be executed, use a
longer timeout interval.

And so we have constructed our first login script. If the process seemed difficult to you,
don’t worry — we picked a hard case on purpose. The others will be easier. But before
writing more login scripts, let’s reflect on how they fit into the big picture. The only pre-
requisite for VMSLOGIN is that the connection is already there. VMSLOGIN doesn’t care
what kind of connection it is. Once you have defined this macro (normally by executing

43This default was arrived at by experimentation with many versions of VMS on many types of
connections, but might still need adjustment — if you have trouble with it, use the session debugging
technique described on page 456 to reveal the cause. If you see NUL characters (^@), ignore them,
because so does C-Kermit’s INPUT command.

462 Script Programming / Chapter 19

your C-Kermit initialization file), you can use it after any of the connection-establishment
macros, SERIAL, NET, TCPCALL, or CALL:

C-Kermit>serial /dev/ttyh8 19200
Connection successful.
C-Kermit>vmslogin ivan
ivan’s password:
Login successful.
C-Kermit>

If the login script succeeds, it does not enter CONNECT mode; instead, it leaves C-Kermit
waiting for the next command. This is to allow you to use your login scripts not just as an
easy way to log in, but also as a lead-in for further automated tasks, such as uploading or
downloading files.

When using VMSLOGIN in a script, test it for success and then proceed as desired:

call hayes /dev/cua 2400 987-6543
if fail end 1 Call failed
vmslogin olga
if fail end 1 Can’t log in
connect

Replace CONNECT with any other desired commands, such as the following, which upload
a file and then log out, leaving a record of the results in a transaction log.

log transactions ; Keep a record of what happened
output kermit -Qr\13 ; Start Kermit on the other computer
input 5 READY TO RECEIVE... ; Wait for READY message
fast ; Use fast transfer settings
binary ; Transfer in binary mode
send oofa.zip ; Send a file
output logout\13 ; Log out when finished
exit ; Exit from C-Kermit

In the next few sections, we will write login scripts for several other kinds of computers
and services. When we are done, we will have a versatile set of building blocks, allowing
us to make many kinds of connections to many kinds of computers and services, and they
will be completely portable among all implementations of C-Kermit and for the most part,
also to MS-DOS Kermit.

Then we will see what we can build with these blocks. But first let’s look at how to log in
to a few more common computers and services.

A UNIX Login Script 463

A UNIX Login Script

Logging in to UNIX is just like logging in to VMS, except without the escape sequence
complications. So without further ado, here is our UNIXLOGIN macro:

COMMENT - UNIXLOGIN macro. Arguments:
; \%1 = UNIX user ID
; \%2 = Password. If password not supplied, it is prompted for.
; \%3 = System prompt. If omitted a default is supplied.
;
define UNIXLOGIN {

if < \v(argc) 2 -
end 1 Usage: \%0 userid [password [prompt]]

while not defined \%2 {
askq \%2 { \%1’s password: }

}
set parity none ; Set communication parameters
set duplex full
set handshake none
set input timeout proceed ; Handle timeouts ourselves
set case on ; Case is important in UNIX
in 5 login: ; Is the prompt already there?
xif fail { ; No

for \%i 1 3 1 { ; Try 3 times to get it
out \B\13 ; Send BREAK and CR
in 5 login: ; Look for prompt
if success break ; Success, go log in

}
if > \%i 3 end 1 No login prompt

}
if not def \%3 - ; If we were not given a prompt
asg \%3 {\v(prompt)} ; use the SET LOGIN PROMPT value

if not def \%3 - ; If we still don’t have a value
asg \%3 {\10$ } ; use this one as the default

reinp 0 \%3 ; Prompt was INPUT already?
if fail inp 60 \%3 ; No, look now
end 0 Login successful.

}

Like the VMSLOGIN macro, the UNIXLOGIN macro can be used after any of the connection-
establishment macros: SERIAL, NET, TCPCALL, or CALL.

464 Script Programming / Chapter 19

An IBM Mainframe Linemode Login Script

This example shows an interactive login to an IBM mainframe running the VM/CMS
operating system over a half-duplex line-at-a-time connection:

VIRTUAL MACHINE/SYSTEM PRODUCT--CUVMB --PRESS BREAK KEY
!(Press BREAK key here)

Enter one of the following commands:
LOGON userid (Example: LOGON VMUSER1)
DIAL userid (Example: DIAL VMUSER2)
LOGOFF

.<Ctrl-Q>logon olaf
Enter password:
**************<CR>HHHHHHHHHHHHHH<CR>SSSSSSSSSSSSSS
.<Ctrl-Q>

In response to the message PRESS BREAK KEY, you have to send a BREAK signal. Then at
the dot prompt (which happens to be followed by a Ctrl-Q line turnaround character,
which you can verify using SET TERM DEBUG ON) you enter your user ID. Then you are
given a password prompt, which includes a lot of overprinted asterisks, H’s, and S’s to
cover your password (in case you are logging in from a hardcopy terminal), followed by
the dot prompt and Ctrl-Q. Once you have supplied a correct password, greeting mes-
sages are printed and you must type a Carriage Return in response to the system prompt
two times before you can begin to do any work. (At least, that’s how our local VM/CMS
system operates.) Here is a VMLINELOGIN macro that takes care of all this:

COMMENT - VMLINELOGIN macro. Arguments:
; \%1 = User ID
; \%2 = Password
;
define VMLINELOGIN {

if < \v(argc) 2 -
end 1 Usage: \%0 userid [password]

while not defined \%2 {
askq \%2 { \%1’s password: }

}
set parity mark ; Set communication parameters
set flow none
set handshake xon
set duplex half
set input timeout quit ; Don’t bother with IF FAILURE
input 10 BREAK KEY ; Look for BREAK KEY prompt
pause 1 ; Wait a second
output \B ; Send BREAK
input 10 .\17, output logon \%1\13 ; Now log in
input 10 .\17, output \%2\13 ; Send password
input 10 .\17, output \13 ; Send carriage return
input 10 .\17, output \13 ; Send another one
echo Login successful.

}

An IBM Mainframe Fullscreen Login Script 465

Once we have made sure we have the user ID and password, we set the IBM mainframe
linemode communication parameters, which are very different from Kermit’s defaults.
Then we send the BREAK signal and the required material in response to each of four
identical prompts (period followed by Control-Q).

For variety as well as compactness, we have omitted the IF FAILURE commands after each
INPUT command. Instead, we have simply SET INPUT TIMEOUT QUIT to force the entire
macro to fail automatically if any of its INPUT commands failed, in which case the
FAILURE status is returned. And we also omitted the business about the custom prompt,
since, to our knowledge, it is always period. If your mainframe is different, you should be
able to alter the script without difficulty. Like the other login macros, the VMLINELOGIN

macro can be used in conjunction with any of the connection-establishment macros.

An IBM Mainframe Fullscreen Login Script

The more popular style of communication with IBM mainframes is called block mode or
full screen, in which the IBM mainframe believes it is connected to a 3270-style terminal,
but in reality the connection goes through a protocol converter (such as an IBM 7171 or
3174 AEA) that converts the 3270 screens to your ASCII terminal type, such as VT100.
Protocol converters generally use full duplex communication, Xon/Xoff flow control, and
even parity.

For the screen to be painted correctly, the protocol emulator must know your terminal
type. In general the procedure is to type a carriage return (for speed recognition); in
response, the protocol emulator prompts you for a terminal type with a message like this:

ENTER TERMINAL TYPE:

and you respond with a terminal type, such as:

ENTER TERMINAL TYPE: vt-100

Then a login screen like the one in Figure 19-2 is displayed. The mainframe login screen
contains fields for the ID and password, which you must fill in. You should send this in-
formation only after the screen is completely painted and the mainframe is waiting for in-
put. This is indicated by the word RUNNING somewhere near the lower right corner, as
shown in the figure.

When the RUNNING message appears in the lower right, you may type your user ID and
password, separated by a tab character. As in the linemode example, a couple of carriage
returns are needed after that. The VMFULLOGIN macro that automates the process appears
on the next page.

466 Script Programming / Chapter 19

VIRTUAL MACHINE/SYSTEM PRODUCT

CCCCCC UU UU VV VV MM MM BBBBBBB
CCCCCCCC UU UU VV VV MMM MMM BBBBBBBB
CC CC UU UU VV VV MMMM MMMM BB BB
CC UU UU VV VV MM MMMM MM BB BB
CC UU UU VV VV MM MM MM BBBBBBB
CC UU UU VV VV MM MM BB BB
CC CC UU UU VV VV MM MM BB BB
CCCCCCCC UUUUUUUU VVVV MM MM BBBBBBBB
CCCCCC UUUUUU VV MM MM BBBBBBB

C O L U M B I A U N I V E R S I T Y
Center for Computing Activities

Fill in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)
USERID ===>
PASSWORD ===>

COMMAND ===>
RUNNING CUVMB

Figure 19-2 Sample IBM 3270 Login Screen

COMMENT - VMFULLOGIN macro. Arguments:
; \%1 = User ID
; \%2 = Password
;
define VMFULLOGIN {

if < \v(argc) 2 -
end 1 Usage: \%0 userid [password]

while not defined \%2 {
askq \%2 { \%1’s password: }

}
set input timeout quit ; Quit if INPUT fails
set parity even ; Set communication parameters
set duplex full
set handshake none
set flow xon/xoff
out \13 ; Send carriage return
inp 5 TERMINAL TYPE: ; Get terminal-type prompt
out vt-100\13 ; Just send "vt-100"
inp 20 RUNNING ; Get RUNNING message
pau 1 ; Wait 1 second
out \%1\9\%2\13 ; Send user ID, tab, password
out \13\13 ; Two more carriage returns
echo Login successful.

}

Login Scripts for Commercial Data Services 467

Login Scripts for Commercial Data Services

A common use of communication software is to log in to commercial information services
like CompuServe, MCI Mail, or Dow Jones News/Retrieval. In many cases, the connec-
tion and login procedure is similar to that for UNIX: dial the phone number, type a car-
riage return, and then supply your user ID and password in response to the prompts. For
example, a CompuServe login might look like this:

C-Kermit>set modem hayes
C-Kermit>set line /dev/ttya
C-Kermit>set speed 1200
C-Kermit>dial 5551212
Connection completed.
C-Kermit>connect
Type CR here
01NMS

Host Name: CIS
User ID: 00000,0000
Password:

and then you get a greeting, a menu, and the prompt, ending with:

CompuServe Information Service

The login script is straightforward:

COMMENT - CISLOGIN macro. Arguments:
; \%1 = CompuServe User ID
; \%2 = Password
; \%3 = Prompt
;
define CISLOGIN {

if < \v(argc) 2 -
end 1 Usage: \%0 userid [password [prompt]]

while not defined \%2 {
askq \%2 { \%1’s password: }

}

set terminal byteszie 7 ; No 8-bit characters
set input timeout quit ; Skip the IF FAILUREs
output \13 ; Send initial carriage return
input 5 Host Name: ; Look for Host Name prompt
output cis\13 ; Send "cis" and carriage return
input 5 User ID: ; Look for User ID prompt
output \%1\13 ; Send ID and carriage return
input Password: ; Look for Password prompt
output \%2\13 ; Send password and CR
if not def \%3 asg \%3 \v(prompt)
if not def \%3 asg \%3 {CompuServe Information Service}
input 30 \%3
echo
echo Login successful.

}

468 Script Programming / Chapter 19

Sometimes it is preferable to go through a public data network to access the desired ser-
vice, rather than dialing it directly. In the following example, we dial a SprintNet node
and tell it to connect us to Dow Jones News/Retrieval.

C-Kermit>set modem type hayes (Choose modem type)
C-Kermit>set line /dev/ttya (Communication device)
C-Kermit>set speed 1200 (Communication speed)
C-Kermit>dial 5551212 (Dial the fake number)
Connection completed. (Call is answered)
C-Kermit>connect (Connect to SprintNet)
Type CR here
Type CR here
TELENET (SprintNet greeting)
212 517A

TERMINAL=D1 (Enter terminal type)
@c dow (Connect to Dow)

DOW CONNECTED (Dow greeting)

WHAT SERVICE PLEASE???? (Dow service prompt)
djnr (Enter "djnr")
ENTER PASSWORD (Password prompt)
WWWWWWWWW<CR>MMMMMMMMM<CR>@@@@@@@@@ <Ctrl-Q> <Ctrl-Q>

As you can see, the procedure is to type two carriage returns, get a greeting and the
TERMINAL= prompt, enter D1, then get the SprintNet @ prompt. At this point, you tell it to
connect (c) you to ‘‘dow’’. Once you have been put through, Dow asks you which service
you want. You reply ‘‘djnr’’ (Dow Jones News/Retrieval) and then supply your password
in response to a rather tricky prompt, which ends with two Ctrl-Q’s separated by some
spaces. This is quite different from our other examples, because we have to make what
amounts to two calls, rather than one. The first call is to SprintNet, and the second call is
from SprintNet to DJNR. Naturally, you can also call other hosts and services from
SprintNet, and it is conceivable that DJNR can also be reached in other ways in addition
to SprintNet. So let’s separate the two functions. First, we write the macro that asks
SprintNet to call a given service:

COMMENT - SPRINT macro. Arguments:
; \%1 = Service name or address
;
define SPRINT {

if < \v(argc) 2 end 1 Usage: \%0 service
set input timeout proceed ; Use IF FAILURE
output \13\13 ; Send two CRs
input 10 TERMINAL= ; Get TERMINAL= prompt
if fail end 1 No terminal prompt ; Fail if it doesn’t come
out D1\13 ; Send terminal type, CR
inp 10 @ ; Look for at-sign prompt
if fail end 1 No atsign prompt ; Fail if it doesn’t come
output c \%1\13 ; Connect to service
input 10 CONNECTED ; Look for confirmation
if fail end 1 Can’t access \%1 from SprintNet

}

Login Scripts for Commercial Data Services 469

Here is the Dow login macro, which can be used after the service has been reached, inde-
pendent of the communication method:

COMMENT - DOWLOGIN macro. Arguments:
; \%1 = Dow Jones Password
;
define DOWLOGIN {

while not defined \%1 { ; Get password
askq \%1 { Dow Jones password: }

}
set input timeout proceed
input 20 SERVICE PLEASE\?\?\?\? ; Look for Dow prompt
if fail end 1 No service prompt
out djnr\13 ; Select DJNR
input 10 @@@@ ; Get password prompt
if fail end 1 No password prompt
pause 1 ; Wait a second, then...
output \%1\13 ; send password and CR
if not def \%3 asg \%3 \v(prompt)
if not def \%3 asg \%3 ENTER QUERY
input 30 \%3 ; Get DJNR query prompt
if fail end 1 No main query prompt
pause 1
echo Login successful.

}

The PAUSE commands toward the end of the script allow time for the invisible characters
(control characters and spaces) to arrive before the password is sent.

Here is how we use our macros to access DJNR via dialup:

C-Kermit>call hayes /dev/tty01 2400 7418100
C-Kermit>sprint dow
C-Kermit>dowlogin
Dow Jones password:

But suppose you want to use only one macro for logging in to Dow Jones through Sprint-
Net, rather than two. Easy. Add this definition to your C-Kermit initialization file:

define DJNRSPRINT sprint dow, if success dowlogin

Finally, let’s consider hosts or services that don’t require any login at all. For these, we
define a special macro that does nothing:

COMMENT - NOLOGIN macro.
;
define NOLOGIN comment

What were these last two items for? Keep reading.

470 Script Programming / Chapter 19

A Directory of Services

❍ ❍ ❍ ❍

The material in this section might be coals-to-Newcastle for users of Kermit 95,
Kermit/2, or other Kermit programs that have graphical connections databases.
But still worth reading by serious script writers (lighthearted ones too), since the
principles and examples here can also be applied elsewhere.

C-Kermit’s services directory is described in Chapter 7, where we confess it is im-
plemented entirely by macros, and promise to show you how it’s done. So here goes.
Let’s look again at our sample services directory file:

XXVMA vmlinelogin olaf serial /dev/ttyh8 9600
XXVMB vmfullogin olaf call hayes /dev/cua 2400 765-4321
CUMIN vmslogin olaf net tcp/ip cumin
WATSUN unixlogin olaf net tcp/ip watsun.cc.columbia.edu
COMPUSERVE cislogin 000,0000 call hayes /dev/cua 2400 876-5432
DJNR djnrsprint xxxx call hayes /dev/cua 2400 741-8100
GEOGRAPHY nologin xxxx net tcp/ip 141.212.99.9:3000
CONGRESS nologin xxxx net tcp/ip dra.com

The file has one line for each service, and each line contains four items:

1. The name of the computer or service

2. The name of the macro used to log in to it

3. Your user ID on the computer or service

4. The name of the macro used to establish a connection to the computer or service, fol-
lowed by its arguments

The items in each line are separated by one or more spaces or tabs. Whenever you want to
add, delete, or modify a service, just use a text editor to make the changes. Our job now is
to design a macro that lets you access any of these services by name. We will call it
ACCESS and use it like this:

C-Kermit>access compuserve
C-Kermit>access watsun
C-Kermit>access djnrsprint

How might the ACCESS macro work? The straightforward, but less efficient, way would
be for it to read the services file every time you use it, searching for the service name.
Let’s try a slightly more complicated but more efficient approach. We will read the ser-
vices file only once, copying it to an internal array that can be searched more quickly.
First we add the following commands to the C-Kermit initialization file. These commands

A Directory of Services 471

tell Kermit to read the services directory file into an array \&d[] whenever you start
C-Kermit. Let us assume that the C-Kermit initialization file has already assigned the file
specification of the services directory to the _servicedir variable:

xif not exist \m(_servicedir) forward connection
echo { Services directory is \m(_servicedir)}

def MAX_SVCS 200 ; Adjust this if necessary
define _sd 0 ; Assume no services directory
open read \m(_servicedir) ; Try to open services directory
xif success {

declare \&d[\m(MAX_SVCS)] ; Open - declare directory array
for \%i 1 \m(MAX_SVCS) 1 { ; Read the lines into the array

read \&d[\%i]
if fail break

}
close read
xif > \%i \m(MAX_SVCS) {

echo Too many entries in services directory
echo { Maximum is \m(MAX_SVCS). To allow more,}
echo { change definition of MAX_SVCS in \v(cmdfile).}
echo { Services directory disabled.}

} else {
asg \&d[0] \feval(\%i - 1)
define _sd 1

}
}

In this example, we’re allowing up to 200 entries. If you want to have more, just change
200 to a larger number in the MAX_SVCS definition. Notice that the number of entries ac-
tually found in the directory is stored in the ‘‘zeroth’’ element of the array, \&d[0].

Next, we define a macro, called LIST, to list the services directory. In the simple form
shown here, it prints all the entries. A somewhat more flexible version, which also ac-
cepts a service name and lists only that entry, appears in the standard CKERMIT.INI file.
Here is the simple version:

define LIST {
echo \&d[0] items in directory:
for \%i 1 \&d[0] 1 { echo \&d[\%i] }

Which you can use like this:

C-Kermit>list
8 items in directory:
XXVMA vmlinelogin olaf serial /dev/ttyh8 9600
XXVMB vmfullogin olaf call hayes /dev/cua 2400 765-4321
CUMIN vmslogin olaf net tcp/ip cumin
WATSUN unixlogin olaf net tcp/ip watsun.cc.columbia.edu
COMPUSERVE cislogin 000,0000 call hayes /dev/cua 2400 876-5432
DJNR djnrsprint xxxx call hayes /dev/cua 2400 741-8100
GEOGRAPHY nologin xxxx net tcp/ip 141.212.99.9:3000
CONGRESS nologin xxxx net tcp/ip dra.com

472 Script Programming / Chapter 19

Now we define the ACCESS macro. Its two arguments are a service name and a password:

COMMENT - ACCESS macro. Arguments:
; 1 = service name
; 2 = password (optional)
;
def ACCESS {

if not defined \%1 end 1 access what? ; Check service
find \%1 ; Look it up
if success doaccess {\%2} \v(return) ; OK, try it
else end 1 "\%1" not in services directory ; Not found
if fail end 1 ; DOACCESS failed
xif eq \v(cmdlevel) 1 {

echo
echo ACCESS: Login succeeded - CONNECTing...
show escape
output \13
connect /quietly

}
}

The ACCESS macro uses two other macros, which we define in a moment. The FIND macro
looks up the service name in the service directory. If it is found, the entire directory entry
— that is, the line that starts with the desired name — is returned and the DOACCESS

macro is invoked with the password and the directory entry. Otherwise the ACCESS macro
fails (END 1).

For security reasons, the service directory does not contain passwords. The ACCESS macro
is designed to accept a password as a second argument after the service name:

C-Kermit>access compuserve mypassword
C-Kermit>acces djnr mypassword
C-Kermit>acc watsun mypassword

Notice that the service names can be abbreviated and that passwords echo when you type
them on the ACCESS command line. You can also omit your password:

C-Kermit>access compu
C-Kermit>acces djnr
C-Kermit>acc wat

If you omit the password, the LOGIN macro prompts you for it and it does not echo when
you type it:

C-Kermit>access watsun
olaf’s password:

When you omit the password, the \%2 argument is undefined, but that’s OK because Ker-
mit lets an argument be passed with a null (empty) value by enclosing it in braces.

if success doaccess {\%2} \v(return)

The second argument, \v(return), is expanded before it is passed to DOACCESS, so al-
though it looks like one argument here, DOACCESS sees a separate argument for each word
in the directory entry.

A Directory of Services 473

Here is the FIND macro. It searches the \&d[] array, which contains the services direc-
tory, one line per array element, and returns the first matching line, or if no matches are
found, the null (empty) string:

COMMENT - FIND macro. Argument:
; \%1 = Service name to look for in services directory
;
def FIND {

set case off
for \%i 1 \&d[0] 1 {

if eq {\%1} {\fsubstr(\&d[\%i],1,\flen(\%1))} break
}
if not > \%i \&d[0] return \&d[\%i]

}

The command:

if eq {\%1} {\fsubstr(\&d[\%i],1,\flen(\%1))} break

compares the name that you typed with a substring of each services-directory entry, start-
ing at the first character, with the same number of characters as you typed. If they are
equal (except for the case of the letters), the BREAK command terminates the FOR loop and
FIND RETURNs the entire line of text from the directory.

Finally, here is DOACCESS. Its purpose is simply to pick apart the words from the services
directory entry into separate macro parameters and call the connection establishment and
login macros with them. It is called with a password followed by the services directory
entry, so the password is argument \%1, the service name is \%2, the login macro name is
\%3, the user ID is \%4, the connection-establishment macro name is \%5, and the
connection-establishment macro arguments are \%6 through \%9:

def SPLIT asg _word1 \%1, asg _word2 \%2

def DOACCESS { ; (Used internally by ACCESS macro)
do \%5 \%6 \%7 \%8 \%9 ; Do the connection macro
if fail end 1
split \%3 ; Get words from \%3
asg \%3 \m(_word1) ; Login macro name
asg \%2 \m(_word2) ; Prompt
do \%3 \%4 {\%1} \%2 ; Macro, userid, password, prompt

}

The first command:

do \%5 \%6 \%7 \%8 \%9

executes the connection-establishment macro from the services directory entry, together
with its arguments. \%5 is the name of the macro, and the rest are the arguments.

The next part is a bit tricky. Recall from Chapter 7 that you can ‘‘bundle’’ a prompt with
the service name by enclosing the two in braces. This allows you to specify (or not
specify) a nonstandard prompt for a particular service. Now you know what the curly

474 Script Programming / Chapter 19

braces do: they make the two words into a single macro argument, \%3 in this case. The
easiest way to pick a string apart into its component words is to call a macro using the
variable containing the string as its argument. We use the SPLIT macro for this. Now we
have all the arguments needed for the login macro, so we can finally call it:

do \%3 \%4 {\%1} \%2

\%3 is the macro name and the others are its arguments: (\%4) is the user name and \%1 is
the password, if any. The password argument is enclosed in braces in case there is no
password, in which case the login macro prompts you for it. In the DO command above, if
\%1 were empty and there were no braces around it, the next argument, \%2 (if any),
would slide to the left and become the password, and we don’t want that!

So much for automated connection establishment — now on to data transfer.

Unattended File Transfer

Establishing the connection and logging in is just the beginning of the story. Once logged
in to a remote computer or service, you can program Kermit to do automatically just about
anything that you would do by hand. For example, let’s dial up a remote VMS computer,
start Kermit there, send a file to it, then log out and hang up. We can easily construct a
command file out of the building blocks from previous sections.

access cumin ; Access a VMS computer
set input timeout quit
output kermit\13 ; Run C-Kermit on VMS
input 5 C-Kermit> ; Get its prompt
out server\13 ; Put it in server mode
input 5 READY TO SERVE... ; Get READY message
send oofa.txt ; Send the file
bye ; Log out the VMS job
exit ; Finished

The first line makes the connection and logs you in. The ACCESS macro prompts you for
the password since one was not supplied as an argument.

Nightly Polling
Let’s construct a more ambitious example, in which we call up all our franchises at night,
get their daily reports and inventories, and send them our new recipes. Using the building
blocks we have already constructed, this is a relatively simple matter. We’ll use our ser-
vices directory for this purpose, which has already been read into memory by the
C-Kermit initialization file. The list of franchises to be accessed is in another file, which
we will call FRANCHISES.TXT, and which might look like this:

Anaheim
Boston
Milano

Unattended File Transfer 475

Moscow
Nashville
Paris
Stuttgart
Tokyo

Each name in this list corresponds to a services directory entry, for example:

Anaheim vmslogin hq call hayes /dev/cua 2400 1-213-555-0123
Boston unixlogin hq call telebit /dev/cub 19200 1-617-555-1234

Here is the script program, written as a command file. Let’s name it NIGHTLY.KSC:
__

open read franchises.txt ; Open the list of franchises
if error end 1 Can’t open franchises.txt
open write nightly.log ; Keep a record of what happens
if error end 1 Can’t open nightly.log
write file Polling franchises: \v(date) \v(time)

while true { ; Loop for each franchise
read line ; Read a franchise name
if fail break ; No more left, we’re done
write file \v(time): calling line
access line ; Access the franchise
xif fail { ; Check for failure

write file Can’t access \m(line).
continue

}
output kermit\13 ; Start Kermit there
input 10 > ; Get its prompt
output server\13 ; Put it in server mode
pause 2 ; Give it time to get ready
get inventory ; Get the inventory file
xif success {

rename inventory inventory.\m(line)
writeln file \v(time): got inventory.\m(line)

} else {
writeln file \v(time): can’t get inventory

}
send recipes ; Send the new recipes
if fail writeln file \v(time): can’t send recipes
else writeln file \v(time): sent recipes ok
bye ; Log out from the franchise

}
writeln file \v(time): done ; Make final log entry
close write ; Close the log
end 0 ; Succeeded
__

To poll the franchises, just start C-Kermit and tell it to TAKE this file:

$ kermit (Start Kermit)
C-Kermit>take nightly.ksc (TAKE the command file)

476 Script Programming / Chapter 19

Passwords and Security versus Automation

The problem with NIGHTLY.KSC is that it prompts you for the password of each franchise
when the franchise is dialed, which could keep you sitting at the terminal all night! This
difficulty could be solved easily by including all of the franchise passwords in the
FRANCHISES.TXT file, along with the franchise names. But passwords in files pose an
unacceptable security risk.

There is no perfect solution to this problem. One approach would be for NIGHTLY.KSC to
read the entire FRANCHISES.TXT file into an array before it begins calling the franchises.
As part of this process, it prompts you for each franchise’s password and stores it in a
parallel array, as in this example (which allows up to 50 franchises):

open read franchises.txt ; The list of franchises
if error end 1 Can’t open franchises.txt
define n_franchises 50 ; Change if you need more
declare \&f[\m(n_franchises)] ; Array for franchise names
declare \&p[\m(n_franchises)] ; Array for passwords
for \%i 1 \m(n_franchises) 1 {

read \&f[\%i]
if fail break
askq \&p[\%i] Password for \&f[\%i]:

}
close read ; Close the file
decrement \%i ; Number of entries
assign \&f[0] \%i ; Record it here

Notice the use of ASKQ to request the passwords without echoing them. It is unsafe to
echo passwords; someone might be looking over your shoulder.

Now you can change the main loop of NIGHTLY.KSC into a counted loop, from 1 to
\&f[0], and when you ACCESS a franchise, you can provide both the service name and
the password:

access \&f[\%i] \&p[\%i]

There are drawbacks to this approach. First, you still have to type the whole list of
passwords every night, a tedious and error-prone process, especially when they don’t
echo! If you make a typographical error in a franchise password, NIGHTLY.KSC will not be
able to access the franchise and your business can suffer.

Second, we have not really removed the security risk. The passwords are in an array in
Kermit’s memory for as long as NIGHTLY.KSC is running. A computer-literate burglar
could break in after you leave, interrupt Kermit, and have it display the two arrays with a
few simple keystrokes:

Ctrl-C ^C...
C-Kermit>for \%i 1 \&f[0] 1 { echo \&f[\%i]: \&p[\%i] }

Passwords and Security versus Automation 477

Encryption
A second method is to store the franchise names and passwords together in the
FRANCHISES.TXT file, but to encrypt the file with an encryption key known only to you.
First, create the file in plain text. Each line has the name of a franchise (corresponding to
a name in your services directory) and the password, separated by one or more spaces.
Suppose your FRANCHISES.TXT file now looks like this:

Anaheim goofy
Boston beans
Milano bongiorno
Moscow priwjet
Nashville howdy
Paris pernod
Stuttgart gruessgott
Tokyo saki

If it does, you’re already in trouble! Before you start worrying about how to make your
C-Kermit script more secure, rush to the phone, call up your franchises, and have them fix
their passwords to be harder to guess. Random combinations of upper- and lowercase let-
ters and digits are recommended, as well as punctuation marks if the system allows them.

The rest of this section is aimed at UNIX users. We’d have said this earlier, but we
wanted you to read about passwords first. This is (still) the 90s!

Now that your passwords are not easily guessable, encrypt the FRANCHISES.TXT file
with the UNIX crypt program and then remove the plain-text version:

$ crypt keyword < franchises.txt > franchises.x
$ rm franchises.txt (Delete the original)
$ mv franchises.x franchises.txt (Rename)

The keyword is your encryption key, a string of characters that, like a password, should
not be easily guessable. If you want to decrypt the file, just give the same crypt com-
mand again with the same keyword. For example, to view the file on your screen:

$ crypt keyword < franchises.txt

Now modify NIGHTLY.KSC to prompt you for the encryption key and then read the
encrypted file through the crypt program. Now you have to type in only one password in-
stead of many. This mitigates the consequences of both error and theft. Note that the key
stays in Kermit’s memory for only a brief instant, presumably while you are still present
and en garde:

local key
askq key Encryption key: ; Ask for key
open !read crypt \m(key) < franchises.txt ; Read file through crypt
if fail end 1 Can’t decrypt franchises.txt
undefine key ; Erase key from memory

478 Script Programming / Chapter 19

But what if you make a typographical error when entering the key? The entire nightly
polling run would be wasted. You can avoid this by adding commands to check the key
by displaying the first few lines of the FRANCHISES.TXT file:

while true {
askq key { Encryption key: } ; Ask for key
run crypt \m(key) < franchises.txt | head ; Display some lines
getok { Is this correct\? } ; Make sure key is correct
if success break ; If not ask for key again

}

We get past this loop only when a working encryption key has been entered.

Next we modify NIGHTLY.KSC to make it as secure as possible. All the commands that
deal with login passwords are moved into a macro, and we keep the login password in a
temporary variable local to the macro. Should burglars interrupt C-Kermit, all local tem-
porary variables are automatically erased from memory before the prompt returns.

Here is the secure version of the NIGHTLY.KSC file, for UNIX only.
__

COMMENT - File NIGHTLY.KSC: nightly franchise-polling program.

local franchise line key ; Local variables

define WLOG - ; Macro for timestamped log entry
writeln file \v(date) \v(time): \%1

define GETNAME - ; Macro to extract service name
assign franchise \%1 ; from franchises.txt entry

open write \v(ndate).log ; Start a log file
if fail end 1 Can’t write \v(ndate).log

while true {
askq key { Encryption key: } ; Ask for key
if not def key continue ; Must be nonempty
run crypt \m(key) < franchises.txt | head ; Display some lines
getok { Is this correct\? } ; Do they look OK?
if success break ; Or get key again

}

; We have the encryption key. Open and read the franchises file.
;
open !read crypt \m(key) < franchises.txt ; Read & decrypt file
assign key \v(status) ; Get status, erase key
xif \m(key) { ; Check status

wlog Can’t read franchises.txt
end 1 Can’t read franchises.txt

}
wlog Polling franchises: \v(date) ; OK - proceed

Passwords and Security versus Automation 479

while true { ; Loop for each franchise
read line ; Read a line
if fail break ; No more - done
getname \m(line) ; Get the service name
wlog {calling \m(franchise)} ; Make a log entry
access \m(line) ; ACCESS name password
xif fail { ; Failed - make log entry

wlog {Can’t access \m(franchise)}
continue ; Go on to next one

}
output kermit\13 ; Start Kermit there
input 10 Kermit> ; Get its prompt
output server\13 ; Put it in server mode
pause 2 ; Give it time to get ready
get inventory ; Get the inventory file
xif success { -

rename inventory inventory.\m(franchise)
wlog {got inventory.\m(franchise)}

} else {
wlog {can’t get inventory from \m(franchise)}

}
send recipes ; Send the new recipes
if fail wlog {recipes NOT sent to \m(franchise)}
else wlog {recipes sent to \m(franchise)}
bye ; Log out from the franchise

}
wlog Done ; Make final log entry
close write ; Close the log
end 0 ; Succeeded
__

To run this secure version of NIGHTLY.KSC:

C-Kermit>take nightly.ksc
Encryption key:
Anaheim u03gxz2p
Boston n2yU_6et9J
...
Is this correct? yes

Remember, no computer program is totally secure; not our script program, not C-Kermit
itself, not the underlying operating system or its utilities, and certainly not the com-
munications path. While it is always better to take precautions like those we have used
here, it is also wise not to have too much faith in them.

Nevertheless, look what we’ve accomplished: we have a table-driven, consistent, simple,
automatic way of contacting a series of sites, independent of their location, the communi-
cation method, or the type of computer and operating system at each site. Milano might
be an IBM mainframe contacted by dialing up a 7171 protocol converter; Tokyo might be
a UNIX server on the Internet; Stuttgart could be a VMS system reached via X.25. The
services directory smooths over all the differences and hides the details; it codifies the
methods and procedures for each kind of connection to each kind of host for a net gain in
both convenience and reliability.

480 Script Programming / Chapter 19

Automatic File Transfer Recovery

As a practical example of how to use our script building blocks, let’s write a script that
really, really sends a file. If the connection is broken before the transfer is complete, we
make the connection again and resume the transfer from the point of failure, using the
RESEND command described in Chapter 9.

COMMENT - DELIVER macro:
; \%1 = service name
; \%2 = filename (can be wild)
; \%3 = Maximum tries allowed (default = 1000)

define DELIVER {
local \%i \%p ; Local variables
set input timeout proceed
if not def \%3 def \%3 1000
while not def \%p {

askq \%p { Password for \%1 }
}
set file type binary ; Transfer mode must be binary
for \%i 1 \%3 1 {

if > \%1 1 { ; If not the first try
hangup ; hang up and print message
echo CONNECTION BROKEN.
Echo Reconnecting...

}
access \%1 \%p ; Make the connection and log in
if fail continue ; Keep trying
out kermit\13 ; Start Kermit on remote system
input 10 > ; Wait for prompt
out receive\13 ; Tell it to RECEIVE
input 10 KERMIT READY ; Wait for READY message
pause 1 ; Plus a second for safety
resend \%2 ; RESEND the file(s)
if success break

}
if > \%1 \%3 -
end 1 FAILED after \%3 tries.

output logout\13 ; Success, log out
pause 5 ; Give it time...
hangup ; Hang up
end 0 \%2 delivered after \%i tries

}

The script might need a minor adjustments in the the syntax for running Kermit on the
remote system and logging out from it, but in most cases it should work ‘‘out of the box.’’
Since it’s written as a macro, you can use it for all different hosts, files, and connection
methods:

C-Kermit>deliver school homework.zip
C-Kermit>deliver tokyo slideshow.gif

Calling an Alphanumeric Pager 481

Calling an Alphanumeric Pager

We have said that you can write a C-Kermit script to do anything that you would have
done with C-Kermit by hand. In our final example, we show how to write a script to do
something that very few people could do by hand: execute a simple protocol involving
framed and checksummed messages. We do this in the ultimately practical framework of
one of our most frequently asked questions: ‘‘How do I use Kermit to send a message to
an alphanumeric pager?’’ (Numeric pagers are much simpler; see page 368).

Alphanumeric pagers differ from numeric ones by using computer character codes rather
than DTMF touch-tones to represent data, and requiring a dialog between your computer
and the paging station. The dialog follows prearranged sequences and formats, such as the
Telocator Alphanumeric Protocol (TAP)44.

In this example, we implement a useful TAP subset for sending a single-line message.
Our TAPMSG macro is like our login macros; it expects the connection to already be com-
plete. Following the TAP specification, we send carriage returns (CR, ASCII 13) until we
get an ‘‘ID=’’ prompt, then we request an ‘‘automatic-mode’’ session by sending an Es-
cape (ESC, ASCII 27) and then ‘‘PG1’’ and then a carriage return (\13). In response, we
can receive an acknowledgement (ACK, ASCII 6), a negative acknowledgement (NAK,
ASCII 21), or an error message terminated by ESC and end-of-text (EOT, ASCII 3),
which terminates the session. If a NAK comes, we retransmit our message.

Once we have an ACK, we wait for the message go-ahead signal, ESC [p. Then we
send the message, which consists of Start-of-text (STX, ASCII 2), the pager ID of the des-
tination pager, a carriage return, the message itself, another carriage return, then ETX,
then a checksum of all the preceding characters in the message, and finally a carriage
return. The checksum is simply the sum of the ASCII values of all the characters in the
message, which is easily obtained by using C-Kermit’s built-in \fchecksum() function,
broken into three 4-bit segments and changed into printable characters by adding 48 to
each segment, producing ASCII characters in the range 48-63 (see Table VII-1).

Then we wait for the response to our message, one of the same ones described previously,
handled in the same way. If we get an ACK, we ‘‘sign off’’ by sending End-of-Text
(EOT, ASCII 4), wait for a confirmation, and then both sides hang up. All messages
(ACK, NAK, EOT, etc.) have a carriage return added to them. A very simple protocol.

44The TAP specification is available from PCIA, the Personal Communications Industry Association, 500
Montgomery Street, Suite 700, Alexandria, VA 22314-1561, USA; phone +1 (703) 739-0300; Web:
http://www.pcia.com/.

482 Script Programming / Chapter 19

Our TAPMSG macro is shown in Figure 19-3 on page 483. It works as we have described,
and also handles all sorts of errors, avoids infinite loops, and in general illustrates many of
the programming constructions and techniques we have discussed in the past hundred
pages or so.

To use the TAPMSG macro, place a call to your paging service using the communications
parameters it specifies, then invoke TAPMSG with two arguments: the pager ID and the
message. The pager ID (according to most vendor recommendations) should contain no
punctuation or spaces. The message should fit on one line and must be enclosed in braces
if it contains any spaces. Example:

C-Kermit>call usr com1 2400 5554321
Call complete.
C-Kermit>set parity even
C-Kermit>tapmsg 12345678 {Please call 9876543 - Urgent!}
C-Kermit>

If you always use the same paging service, port, modem, etc, then of course you can turn
the entire process into a macro:

define APAGE {
set modem type usr ; I have a USR modem
set port com1 ; on COM1
set speed 2400 ; Must use 2400 bps
set parity even ; and even parity
set flow xon/xoff ; and Xon/Xoff flow control
set modem flow none ; end-to-end, not local
set dial retries 10 ; Allow 10 redials
dial 5554321 ; Call the pager service
if success - ; If the call is answered

tapmsg \%1 {\%2} ; Send the page
else end 1 Page failed. ; otherwise fail

}

If you forget to put braces around the text message, only the first word is sent. You can
get around this, if you are willing to limit the message to 8 words. In the APAGE macro
definition, change:

tapmsg \%1 {\%2}

to:

assign \%2 \%2 \%3 \%4 \%5 \%6 \%7 \%8 \%9
tapmsg \%1 {\ftrim(\%2)}

Here we redefine the \%2 argument to be all of the arguments from \%2 to \%9, separated
by spaces. Then when we send the text, we trim any trailing spaces from the end, in case
there were fewer than 8 words of text:

C-Kermit>apage 87654321 Go to Thirty-Third and Third

Calling an Alphanumeric Pager 483

__

COMMENT- TAPMSG - Send a one-line alpha page using TAP
; \%1 = Pager ID
; \%2 = Message
;
def TAPMSG {

local \%i \%m \%s block ; Local variables
asg \%m \2\%1\13\%2\13\3 ; <STX>ID<CR>msg<CR><ETX>
asg \%s \fchecksum(\%m) ; Get checksum and make block
asg block \%m\fchar(\fmod(\%s/256,16)+48)-

\fchar(\fmod(\%s/16,16)+48)-
\fchar(\fmod(\%s,16)+48)\13 ; Checksummed TAP block

for \%i 1 3 1 { ; Try 3 times to get prompt
output \13 ; Send <CR>
input 3 ID= ; Wait for "ID="
if success break

}
if > \%i 3 end 1 No prompt
for \%i 1 3 1 { ; Send <ESC>PG1, get <ACK>

msleep 500
output \{27}PG1\13
minput 3 {\6\13} {\21\13} {\27\4\13}
switch \v(minput) {
:0, continue ; Timeout
:1, break ; <ACK>
:2, continue ; <NAK>
:3, end 1 Forced disconnect ; Fatal error

}
break

}
if > \%i 3 end 1 Timed out or unknown response
input 5 \27[p\13 ; Wait for go-ahead
if fail end 1 No go-ahead ; Didn’t get it
for \%i 1 3 1 { ; Try three times

msleep 500
output \m(block) ; Send block
minput 5 {\6\13} {\21\13} {\13\27\4\13} {\30\13}
switch \v(minput) { ; Get response
:0, continue ; Timeout
:1, break ; <ACK> - success
:2, continue ; <NAK>
:3, end 1 Forced disconnect
:4, end 1 Illegal message

}
output \4\13 ; Sign off with <EOT>
input 5 \27\4\13 ; Get <ESC><EOT> back
break ; But ignore timeout

}
if > \%i 3 end 1 Timed out or unknown response
end 0

}
__

Figure 19-3 The TAPMSG Macro

484 Script Programming / Chapter 19

Some Things We Didn’t Tell You

This section lists some odds and ends that did not fit conveniently elsewhere, most of
them of interest only to the most advanced script programmers. We begin with several in-
visible commands (i.e. commands that do not show up when you type question mark at the
prompt) that are used in the interal macro definitions that execute the FOR, WHILE, XIF, and
SWITCH commands. Note that all of their names begin with the underscore character:

_ASSIGN variable [text]
Just like ASSIGN, except the variable name is constructed from other variables, rather
than taken literally. For example:

assign \%a 2
_assign x\%a \v(time)

assigns the current time to a variable named x2. Synonym: _ASG.

_DEFINE variable [text]
Just like DEFINE, except that, as with _ASSIGN, the variable name constructed, rather
than taken literally.

_FORWARD label
Just like FORWARD except that if the label is not found at the current command level
(macro or command file), the command stack is not popped. Furthermore, unlike the
regular FORWARD and GOTO commands, alphabetic case is signigicant in the label if
CASE is ON. This command is used internally by SWITCH for selecting the right case.

_GETARGS
Retrieves the macro arguments from two levels up the macro stack. For example, if A
calls B and B calls C, and _GETARGS is executed in C, then C’s copies of \%0 through
\%9 are replaced by A’s.

_PUTARGS
Sets the macro argument variables of the macro two levels up from the macro ar-
guments at the current level. If A calls B and B calls C, and _PUTARGS is executed in
C, then A’s copies of \%0 through \%9 are replaced by C’s.

The primary intention of all these commands is to allow the creation of macros that are
nestable, e.g. FOR-loops within FOR-loops within FOR-loops. We use constructions like:

_assign _for\v(cmdlevel) { _getargs, ..., _putargs }
do _for\v(cmdlevel)

where ... is replaced by the loop variable tests and the commands that go inside the loop.
So if we have three nested FOR-loops, they are named (e.g.) _FOR1, _FOR2, and _FOR3. A
FOR-loop is actually implemented as a macro that defines the _FORx macro for and then
executes it; thus it is a macro within a macro, and that is why _GETARGS and _PUTARGS

operate two levels up.

Some Things We Didn’t Tell You 485

We have mentioned in various spots that certain commands are ‘‘stackable;’’ that is, their
effects are felt only at the current command level and are inherited by lower levels, but not
at higher levels. This lets you use these commands in macros and command files without
worrying about them having any wider effects. Here is the complete list:

IF COUNT, SET COUNT
The COUNT variable is on the call stack. Thus any command files or macros that are
invoked from within SET COUNT / IF COUNT loops can contain their own SET COUNT / IF

COUNT loops without interfering with the ones at higher levels. But note that you can
not nest these loops at the same command level (but you can nest FOR loops to achieve
the same effect).

SET [INPUT] CASE
Whether alphabetic case is significant in string comparisons.

SET INPUT TIMEOUT-ACTION
Whether the current macro or command file ENDs if an INPUT command times out.

SET MACRO ERROR
Whether the current macro ENDs if there is any kind of error.

SET TAKE ERROR
Whether the current command file ENDs if there is any kind of error.

Finally, there are lots of macros and scripts we would have liked to include but did not for
lack of space. Instead, we’ll leave them as exercises for the interested reader :-)

• Rule sets for different dialing locales. See Chapter 5 for a few examples.

• A GETOK command substitute in the language of your choice, that has and displays a
default answer, e.g.: Alle Dataien löschen? (Ja/Nein) [Nein]:

• Switching X.25 PADs between terminal mode and file-transfer mode (Chapter 10).

• A convenient way to capture files with LOG SESSION (Chapter 15).

• Getting your dynamically assigned IP address from a terminal server (hint: use
\fipaddr(\v(input))) and then starting SLIP on your computer to use it.

• Call up a computer that calls you back using a secure dialback system (hint: use the
HANGUP and ANSWER commands).

• Host mode — create a secure user ID and mini file system for multiple users, let
people log in to your computer, give them a menu or command shell, let them send
and receive messages, upload and download files within a restricted area, and so on.
(If you have Kermit 95, no fair peeking at SCRIPTS\HOST.KSC.)

486 Script Programming / Chapter 19

The SCRIPT Command

The SCRIPT command is shorthand for a series of INPUT and OUTPUT commands, allowing
an entire login script to be executed in a single short (but cryptic) command. Strictly
speaking, the SCRIPT command is not needed. There is nothing it can do that cannot be
done by the methods already described. The SCRIPT command has been a part of
C-Kermit since 1985 and is carried forward for compatibility with previous releases.

A SCRIPT command consists of a series of expect and send strings, separated by spaces.
Kermit waits for the first expect string; when it comes Kermit sends its first send string
and then waits for its next expect string, and so on:

SCRIPT expect send [expect send [...]]
Executes the given series of expect and send strings. If an expect string does not
arrive, the command fails. If all the expect strings arrive, the command succeeds.

The send and expect strings can contain special sequences prefixed by tilde (~), listed in
Table 19-1 on the next page. Most of these can also be adequately represented by
Kermit’s normal backslash codes.

Kermit automatically includes a carriage return at the end of each send string unless it
ends with ~c. Only the last seven characters in each expect are matched. A null expect,
~0 or two adjacent dashes, causes a short delay before proceeding to the next send se-
quence. A null expect always succeeds.

If there is a chance that an expect sequence might not arrive, you can express conditional
sequences in the form:

-send-expect[-send-expect[...]]

where dashed sequences are followed until an expect succeeds. For example, on a noisy
connection:

script ~0 login\32olaf-ssword:-login\32olaf-ssword:

sends ‘‘login olaf’’ followed by a carriage return. If the Password: prompt does not arrive
within the default timeout interval, ‘‘login olaf’’ is sent again.

expect-send transactions can be debugged by logging transactions (LOG TRANSACTIONS).
This records all exchanges, both expected and actual. The script execution is also logged
in the session log, if that is activated.

Script execution can be interrupted by typing your interrupt character, normally Ctrl-C.

The SCRIPT Command 487

Table 19-1 Notation for SCRIPT Command

Notation Description

~b Backspace (you can also use \8)

~s Space (= \32)

~q Question mark (= \?)

~n Linefeed (= \10)

~r Carriage return (= \13)

~t Tab (= \9)

~~ Tilde (= \126)

~x XON (Control-Q) (= \17)

~c Don’t append a carriage return to a send string.

~n[n[n]] Octal representation of an ASCII character code (= \onnn)

~0 (zero) When used as an expect string, this means ‘‘expect nothing’’ and proceed
immediately to the next send string. When used by itself as a send string, it means to
send nothing followed by a carriage return.

~d Delay approximately 1/3 second during send.

~w[d[d]] Wait the specified number of seconds during expect, then time out. The default
waiting interval is 15 seconds.

The progress of a SCRIPT command is normally displayed on your screen, but you can
control the display with the following command:

SET SCRIPT ECHO { ON, OFF }
Controls whether the characters sent and received during script execution are to be
echoed on your screen. The default, ON, echoes the characters.

Here is an example in which the SCRIPT command is used to log in to a VMS computer,
similar to our VMSLOGIN macro from page 460:

script ~0 ~0 name:--name: \%1 word: \%2 \27Z \27[\?1c $--$--$

In this example, we expect nothing, then send a carriage return, then wait for name: from
the Username: prompt. If we don’t get it, we send another carriage return and wait for it
again. If we get it, we send our username (which is contained in the variable \%1), then
wait for the Password: prompt. If it comes, we send our password \%2, wait for the ter-
minal ID query, send a VT100 terminal ID, then wait for the VMS dollar sign prompt. If
it doesn’t come, we send a carriage return and wait again, and so on. The example
demonstrates how a single SCRIPT command can replace a long series of OUTPUT, INPUT,
and IF SUCCESS commands, accomplishing the same actions in a more compact (and more
cryptic) form. The SCRIPT command does not allow intermixture of expect-send items
with regular Kermit commands such as SET PARITY, SEND, RECEIVE, and so on, but SCRIPT

commands themselves can be intermixed with any other C-Kermit commands.

488

489

Appendix I

Starting and Stopping C-Kermit

The command with which you start C-Kermit is called the command line. Items included
after the program’s name are interpreted by C-Kermit as filenames or commands. For ex-
ample, if your system prompt is $, and you start C-Kermit by typing ‘‘kermit’’, then you
could also start it like this:

$ kermit -s oofa.txt

which tells C-Kermit to do just one thing: send the file oofa.txt, and then exit. The
complete format of the C-Kermit command line is:

kermit [filename] [options] [redirectors]

where:

kermit
Is the command used to start C-Kermit, usually just ‘‘kermit’’.

filename
Is the name of a script program file to execute (optional).

options
Is a list of one or more command-line options (optional).

redirectors
Are system-dependent indicators for redirection of standard input and output, such as
‘‘< filename’’, ‘‘> filename’’, and/or ‘‘| command’’ in UNIX (optional).

Command-line options are listed later in this appendix, starting on page 493.

490 Starting and Stopping C-Kermit / Appendix I

The command to start C-Kermit depends on your computer and operating system, and
how C-Kermit is installed. Usually it’s just ‘‘kermit’’. In Windows 95 and NT, it’s
‘‘k95’’; in OS/2 it’s ‘‘k2’’. If C-Kermit is not installed in your ‘‘path’’ or as a system
command, you might need to type its full file specification, or prefix it by your system’s
‘‘RUN’’ command (such as RUN in VMS, X in AOS/VS, etc). If you type the name alone,
not followed by other material, you should see a greeting and then a C-Kermit> prompt,
indicating that C-Kermit is ready for you to type commands.

If you include the name of an existing file immediately after the C-Kermit program name,
this indicates a C-Kermit ‘‘application file’’ containing commands to be executed by
C-Kermit. If you want C-Kermit to exit when execution of the application file is com-
plete, you must include an EXIT command in the application file itself.

You can also start C-Kermit with its standard input piped from another command or
program, on systems that support this notion; for example, in UNIX:

$ sort < commandfile | kermit

if you can think of any good reason to do this.

When C-Kermit starts, it executes its commands in the following order:

1. The -d (debug) command-line option, if any.

2. The commands in the initialization file, if any. If -Y (uppercase) was used, the in-
itialization file is skipped. If -y (lowercase) was used to specify an alternative in-
itialization file, it is executed instead of the standard one.

3. If a filename was given as the first command-line option, the commands in that file.

4. Command-line options (except -y and -C), if any.

5. The command list given in the -C command-line option, if any.

6. Interactive commands if no action commands were given on the command line, or if
action commands were given and the -S option was included on the command line.

The interactive commands in (6) include commands piped in or redirected from files, in
which case Kermit exits at the end of the file or pipe. When standard input is not
redirected and no command files or macros are active, C-Kermit is said to be at top level
and commands must be typed at the keyboard; C-Kermit keeps prompting you until it en-
counters an EXIT or QUIT command.

Program Termination 491

Note that standard input can be accessed only in a sequential manner, so GOTO and similar
commands have no effect in the standard input stream, even if it happens to come from a
file. In other words, GOTO and other forms of transfer of control can be used only in com-
mand files that are executed with the TAKE command, or in macros.

Program Termination

Normal termination occurs in the following ways:

1. The ‘‘action options,’’ if any, given on the command line are completed. This is ex-
plained in the next section.

2. An EXIT command is executed.

3. The -E or -J options were given on the command line and the connection is lost or
closed.

4. The program is interrupted while executing its initialization file or command-line ac-
tion options.

When C-Kermit exits, it returns a numeric code that can be tested by batch programs, shell
scripts, etc. A return code of 0 indicates overall success. A nonzero return code indicates
a specific type of failure; it can can be the sum of any combination of one or more failure
codes shown in Table I-1. For example, a code of 6 (= 4 + 2) means both a SEND com-
mand and a RECEIVE command failed.

The EXIT command can be used at the prompt, in a macro, or in a command file to ter-
minate C-Kermit:

EXIT [number]
Closes all open files and devices, hangs up any dialed or network connection, restores
the command terminal to its normal state, executes the macro named ON_EXIT if one is

Table I-1 C-Kermit Return Codes

Code Meaning

0 Overall success

1 A program error occurred

2 A SEND command failed

4 A RECEIVE command failed

8 A REMOTE command failed

492 Starting and Stopping C-Kermit / Appendix I

defined, and returns to the system. If a number is included, it becomes C-Kermit’s
exit status code, otherwise C-Kermit returns the status code given in the most recent
SET EXIT STATUS command, if any; otherwise a code whose format depends on the
host operating system, but which summarizes the overall success of its file transfer
operations a shown in Table I-1. Synonym: QUIT.

If SET EXIT WARNING is ALWAYS, or a connection is open and SET EXIT WARNING is not
OFF, C-Kermit warns you before exiting and gives you a chance to change your mind.

To emphasize: when C-Kermit exits, all files and devices that it opened are closed.
There is no way to have C-Kermit exit and leave a device or file open for use by other
programs. This is not a C-Kermit feature; it is a feature of UNIX, VMS, OS/2, VOS,
AOS/VS, Windows, and all the other operating systems where C-Kermit runs.

Note, however, that it is possible for C-Kermit to pass the file descriptor of an open com-
munication device to an inferior program, by using the \v(ttyfd) variable. Similarly, it
is possible for another program to invoke C-Kermit and pass it a numeric file descriptor in
place of a device name in the ‘‘-l’’, ‘‘-F’’, or ‘‘-Z’’ command-line options.

Several considerations affecting how, when, and whether C-Kermit exits are governed by
the SET EXIT command and can be displayed with SHOW EXIT:

SET EXIT ON-DISCONNECT { ON, OFF }
When ON, C-Kermit exits when it senses that a local-mode connection has been
closed, broken, or hung up; for example when you log out of a remote host or service.
This is generally reliable on network connections, but on serial connections depends
on the underlying device drivers, the physical aspects of the connection, and the
CARRIER-WATCH setting. The default is OFF.

SET EXIT STATUS number
Tells C-Kermit the exit status to return when it exits. The number is used in all cases
except when an EXIT number command is given. You can use the SET EXIT STATUS

command to ‘‘build up’’ an exit status throughout execution of script, for example, by
ORing various values into an exit status variable:

assign exit_status 0
...
assign exit_status \feval(\m(exit_status)|16)

Command-Line Options 493

SET EXIT WARNING { ON, OFF, ALWAYS }
Tells C-Kermit to warn you if you try to exit and a connection is still open, in which
case it asks you whether you really want to exit:

C-Kermit> set exit warning on
C-Kermit> set host oofa.com
C-Kermit> exit
A network connection to oofa.com might still be active.
OK to exit? no
C-Kermit> exit
A network connection to oofa.com might still be active.
OK to exit? yes
$

SET EXIT WARNING ALWAYS means always ask. OFF means never ask. EXIT WARNING

is ON by default, meaning ask only if a connection is (or appears to be) open. As with
SET EXIT ON-DISCONNECT, the effectiveness of EXIT WARNING ON when used on serial
connections depends on serial port drivers, wires, modems, etc.

Abnormal termination of C-Kermit occurs when:

• The program is terminated from another process; for example, by a ‘‘kill’’ command in
UNIX or a STOP command in VMS, or a system shutdown procedure.

• The program crashes. It shouldn’t happen, but anything’s possible.

• The computer itself crashes, or other acts of nature.

When C-Kermit terminates abnormally, the results depend on the operating system and, of
course, the manner of termination. Usually, any open files are closed in whatever their
current state might be. Devices are closed. The most unnerving aspect of abnormal ter-
mination comes in UNIX, where the login terminal might be left in an unusable state
(more about this in Appendix III) and a large core file might be left on disk. VMS might
display a long ‘‘traceback’’ on the screen (if you can capture one of these, feel free to send
it in to kermit-support@columbia.edu for analysis).

Command-Line Options

A selection of C-Kermit commands is available on the command line in environments that
support passing command-line options to programs through the C-language ‘‘argv, argc’’
mechanism [52], provided that Kermit has been configured to use them. Command-line
options can be useful for various reasons:

1. For a one-shot deal like sending a file, it is faster and easier to use C-Kermit this way
— especially handy for autoup- and downloading.

494 Starting and Stopping C-Kermit / Appendix I

2. You might want to use Kermit in a command pipeline, sending files from standard in-
put or receiving them to standard output; for example, to transfer a file in compressed
and/or encrypted form between two UNIX systems.

3. You might want to change Kermit’s normal startup actions, for example specifying a
different initialization file or no initialization file at all.

4. You might be using C-Kermit as a ‘‘helper’’ for a Web browser or other application,
from which it can be invoked only with command-line options.

5. Some stripped-down versions of C-Kermit might be built for command-line operation
only, without an interactive command parser.

Using command-line options, you can define convenient shortcuts. For example, using
the UNIX K-Shell [5], you could define aliases like these in your .env file:

alias "kr=kermit -r" # to receive files, just type ’kr’
alias "ks=kermit -s" # to send text files, type ’ks filename’
alias "kb=kermit -is" # to send binary files, type ’kb filename’

In VMS, Kermit must be installed as a foreign command so VMS will make the command
line options available to Kermit, for example:

KERMIT :== SYSSYSTEM:KERMIT.EXE

If it is not installed this way, you must use the VMS RUN command to start it and you
can’t pass command-line options to it. But you can still put a command like the one above
into your LOGIN.COM file as a workaround.

C-Kermit’s command-line options conform to UNIX conventions [38]:

• Command names (like ‘‘kermit’’) must be between 2 and 9 characters long.

• Command names must include lowercase letters (in UNIX) and digits only.

• An option name is a single character.

• Options are delimited by ‘‘ -’’, for example ‘‘ -q -z’’.

• Options with no arguments may be grouped (bundled) behind one delimiter, for ex-
ample ‘‘ -s oofa.txt -qt’’.

• Option-arguments cannot be optional.

• A group of bundled options may end with an option that has an argument, for example
‘‘ -qzs oofa.txt’’.

Command-Line Options 495

• Arguments immediately follow options, separated by whitespace.

• The order of options does not matter.

• ‘‘-’’ preceded and followed by whitespace means standard input.

C-Kermit’s command-line options are summarized in Table I-2 on page 505 and described
in the following sections.

Option List
C-Kermit has two kinds of command-line options: action options and non-action options.
If you give one or more action options on the command line, C-Kermit exits after per-
forming them, returning an appropriate exit status code to your system’s command proces-
sor (shell, DCL, etc.), unless you also specified the -S (uppercase) ‘‘Stay’’ option. If the
command line includes no action options, C-Kermit issues its prompt after executing the
command-line options. The action options are primarily for entering CONNECT mode and
for transferring files. The non-action options correspond mostly to SET commands. In
VMS, uppercase options must be enclosed in doublequotes to prevent them from being
converted to lowercase before C-Kermit sees them.

Program Management Options
The first group of options is concerned with program management:

-h Help. Action option. Displays a brief synopsis of the command line options, then ex-
its. Example:

$ kermit -h

-y filename
Executes commands from the specified file instead of the standard initialization file.
Applies to only interactive versions. Examples:

% kermit -y /usr/olga/special.ini (UNIX)
$ kermit -y sys$login:special.ini (VMS)
F:\>k95 -y c:\kermit\special.ini (Windows 95 or NT)
C:\>k2 -y c:\kermit\special.ini (OS/2)

-Y (uppercase Y) Do not read or execute any initialization file. Applies only to inter-
active versions. Examples:

$ kermit "-Y" (VMS - Note doublequotes)
% kermit -Y (Elsewhere)

filename
If the first item on C-Kermit’s command line is a filename, C-Kermit executes com-
mands from the named file after it finishes the initialization file, if any. Applies only
to interactive versions. Example:

496 Starting and Stopping C-Kermit / Appendix I

% kermit sendmyfiles

In UNIX only, C-Kermit command files can be constructed to be run as if they were
programs, starting C-Kermit automatically. To do this, include a line like the follow-
ing as the first line of the command file:

#!/usr/local/bin/kermit

where /usr/local/bin/kermit is the full pathname of the Kermit program on
your computer. Add execute permission to the command file:

% chmod +x sendmyfiles

and then you can run it as if it were any other UNIX command, program, or shell
script:

% sendmyfiles

In VMS, you can define convenient aliases to run Kermit easily with different com-
mand files by defining symbols for them; for example:

$ compuserve :== syssystem:kermit.exe sys$login:compuserve.ksc
$ sprintnet :== syssystem:kermit.exe sys$login:sprintnet.ksc

-C "command, command, ..."
(uppercase C) Executes the interactive-mode commands after the initialization file (if
any), the other command-line options (if any), and the command file (if any). Applies
to interactive versions only. The command list must be enclosed in doublequotes,
with commands separated by commas. Examples:

$ kermit "-C" "set block-check b, send oofa.txt" (VMS)
$ kermit -C "set block-check b, send oofa.txt" (Elsewhere)

This option lets you give any commands at all to C-Kermit from the command line.
The maximum length of the command line is your operating system’s command line
buffer size. The maximum length for the command-list is implementation dependent,
usually either 1024 or 4072.

When you use the -C option, the command list is assigned to a macro called
CL_COMMANDS (command-line commands), so you can also execute these commands
later during your session simply by typing the name of this macro:

C-Kermit>cl_commands

The -C option is not considered an action option, even if the command list contains
action commands. So if no action options are on the command-line, the C-Kermit
prompt appears when the last command in the list has finished executing. To force
C-Kermit to exit when finished executing the -C command list, include EXIT as its last
command, as in this example, which uses all the power of C-Kermit to clear a VT100
terminal screen:

kermit -YHC "xecho \27[H\27[2J, exit"

Command-Line Options 497

-q Quiet. Suppresses screen messages during local-mode file transfer as well as most
other screen writing. This option is used to allow a file transfer to take place in the
background. It is equivalent to the interactive-mode command SET QUIET ON.

-H No Herald. Suppresses display of C-Kermit’s program herald and greeting when
C-Kermit starts.

-z Force foreground operation (UNIX). Even if Kermit thinks it is running in the back-
ground, it should behave as if it were in the foreground, issuing its normal prompts
and messages, and so on. You can use this option whenever you start C-Kermit in
some unusual way and its prompt fails to appear. It is equivalent to the
interactive-mode command SET BACKGROUND OFF.

-E (uppercase E) Exit on disconnect. Exit automatically when the remote host or service
hangs up or closes the connection. Normally C-Kermit returns to its prompt when this
happens if it was not invoked with action options.

-d Debug. Equivalent to the LOG DEBUG command. Records debugging information in
the file DEBUG.LOG in the current directory. Use this option if you believe Kermit is
misbehaving, and show the resulting log file to your local Kermit maintainer.

-R (uppercase R) Remote-only. This tells C-Kermit that you intend to use it only in
remote mode and causes the IF REMOTE test to succeed; useful in the initialization file
for skipping the connection-establishment macro definitions that will not be used.

-M username
(uppercase M) My user name. Sets the internal \v(user) variable. Equivalent to the
SET LOGIN USERNAME command.

-S (uppercase S) Stay. This option tells C-Kermit to issue its prompt and enter inter-
active command mode even if the command line included action options. Examples:

$ kermit -s oofa.txt "-S" (VMS)
$ kermit -r -a oofa.txt -S (Elsewhere)

= text
Tells C-Kermit to ignore all command-line options that follow but (in an interactive
version of C-Kermit that includes the script programming feature) make them avail-
able, along with all the other items from the command line, in the array \&@[]. In
VMS, this option must be enclosed in doublequotes if it is the first option. Examples:

$ kermit -z = this is some text (Anywhere)
$ kermit "=" this is some text (VMS)
$ kermit = this is some text (Elsewhere)

498 Starting and Stopping C-Kermit / Appendix I

Communications Options
These are the options for selecting and configuring your communication device, and are
therefore useful mainly in local mode.

-8 Eight-bit-clean. This tells C-Kermit it is safe to use 8-bit input and output on the com-
munication device and on its own console terminal. Equivalent to SET PARITY NONE,
SET COMMAND BYTESIZE 8, SET TERMINAL BYTESIZE 8

-l device
Specifies a serial communication device to use for file transfer and terminal connec-
tion. Equivalent to the SET LINE command (see page 59). Examples:

% kermit -l /dev/ttyi5 (UNIX)
$ kermit -l txa5: (VMS)
) kermit -l @con5 (AOS/VS)
C:\>kermit -l com1 (OS/2 or Windows)

You can also give a numeric file descriptor for a serial port that is already open:

$ kermit -l 6

This can be used for starting C-Kermit from some other communication software that
already has opened the device, provided the other software gives you a way to put the
file descriptor on the C-Kermit command line. In C-Kermit itself, for example:

C-Kermit> kermit -l \v(ttyfd)

When a serial communication device is being used, you also need some additional options
for successful communication:

-b number
Bits per second. Specifies the transmission speed in bits per second (‘‘baud rate’’) for
the serial communication device given in the -l option, as in:

$ kermit -l /dev/ttyi5 -b 38400

This option, equivalent to the SET SPEED command (p. 60), should always be included
with the -l option since the speed of a device when it is opened is not necessarily
what you expect.

-p letter
Parity. Selects the type of parity for use on the selected communication device. The
argument is a single letter, e, o, m, s, or n, identifying the type of parity: even, odd,
mark, space, or none, respectively. The default is n, none. Equivalent to SET PARITY

(page 180).

Command-Line Options 499

-t Specifies local echoing during CONNECT mode and half-duplex line turnaround with
XON as the handshake character during file transfer. Used for communicating with
IBM mainframes in linemode. Equivalent to SET TERMINAL ECHO ON (page 180) and
SET HANDSHAKE XON (page 235).

-m name
Modem type: Hayes, Telebit, USR, etc. (see Table 4-1 on page 90). Use this option in
conjunction with the -l and -b options if you want to use C-Kermit to dial out. If you
don’t specify a modem type, and the modem is not asserting the carrier signal, Kermit
might not be able to open the device given in the -l option. The modem name can be
abbreviated, e.g. ‘‘hay’’ for ‘‘Hayes.’’ Equivalent to SET MODEM TYPE (page 87).
Example:

$ kermit -m telebit -l /dev/cub -b 19200

You can also use the -C option to include a dialing command:

$ kermit -m telebit -l /dev/cub -b 19200 -C "dial 7654321"

If you want to use a network connection (pages 137–159) rather than a serial terminal
device for communication, use the following options rather than -l, -b, and -m. Parity is
usually not required. The speed (-b) option has no effect on network connections.

-j host
Host. Specifies a TCP/IP network host. Equivalent to the SET NETWORK TCP/IP and
SET HOST commands. The host can be the name of an entry in your networks directory
(if you have one), an IP host name, an IP host number (containing dots), or either one
of these followed by a colon or a space and then a TCP service name or number (the
default service is 23, which is TELNET). If you have a network directory, the host is
looked up there unless you begin the hostname with an equals sign (=), in which case
the part after the equals sign is used literally with no lookup. The following examples
all connect to the TCP TELNET port on the same host:

$ kermit -j kermit.columbia.edu
$ kermit -j kermit.columbia.edu:23
$ kermit -j kermit.columbia.edu 23
$ kermit -j kermit.columbia.edu:telnet
$ kermit -j kermit.columbia.edu telnet
$ kermit -j 128.59.39.2
$ kermit -j 128.59.39.2:23
$ kermit -j 128.59.39.2 23
$ kermit -j 128.59.39.2:telnet
$ kermit -j 128.59.39.2 telnet

If you get a message like:

?Invalid argument, type ’kermit -h’ for help

it means your Kermit version does not include TCP/IP network support.

500 Starting and Stopping C-Kermit / Appendix I

The following example connects to a non-TELNET information server:

$ kermit -j martini.eecs.umich.edu:3000

This one starts an RLOGIN connection:

$ kermit -j unix.cmgcorp.com:513 -M olga

-F number
TCP/IP network file descriptor number; the file descriptor for an open TCP/IP TELNET

connection:

$ kermit -j 4

-J host
(uppercase J) Like -j, but instructs C-Kermit to act like a TELNET program: enter
CONNECT mode automatically, allow the user to escape back and reconnect repeatedly
(e.g. to transfer files), and exit automatically when the connection is broken (e.g. when
you log out from the remote host). You can use ‘‘kermit -J’’ anywhere that you
would use ‘‘telnet’’; the commands should be interchangeable. This allows you to
specify C-Kermit as your Telnet program to other applications, such as a Web
browser.

For X.25 connections only, you have four additional options:

-X address
(uppercase X) X.25 address. Specifies an X.25 network address.

-Z number
(uppercase Z) X.25 file descriptor. Specifies a file descriptor for an X.25 connection
that is already open.

-o index
X.25 closed user group call.

-u X.25 reverse-charge call.

Here are C-Kermit’s terminal connection options:

-c Establishes a terminal connection over the communication device before any Kermit
protocol activity takes place. Get back to your local computer by typing the escape
character (normally Control-Backslash) followed by the letter C. A communication
device must also be specified. Equivalent to the CONNECT command (page 170).
Examples:

% kermit -l /dev/ttya1 -b 2400 -c (UNIX)
$ kermit -l txa4: -b 19200 -c (VMS)
C:\>kermit -l com2 -b 57600 -c (Windows or OS/2)
$ kermit -j watsun.cc.columbia.edu -c (Network)

Command-Line Options 501

-n Like -c, but after Kermit protocol activity; -c and -n may both be used in the same
command line. For example, the -c option lets you connect to the other computer, log
in, and start a file transfer, and the -n option connects you back after the file transfer
so you can log out.

File Transfer Options
The following command-line options are available to perform C-Kermit’s basic text and
binary file transfer operations, described fully in Chapters 9–12:

-s filespec [filespec [filespec...]]
Send. Action option. Sends the specified file or files to a Kermit program that is in
RECEIVE or SERVER mode or, if your terminal emulator supports it, starts an autodown-
load of one or more files. In UNIX, if filespec contains wildcard (meta) characters,
the UNIX shell expands it into a list of filenames. The filespec can also be a list of
files, as in:

kermit -s ckcmai.c ckuker.h *.txt

Thus, this option is equivalent to the interactive-mode command MSEND. If the
filename is - (a hyphen), Kermit sends from its standard input, which may come
from a file:

kermit -s - < foo.bar

or piped in from a process:

ls -l | grep Tokyo | kermit -s -

But you can’t use this mechanism to send characters from your keyboard. If you want
to send a file whose actual name is -, you can precede it with a path name, as in:

kermit -s ./-

To use standard input as a source for sending files in VMS, you must redefine
SYS$INPUT to be the desired file, for example:

$ define /user sys$input login.com
$ kermit -s "-"

Note that the final hyphen must be quoted; otherwise VMS interprets it as a DCL
command-continuation character.

-r Receive. Action option. Waits passively for files to arrive from another Kermit
program, which must be told to send the file(s). This option is equivalent to the
RECEIVE command.

502 Starting and Stopping C-Kermit / Appendix I

-k Receive to standard output. Action option. Receives a file or files from another Ker-
mit, which must be told to send the file(s), and writes them to standard output. This
option can be used in several ways:

kermit -k

Displays the incoming files on your screen; to be used only in local mode.

kermit -k > filename
(UNIX and other operating systems that support standard-output redirection via
the > operator) Sends the incoming file or files to the named file, filename. If
more than one file arrives, all are concatenated together into the single file,
filename.

kermit -k | command
(UNIX and other operating systems that support command pipelines via |) Pipes
the incoming file or files to the indicated command, as in:

kermit -k | sort > sorted.stuff

-a filename
As-name. When used with -s this tells the name to be sent to the other Kermit in
place of the file’s real name. When used with -g (next page) or -r, it tells the name to
give to the arriving file, rather than storing it under the name it was sent with. If more
than one file is sent or arrives, -a applies only to the first one. Example:

kermit -s foo -a bar

sends the file foo, telling the receiver that its name is bar (‘‘send foo as bar’’). When
using -a with -g or -r, you may also give a device and/or directory name, without a
filename. In that case, all arriving files are stored in the indicated device/directory.
Example:

kermit -g oofa.* -a /tmp/

-x Server. Action option. Become a Kermit server. This is equivalent to the SERVER

command.

Here are the options for sending commands to Kermit servers:

-g remote-filename
Get. Action option. Actively requests a Kermit server to send the named file or files;
remote-filename is a file specification in the remote host’s own syntax. In UNIX, if
remote-filename happens to contain any special shell characters, like space, *, [, ~,
etc., these must be quoted using the UNIX shell’s quoting mechanisms, as in:

kermit -g x*.\?

Command-Line Options 503

or:

kermit -g "profile exec"

The -g option is equivalent to the GET command. Use ‘‘kermit -g’’ to initiate an
autoupload if your terminal emulator supports Kermit autouploads.

-f Finish. Action option. Sends a FINISH command to a remote server, equivalent to the
FINISH command.

The command line may contain no more than one protocol action option; that is, only one
of these: s, r, x, g, f, or k.

The following modifier options can be included with file-transfer action options:

-i Binary mode; equivalent to the SET FILE TYPE BINARY command. Specifies that files
should be sent or received with no conversions. See Chapter 9.

-T Text mode; equivalent to the SET FILE TYPE TEXT command. Specifies that files
should be sent or received with record format and possibly character-set conversions.
See Chapters 9 and 16.

-w Writeover. If an incoming file has the same name as an existing file, it replaces the
existing file. This changes the default behavior, which is to preserve the old file by
changing the name of the existing file before creating the new one. Equivalent to SET

FILE COLLISION OVERWRITE.

-e number
Receive packet-length. Specifies that C-Kermit is allowed to receive packets up to the
specified length, between 10 and some large number, like 1000 or 2000, or even 9000,
depending on the C-Kermit version. The default maximum length for received pack-
ets is 94. Packets longer than 94 are used only if the other Kermit supports and agrees
to use the long packet protocol extension. This command is equivalent to SET RECEIVE

PACKET-LENGTH.

-v number
Window size. Specifies that C-Kermit is allowed to send and receive files using a
window size up to the given number. Window sizes greater than 1 speed up transfers
in most situations, especially long-distance network connections. The default window
size is 1, the maximum is 32. Sizes greater than 1 work only if the other Kermit sup-
ports this option and has been told to use it. Equivalent to the SET WINDOW command.

-Q Quick transfer options. Equivalent to SET RECEIVE PACKET-LENGTH 4096, SET WINDOW

20, SET PREFIXING CAUTIOUS.

504 Starting and Stopping C-Kermit / Appendix I

-D number
Used in remote mode with -s. Equivalant to SET DELAY; how many seconds to wait
before starting to send. Use 0 for no delay at all, which is useful when your terminal
emulator supports Kermit autodownloads. Otherwise specify sufficient seconds to al-
low you do whatever is needed to instruct your terminal program to receive a file
using Kermit protocol.

Command-Line Examples

kermit -l /dev/ttyi5 -b 38400 -rcn

Connects you (the c in -rcn) to another computer through the ttyi5 device at 38400
bps, where you presumably log in, run Kermit, and give it a SEND command. After
you escape back, C-Kermit waits for a file (or files) to arrive (the r in -rcn). When
the file transfer is complete, you are reconnected (the n in -rcn) to the remote system
so you can logout. This example illustrates the principles that the order of options
does not matter and that options with no arguments can be grouped.

kermit -l /dev/ttyi5 -b 38400 -cntp m -r -a foo

Like the preceding command, except the remote system in this case uses half-duplex
communication (the t in -cntp) with mark parity (-...p m). This illustrates how
the final option (p) in an option bundle -cntp can take an argument. The first file that
arrives is stored under the name foo (-a foo).

kermit -ix

Starts up C-Kermit as a server (note the bundling of the options -i and -x). Files are
sent in binary mode.

kermit -l /dev/ttyi6 -b 19200

Sets the communication line and speed. No action is specified, so C-Kermit issues a
prompt and enters an interactive dialog with you with these settings in effect unless
you give commands to change them.

kermit

Starts up Kermit interactively with all default settings.

The next example shows how UNIX C-Kermit might be used to send an entire directory
tree from one UNIX system to another, using the tar (tape archive) program as Kermit’s
standard input and output. On the originating system, in this case the remote, type (for
instance):

tar cf - /usr/olga | kermit -is -

This causes tar to send the directory /usr/olga (and all its files and all its subdirectories
and all their files...) to standard output rather than to a tape; C-Kermit receives this as
standard input and sends it as a binary file. On the receiving system, in this case the local
one, type (for instance):

Command-Line Examples 505

kermit -il /dev/ttya -b 9600 -k | tar xf -

Kermit receives the tape archive and sends it via standard output to its own copy of tar,
which extracts from it a replica of the original directory tree.

This example shows how the UNIX compression utility might be used to speed up Kermit
file transfers between two UNIX computers:

kermit -cnikl /dev/cua -b 9600 | uncompress > foo (Local receiver)
compress < file | kermit -is - (Remote sender)

And the final example combines the previous two to give you the fastest serial line backup
ever:

kermit -Qcnil /dev/ttya -b 9600 -k | uncompress | tar xf -
tar cf - /usr/olga | compress | kermit -Qis -

Table I-2 below and on the next page summarizes C-Kermit’s command-line options.

Table I-2 C-Kermit Command-Line Options

Option Argument Action Description

= N Ignore the rest of the command line

8 N 8-bit clean communications

-a filename N As-name for transferred file

-b number N Transmission rate, bits per second

-C "command-list" N Interactive-mode Kermit commands to execute

-c Y CONNECT before file transfer

-D number N Delay number seconds before sending file(s)

-d N Create a debugging log file, DEBUG.LOG

-E N Exit on disconnect

-e number N Set receive packet-length

-F number N Numeric file descriptor for TCP/IP connection

-f Y Send a FINISH command to a Kermit server

-g filespec Y Send a GET command to a Kermit server

-H N Don’t print herald or greeting on startup

-h Y Print a help message listing the command-line arguments

-i N Transfer files in binary mode

-J host N Like ‘‘telnet host’’

-j host N TCP/IP host name or address

-k Y Receive to standard output

-l device-name N SET LINE to specified serial device

506 Starting and Stopping C-Kermit / Appendix I

Table I-2 C-Kermit Command-Line Options (continued)

Option Argument Action Description

-M user N My username = SET LOGIN USERNAME

-m modem-type N SET MODEM to specified modem type

-N number N NETBIOS adapter number

-n Y CONNECT after file transfer

-o number N X.25 closed user group number

-p letter N Parity: e(ven), o(dd), m(ark), s(pace), or n(one)

-Q N Quick file transfer settings

-q N Quiet mode, suppress messages and file transfer display

-R N Remote-only advisory

-r Y RECEIVE files

-S N Stay, enter command mode even if action options specified

-s filespec Y SEND files

-T N Transfer files in text mode

-t N Local echo, XON handshake for file transfer

-U text N Specify X.25 call user data

-u N Specify X.25 reverse-charge call

-v number N Specify file transfer sliding window size

-w N Incoming files write over existing files with same name

-X number N Specify an X.25 host (X.121) address

-x Y Enter server mode

-Y N Do not execute the initialization file

-y filename N Execute filename instead of the normal initialization file

-Z number N Specify the file descriptor of an open X.25 connection

-z N Force foreground operation (UNIX)

Environment Variables

C-Kermit can pick up various operating parameters from ‘‘environment variables’’ in sys-
tems that offer them, including UNIX, Windows, OS/2, and VMS (in VMS they are called
logical names or symbols). In most cases, environment variables are used only as a last
resort, in the absence of better information. For example, if C-Kermit needs to know the
local area code to execute a DIAL command, but you have not given a SET DIAL

AREA-CODE command, it uses the value of the K_AREACODE variable if one is defined. In
other cases, they are used to override built-in defaults, such as the name or location of the
initialization file. Table I-3 lists the environment variables meaningful to C-Kermit. Con-
sult product-specific documentation (e.g. for Kermit 95) for others. You can access any
environment variable from within C-Kermit by using the \$(name) construction.

Environment Variables 507

Table I-3 Environment Variables Meaningful to C-Kermit

Variable Description

CKERMIT_INI Initialization file directory (VMS)

CKERMIT_INIT Pathname of initialization file (VMS)

CKERMOD Pathname of customization file (overrides default)

COMSPEC Preferred command shell (OS/2, Windows)

EDITOR Preferred text editor

HOME Home directory

KSTR Pathname of strings file (2.xBSD)

K_AREACODE Area code of this location

K_COUNTRYCODE Country code of this location

K_DIAL_DIRECTORY Dialing directory list

K_INTL_PREFIX International dialing prefix from this location

K_LD_PREFIX Long-distance dialing prefix from this location

K_NET_DIRECTORY Pathname of networks directory

K_PBX_ICP PBX internal call prefix

K_PBX_OCP PBX external call prefix

K_PBX_XCH Exchange of PBX at this location

K_SERVICE_DIRECTORY Pathname of services directory

K_TF_AREACODE Toll-free area code(s)

K_TF_PREFIX Toll-free dialing prefix from this location

SHELL Preferred command shell (UNIX)

TEMP or TMP Pathname of temporary directory

TERM Terminal type

USER Username

508

509

Appendix II

A Condensed Guide to Serial
Data Communications

Communication between two computers requires not only a physical connection, but also
an agreement about how the computers will use it. When you establish the connection
yourself, for example by dialing up or installing your own cable, you need to understand
the elements that must agree. Otherwise a working connection is an unlikely stroke of
good fortune.

Character Format and Parity

A byte, or character, is generally made up of 8 bits. Textual data is represented by a
specific code, such as ASCII or ISO Latin-1. ASCII and other 7-bit codes leave one of the
8 bits unused, so in many applications this spare bit is dedicated to a rudimentary kind of
error detection called parity. The extra bit, or parity bit, is set to 0 or 1 to make the over-
all number of 1 bits even (or odd). For reasons lost in antiquity, or perhaps simply for
completeness, there also exist ‘‘mark parity’’ (in which the parity bit is always 1), and
‘‘space parity’’ (in which the parity bit is always 0). Thus there are five possibilities for
parity: even, odd, mark, space, and none. Parity is commonly used with 7-bit character
codes. Figure II-1 on the next page shows a 7-bit character with even parity and an 8-bit
character with no parity.

The devices on both ends of a data connection should agree on their parity settings, other-
wise data can be misinterpreted. For example, 11000101 is Latin-1 A-ring on an 8-bit
connection, uppercase E on a 7-bit connection with even or mark parity, and it’s an illegal
bit combination on a 7-bit connection with odd or space parity (see Figure II-1).

510 A Condensed Guide to Serial Data Communications / Appendix II

Figure II-1 Character Formats

Serial Asynchronous Transmission
Characters are transmitted over short distances using digital signals: small discrete vol-
tages representing the binary digits (bits) 0 and 1, such as +12V for 0 and -12V for 1,
transmitted through copper wires. The electrical characteristics and distance limitations
are spelled out in a venerable industry standard, EIA RS-232 [33] (or ITU-T V.24 [9], its
international counterpart) followed by practically every computer manufacturer. In the
terminology of RS-232 and V.24, a computer or terminal is data terminal equipment, DTE
for short. The word terminal designates a device that is at the end of a connection, which
is often, indeed, a terminal; that is, a device with a keyboard, a screen, and a communica-
tions interface.

The bits within a character are transmitted in series, one after the other, in a specified
order [2] through a wire connecting the two devices. This method of transmission,
referred to as serial transmission, is preferred for all but very short distances over the
more expensive parallel method, which requires one wire for each of the 8 bits in a
character.

When a terminal is connected to a computer, the computer cannot predict when the person
at the terminal will strike a key; the terminal and the computer are not synchronized.
During serial transmission in this environment, characters are delimited using a ‘‘start bit’’
(0) and a ‘‘stop bit’’ (1) so the receiver knows where each character begins and ends [3],
as shown in Figure II-2. The stop bit lasts until the next character comes. This mode of
serial communication is said to be asynchronous.

Figure II-2 Asynchronous Character Transmission Format

Character Format and Parity 511

Transmission Speed
Even in asynchronous communication, however, two DTEs are not entirely unsyn-
chronized. The transmitters and receivers of each computer must be running at the same
speed for the receiving computer to recognize each bit correctly, based on how long a bit
‘‘lasts.’’ The transmission speed is expressed in bits per second (bps), sometimes called
baud (but not by purists). Speeds commonly used in asynchronous serial data communi-
cation are 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and
115200 bps.45 If the speeds of the two devices do not agree, successful communication
can not occur. Please note that not all computers are capable of handling the higher
speeds supported by their serial devices. This is especially true when the serial device
does not have its own built-in buffer and therefore must interrupt the computer every time
a character arrives. Buffered serial devices (such as the 16550AFN UART46 for PCs) are
recommended over non-buffered ones (such as 8250 or 16450 UARTs).

Ten bits are required to transmit a character: the 8 bits of the character itself plus the start
and stop bits. Therefore, 10 bits per second (bps) is the same as one character per second
(cps) if characters are transmitted without gaps (long stop bits) between them.

It is possible, and common in some parts of the world, for the receiver and transmitter to
run at different speeds. For example, a terminal sends characters at 75 bps and the com-
puter receives them at 75 bps, but the computer sends and the terminal receives at 1200
bps. This is called split speed operation.

‘‘Plex’’
An asynchronous serial connection between two DTEs can be characterized by how the
data flows. If data may go in one direction only, the connection is said to be simplex, or
one-way. If data can go in both directions, the connection is duplex, or two-way.47

A duplex connection can be made using a single data wire or channel if the data goes in
one direction at a time; this mode of transmission is called half duplex or two-way
alternate. A special signal, called a handshake, is required to turn the direction around.
Single-wire connections are rare, but half duplex communication is still common in main-
frame computing environments. On a half duplex connection between a terminal and a
computer, the terminal must echo each character you type. This is called local echoing.

45RS-232 is not designed to work at speeds beyond about 20000 bps, but many modern communication
boards offer higher speeds. Speeds in excess of 19200 require very short direct connections, perhaps
using special shielded and/or low capacitance cables, or a modem.

46Universal Asynchronous Receiver / Transmitter; the part numbers are for National Semiconductor
models.

47Notice the dual terminology. The first term is the one used in US data communications literature, and
the second term is the one used by international standards.

512 A Condensed Guide to Serial Data Communications / Appendix II

Today, most asynchronous serial communication takes place over two data wires, one for
each direction. Data can go in both directions at once; this is called full duplex or two-way
simultaneous. A full-duplex connection lets you type characters at the same time as
received characters are being displayed on your screen, and it allows a computer to control
the appearance of your screen by echoing characters selectively.

Flow Control
Whenever Computer A is sending data to Computer B, there is always the chance that
Computer A’s data will arrive faster than Computer B can process it. On a full duplex
connection, where characters can travel in both directions at once, Computer B can tell
Computer A to stop sending data even while the data is arriving. This gives Computer B a
chance to ‘‘catch up’’; when it has finished processing the characters that have accumu-
lated, it tells Computer A to resume sending.

This process is called flow control. It is most commonly accomplished using the control
characters Ctrl-S (ASCII DC3) to stop the flow of data, and Ctrl-Q (ASCII DC1) to re-
sume it. In the context of flow control, these characters are called XON and XOFF,
respectively. Flow control accomplished by mixing special characters with the data itself
is called ‘‘in-band’’ or ‘‘software’’ flow control. Xon/Xoff flow control works when the
computers have a full-duplex connection, both computers observe this convention, the
connection between them is clean enough not to damage these special characters during
transmission, and there is not a long transmission delay.

Hardware flow control is accomplished using separate wires, most commonly the RS-232
RTS and CTS circuits, and therefore is ‘‘out of band.’’ It is much more reliable and
responsive than software flow control, but can generally be used only over short distances,
such as between a computer and the modem it is directly connected to.

Modems

The maximum distance allowed by RS-232 is 50 feet or 15 meters. To connect two DTEs
over longer distances requires special data communications equipment, or DCEs. These
are usually powered devices that boost the data’s signal strength and modulate its form to
allow it to travel greater distances. A modem48 is a DCE that translates between the digi-
tal representation of computer data and the type of analog signaling that is used by tradi-
tional voice telephones. Modems are commonly used to connect distant computers to
each other over the switched telephone network by placing a telephone call. Modems let
any two computers in the world communicate with each other when a phone call can be
placed between them and the modulation techniques of the two modems are compatible.

48The word modem is derived from the words modulator and demodulator.

Modems 513

Figure II-3 Computers Connected by Modems

In a dialup modem connection, the modem actually replaces the telephone. It does what
the telephone does, but instead of converting between human voice and analog electronic
signals on the phone wire, it converts between the computer’s digital signals and the
analog phone signals.

Each computer must have its own modem, as shown in Figure II-3. The computer placing
the call tells the modem to dial the number; it takes the phone off hook, listens for dial-
tone, and dials the given number by simulating the clicks or beeps of the telephone it is
mimicking. When the other modem answers the call, the originating modem sends a con-
stant tone at a certain (originating) frequency. The answering modem recognizes this tone
and replies with its own tone at a different (answering) frequency. When the two modems
recognize each other’s tones, the connection is complete and ready to use. These tones are
called the carrier signal, and remain active throughout the connection. Transmitted data
is impressed upon the carrier signals to alter their frequency, amplitude, or phase.

Modem Signals
Computers communicating through modems must be able to monitor and control them,
just as people can monitor and control a phone call. For example, if you hear a click and a
dialtone in the middle of a telephone conversation, you have good cause to suspect you’ve
been disconnected and you can hang up your phone. This means you don’t have to wait
forever for the other party to finish a sentence. This sounds silly, but it’s the kind of thing
a computer might do if it couldn’t tell when a connection is broken.

Modems handle such problems quite nicely, using special circuits defined by RS-232 and
V.24 for signaling between the modem and the computer. The 10 circuits used in

514 A Condensed Guide to Serial Data Communications / Appendix II

Table II-1 RS-232 / V.24 Modem Signals and Pins

Circuit V.24 Name Direction DB25 DB9 Description

FG Frame Ground 1 – Electrical safety

TD 103 Transmitted Data To DCE 2 3 Data from computer

RD 104 Received Data To DTE 3 2 Data to computer

RTS 105 Request To Send To DCE 4 7 Hardware Flow Control

RTR 105 Ready To Receive To DCE 4 7 Same as RTS

CTS 106 Clear To Send To DTE 5 8 Hardware Flow Control

DSR 107 Data Set Ready To DTE 6 6 DCE on and in data mode

SG 102 Signal Ground 7 5 Voltage measurement reference

CD 109 Carrier Detect To DTE 8 1 Modems are communicating

DCD 109 Data Carrier Detect To DTE 8 1 Same as CD

RLSI 109 Received Line Signal
Indicator

To DTE 8 1 Same as CD

DTR 108 Data Terminal Ready To DCE 20 4 DTE on and in data mode

RI 125 Ring Indicator To DTE 22 9 Phone is ringing

asynchronous serial communication are listed in Table II-1. The Circuit column shows
the RS-232 name for the circuit; the V.24 column shows the ITU-T V.24 circuit number.
The DB-25 column shows the pin assignments for a standard RS-232 25-pin connector;
the DB-9 column shows the pin assignments for the 9-pin connector originally used on the
IBM PC/AT.

A modem call from computer A to computer B progresses something like this, as seen
from the point of view of computer A (the originator of the call):

1. Computer A checks to see that Modem A’s DSR signal is on. If not, the computer
concludes that the modem is not connected or not turned on, and the call fails.

2. Computer A turns on its DTR signal to let the modem know that it wants to begin
communicating.

3. Computer A gives Modem A the command to dial a phone number.

4. Modem A takes the phone ‘‘off hook’’ and listens for dialtone; if there is none, the
process stops here. Otherwise, Modem A dials the number and waits for an answer.

Modems 515

5. If there is no answer within a prescribed amount of time, Modem A reports failure to
the computer, and the process stops here.

6. When the other modem answers, Modem A sends its originate-frequency tone to it and
waits for an answer-frequency tone. If none appears within a certain time, the process
fails and stops here.

7. When the originating modem hears the answering modem’s tone, it turns on its CD
circuit, perhaps after some negotiations, so the computer knows it may exchange data
with the other computer.

8. If Computer A turns off its DTR signal at any time during the connection, Modem A
hangs up the phone. If Modem A stops hearing Modem B’s carrier tone at any time
during the connection, it turns off its CD signal.

The situation on the answering end (B) is similar. Modem B ‘‘hears’’ the phone ring and
turns on its RI signal. Computer B sees RI come on, prepares itself to communicate, and
then turns on its DTR signal. Modem B sees DTR and starts sending its carrier tone to the
other modem. The two modems attempt to settle on a modulation technique (explained on
page 518) and, if they succeed, both modems turns on their CD signals and communica-
tion between Computers A and B commences.

Detecting Failures Automatically
During the connection between computers A and B, at least five different components can
fail: Computers A and B, Modems A and B, and the dialed connection itself. Using only
two modem signals, CD and DTR, all components of the connection can detect a failure
anywhere in the communication path and shut down gracefully in the event of any failure
so computer data can be preserved and the telephone connection hung up:

• If Computer A dies suddenly, its DTR signal goes off. Modem A notices this and
stops sending its carrier tone and hangs up the phone. This makes Modem B turn off
its CD signal, which makes Computer B turn off its DTR signal, which makes Modem
B hang up its end of the phone connection. The same thing happens in the other direc-
tion if Computer B dies.

• If Modem A suddenly stops working (because, for example, you tripped over the
power cord and pulled it out of the receptacle), then Computer A no longer receives
the CD or DSR signals and knows the connection is broken. Meanwhile, Modem B
notices the absence of carrier and turns off CD and hangs up its end of the phone con-
nection. The same thing happens if Modem B dies — just exchange A and B in all the
sentences in this paragraph (except this one).

516 A Condensed Guide to Serial Data Communications / Appendix II

• If the connection itself is broken, both modems notice the loss of carrier and both turn
off CD, so both computers know the connection is broken. Of course, the computers
also turn off their DTR signals to make the modems hang up the phone, but since the
connection is broken already, who cares?

Automatic Dialing
Most modern modems contain a little computer that accepts commands from the terminal
or PC in the form of characters and reports the results back, also in character form. Al-
though an international standard [10] specifies the repertoire and format of these com-
mands and responses, it is not widely followed. In most parts of the world, modem dial-
ing languages are defined by the modem makers, and there are many such languages. Per-
haps the most popular dialing language is the Hayes AT command set, partially listed in
Table II-2 on the next page. Most modern modems claim to be ‘‘Hayes compatible,’’ but
compatibility tends to stop after the basic command set shown in the table. Commands for
selecting and controlling advanced and specialized features are usually different for each
modem make and model.

In Hayes language, commands begin with the two letters AT. When you type (or the com-
munication software sends) the letters AT, the modem uses them to recognize and adjust
to your interface speed. Different modems recognize different sets of speeds, so if your
AT commands do not echo or result in a response, then try a different speed. The normal
response to a valid AT command is ‘‘OK’’ or ‘‘0’’.

The command to dial a phone number is ATD followed by the phone number and then a
carriage return (press the Return or Enter key). The modem dials the number, waits for a
response, and then reports the results using either a numeric code or a descriptive English
word or phrase like CONNECT, CONNECT 1200, CONNECT 2400, BUSY, NO
ANSWER, NO DIALTONE, or NO CARRIER [37]. Some useful Hayes commands are
listed in Table II-2; each command must be terminated by a carriage return. Computer
programs are easily written to feed commands to an autodial modem and interpret the
results. People can also do this by hand using a terminal or emulator.

According to RS-232 and V.24, there should be no Carrier Detect (CD) signal from the
modem during the dialing process. Carrier appears only after the connection is complete.
Therefore, computer software like Kermit that controls modems must be prepared to ig-
nore CD during the dialing process but pay attention to it after the connection is complete.

However, some computer systems (such as Data General AOS/VS) do not allow serial
communication to occur at all in the absence of CD, so the modem (or the cable connect-
ing it to the computer) must be configured to assert CD all the time. This robs the com-
puter of the ability to detect a broken connection. Similarly, some computers do not turn

Modems 517

Table II-2 Selected Hayes Smartmodem 2400 Commands

Command Action

AT No action. Modem responds ‘‘OK’’ if it is in command state.

AT&C1 CD signal tracks carrier (recommended). AT&C0 keeps CD on always.

AT&D2 Modem hangs up and returns to command state if PC turns off DTR
(recommended). AT&D0 makes modem ignore DTR signal from PC.

ATE1 Enables echoing of modem commands (recommended). ATE0 disables
echoing.

ATM0 Turns off speaker. ATM1 turns on speaker while dialing.

ATQ0V1 Selects verbal result codes (OK, CONNECT) rather than numeric.

ATX0 Enables OK, CONNECT, RING, and NO CARRIER result codes.

ATX1 Enables OK, CONNECT, RING, NO CARRIER, ERROR, CONNECT
1200, and CONNECT 2400 result codes.

ATX4 Enables OK, CONNECT, RING, NO CARRIER, ERROR, CONNECT
1200, NO DIALTONE, BUSY, CONNECT, and CONNECT 2400 result
codes (usually the factory setting).

ATDTnnnnnnn Dials the phone number nnnnnnn (simulate Touch-Tone dialing). The
phone number may contain digits, spaces, parentheses, and hyphens, which
are ignored. A comma in the dial string causes the modem to pause
(normally 2 seconds, specified in register S8). The letter W means wait up
to 30 seconds (limit specified in register S7) for dial tone. An exclamation
mark (!) means ‘‘hook flash’’ — hang up the phone for half a second, then
reconnect. An at-sign (@) means to wait for the phone to stop ringing.
Semicolon (;) means return to command state. Dollar sign ($) means wait
for ‘‘bong.’’

ATDPnnnnnnn Dials the phone number, like ATDT, but with pulse (rotary) dialing.

ATDnnnnnnn Dials the phone number using the modem’s default dialing method
(Touch-Tone or Pulse).

ATH0 Hangs up the phone.

+++ Returns to command state without dropping the connection. This is the
modem’s escape sequence. Except in TIES modems (see page 629) it is
ignored unless a full second of silence precedes and follows it, to prevent
consecutive plus signs in your data from interfering with communication.

ATO (Letter O) Returns to online state from command state.

ATZ Initialize: Restores normal configuration.

ATS0=1 Enters answer mode (waits for a call). 0 means don’t answer calls.

ATS7=nnn Waits up to nnn seconds for carrier. Default depends on modem model.

ATS8=nnn Duration of comma dial modifier. Default is 2 seconds.

ATS10=nnn Delay between carrier loss and hangup, 10ths of seconds.

ATS25=nnn DTR change detect time, 100ths of seconds.

ATIn Might display some useful information about the modem model and con-
figuration. Try different values of n — 0, 1, 2, 3, . . .

518 A Condensed Guide to Serial Data Communications / Appendix II

on their DTR signals properly, so the modem must be configured to ignore DTR. But in
general, a modem should be configured to:

• Pay attention to DTR from the computer. If DTR goes off, hang up the phone.

• Turn on Carrier Detect only when the two modems have carrier.

Modulation, Error Correction, and Compression
Modems communicate with each other using an ever-expanding variety of modulation
techniques, such as the ones listed in Table II-3. Most modern modems support more than
one such technique. For two modems to communicate, they must have at least one
modulation technique in common and they also need a mutually acceptable negotiation
method to find it.

When you place a call, the modem begins with a particular modulation technique. The
technique is chosen according to the interface speed between your computer and the
modem or according to the modem’s configuration. For example, a V.32 modem might
try to connect to the remote modem using V.32 if your interface speed is 9600, V.22bis if
it is 2400, V.22 if it is 1200, and V.21 or Bell 103 if it is 300.

Suppose your modem tries to connect using V.32. If the other modem responds with a
V.32 carrier signal, the modems recognize each other immediately and your modem raises
its CD signal and tells you the connection is complete. If, however, the other modem does

Table II-3 Modem Modulation Techniques

Designation Year Description

ITU-T V.34 1994 28800, 26400, 24000, 21600, 19200, 16800, 14400 bps; full duplex

ITU-T V.32bis 1991 14400, 12000, 9600, 7200 bps; full duplex

ITU-T V.32 1984-88 9600, 4800, 2400 bps; full duplex

ITU-T V.29 1976-84 9600 bps; for leased lines, but used by MNP Class 6

ITU-T V.26ter 1984-88 2400 bps; full duplex

ITU-T V.26bis 1972-84 2400, 1200 bps; half duplex with 75 bps back channel

ITU-T V.22bis 1984-88 2400, full duplex

ITU-T V.22 1980-84 1200 bps, full duplex

Bell 212A 1977 1200 bps, half duplex

Vadic VA3400 1973 1200 bps, full duplex

ITU-T V.23 1972-84 600, 1200 bps, half duplex with 75 bps back channel

ITU-T V.21 1964-84 (Europe) 300 bps, full duplex, incompatible with Bell 103

Bell 103 ? (USA) 110, 150, 300 bps, full duplex, incompatible with V.21

Modems 519

not support V.32, your modem will execute its fallback procedure. The fallback proce-
dure is what allows modems of differing capabilities to find a common language. In this
case your modem might fall back to V.22bis and, if that doesn’t work, to V.22, and so on.

Modems that implement different fallback strategies might not be able to connect to each
other automatically, even if they do have a modulation technique in common. In such
cases, it is your job to configure your modem to change its initial modulation technique,
its fallback scheme, or both. Consult your modem manual.

Speed Buffering
Note the difference between modulation speed — the speed between the two modems —
and the interface speed — the speed used on the RS-232 digital interface between the
modem and the computer.

In most early low-speed modem models, the modulation speed and the interface speed had
to be the same. As new modulations were added, modulation fallback always meant a
drop in interface speed. So, for example, a call placed at 2400 bps on a Hayes 2400
Smartmodem that was answered by a 1200 bps modem would cause the originating
modem to report CONNECT 1200 and then drop its interface speed to 1200. The communi-
cation software would have change the computer’s interface speed to 1200 to match or
else the speeds would be mismatched.

Modern high-speed modems have a feature called speed buffering, in which the interface
speed is independent of the modulation speed, and can remain constant. This is important
not only because of modulation fallback, but also because V.34 modems can change
modulation speed up and down in response to changing line conditions during a connec-
tion, often to speeds (such as 21600 bps) not necessarily supported by the serial interface.
The CONNECT message from a speed buffering modem can report either the modulation
speed or the interface speed, depending on the modem’s configuration.

Error Correction
Error-correcting modems are designed to overcome transmission errors caused by noisy
telephone connections. Error correction, when it is effective, occurs only on the connec-
tion between the two modems, and not on the connection between each modem and its
computer or terminal, where errors can still occur for all sorts of reasons, including loose
connectors, data overruns, noisy buses, or interrupt conflicts.

Error correction requires a communications protocol, similar to Kermit’s, between the two
modems. Data sent by each modem is packaged with framing and checksum information;
the other modem receives these structured messages, checks them for damage, and re-
quests retransmission if necessary or else extracts the original data and passes it along to
the receiving computer.

520 A Condensed Guide to Serial Data Communications / Appendix II

Table II-4 Modem Error Correction and Compression Techniques

Designation Description

MNP Class 1 Error Correction: Asynchronous byte-oriented half duplex ARQ

MNP Class 2 Error Correction: Asynchronous byte-oriented full duplex ARQ

MNP Class 3 Error Correction: Synchronous bit-oriented full duplex ARQ

MNP Class 4 Error Correction: MNP Class 3 plus dynamic packet size

MNP Class 5 Data Compression: Used in conjunction with MNP Class 4

MNP Class 6 MNP Class 5 plus Universal Link Negotiation and Statistical Duplexing

MNP Class 7 Enhanced Data Compression: used in conjunction with MNP Class 4

MNP Class 9 MNP Class 7 combined with V.32 modulation

MNP Class 10 MNP Class 4 error control adapted to cellular calls

PEP Telebit Packet Ensemble Protocol, a combination of modulation, error con-
trol, and compression

HST US Robotics High Speed Technology.

ITU-T V.42 Error Correction: Link Access Protocol for Modems (LAPM), the inter-
national standard error correction technique for modems

ITU-T V.42bis Data Compression: The international standard compression technique for
modems

Several techniques are commonly used for error correction. Some of them are listed in
Table II-4. To achieve an error-free connection, two modems must share at least one error
correction technique. The error-correction method is settled after carrier has been es-
tablished; that is, after the two modems have found a common modulation technique.
Now that the modems can communicate with one another, they send messages attempting
to negotiate an error-correction protocol.

Suppose, for example, you are dialing with a V.42 modem. Once carrier is established,
your modem sends a message to the other modem requesting V.42 error correction. If the
other modem is capable of V.42, it agrees. If it does not support V.42, but it is capable of
a MNP class 4 or lower MNP level of error control, it notifies your modem and your
modem falls back to the agreed-upon MNP level.

However, if the other modem does not support any level of error control, it is likely to
pass your modem’s negotiation message through to the remote computer or service, which
can result in incorrect speed recognition, a failed login, or a hung-up connection.

Most modern modems can be configured to use or skip error correction, and to employ
various fallback schemes in negotiating the error-correction method with the other
modem. If you have trouble establishing a connection from an error-correcting modem,

Modems 521

try turning off its error-correction feature, choosing a different error-correction method, or
altering the modem’s error-correction fallback scheme.

After you have made a successful error-corrected connection between two modems, your
troubles are still not over. Suppose, for example, you have told the remote host to display
a long file. Suddenly there is a period of severe noise on the telephone connection, caus-
ing many retransmissions between the two modems. The remote modem is so busy
retransmitting previous data that it is unable to accept new data from the remote computer,
yet the remote computer continues to send it. The modem needs a way to tell the com-
puter to stop sending data for a while; that is, an effective flow control method. Without
one, data will be lost.

Similarly, you need effective flow control between your own computer and modem, other-
wise the modem might deliver data to your computer faster than the computer can handle
it, or vice versa.

Finally, beware of certain types of modems that claim to provide error correction, but re-
quire that this be done by the communications software or external drivers. Such modems
might (or might not) have the designation ‘‘RPI’’ or ‘‘Controllerless’’ on the box. These
modems can be used effectively only with certain proprietary drivers or communications
software packages on selected platforms (typically only Windows). When shopping for
an error-correcting modem, be sure that error correction is done by the modem itself and
does not require any external software to do it.

Data Compression
Above your modem’s modulation and error-correction techniques, there can be still
another layer of protocol between the two modems: data compression. As with modula-
tion and error correction, various compression techniques are available, some of which are
listed in Table II-4, and the same cautions about negotiation, fallback, and flow control
hold true.

Flow control is absolutely essential when compression is operational. In theory, data can-
not come out of modem B faster than it went in to modem A. In practice, however, it is
common that the interface speeds of the two modems are different, and therefore the data
sent to the slower modem by the faster one must be flow-controlled by the slower
modem’s computer. If you do not have an effective method of flow control — preferably
RTS/CTS — you should disable your modem’s compression feature.

To get maximum benefit from a data-compressing modem, lock its interface speed, if pos-
sible, at four times the modulation speed. For example, a 14400-bps V.32bis connection
should use an interface speed of 57600 bps. Otherwise, the modem’s compression
capacity could be wasted.

522 A Condensed Guide to Serial Data Communications / Appendix II

Figure II-4 Asynchronous Modem Cable Schematic

A glance at Tables II-3 and II-4 gives you an idea of the many possible combinations of
modulation, error-correction, and compression techniques offered by modern modems.
Each modem manufacturer offers a different selection, different default configurations,
different fallback schemes, and different ways to control all of these. New techniques are
developed with alarming frequency and hit the marketplace with little delay. When you
buy a new, full-featured modem, be prepared to spend long hours studying the manual and
experimenting with its configuration and settings.

Beware of modems that claim to provide data compression, but in fact require external
software or drivers to do it. These modems can be used effectively only with certain
proprietary communications software packages or drivers on selected platforms (Win-
dows). When shopping for a data-compressing modem, be sure that data compression is
done by the modem itself and does not require external software to do it. (If this
paragraph sounds remarkably similar to the final paragraph of the preceding section, it’s
no mistake.)

Cables and Connectors

The cable that connects a computer to a modem — that is, a DTE to a DCE — is called a
modem cable. It includes at least the circuits listed in Table II-1 on page 514, and il-
lustrated in Figure II-4, which also shows the direction of the signal and the connector pin
numbers for standard 25-pin connectors.

In a modem cable, the wires go ‘‘straight through,’’ connecting DTR on one side to DTR
on the other, CD on one side to CD on the other, and so on, for each circuit. The cable
terminates in connectors on each end.

Cables and Connectors 523

Figure II-5 Data Connectors

Gender
A connector is either female or male, like the ones shown in Figure II-5 on the next page.
Male connectors have pins sticking out, female connectors have holes to plug the pins
into. By convention, DTEs have male connectors, DCEs female.49

Number of Pins
The most common type of connector has 25 pins (or holes), one for each of the 25 RS-232
circuits; this is called a DB-25 connector. The assignment of connector pins to RS-232
circuits is specified by the RS-232 standard. 9-pin (DB-9) and 8-pin (Din-8) varieties are
becoming increasingly common, but vendors don’t follow a particular standard in assign-
ing circuits to pins; each pin is numbered and assigned a circuit arbitrarily.

49But conventions are made to be broken. When a connector is the wrong gender, an inexpensive adapter
called a gender changer can be employed to make the needed connection.

524 A Condensed Guide to Serial Data Communications / Appendix II

Figure II-6 Asynchronous Null Modem Schematics

Case
The pins or holes are joined to the wires and housed inside a compact case, as shown in
the figure, for protection and ease of handling. So, like Latin nouns, data connectors have
gender, number, and case.

Null Modems
It is possible to connect two DTEs (such as two computers, or a terminal and a computer)
directly to each other with no intervening modems. This is done using a null modem
cable, or a small null modem adapter (or modem eliminator), that turns a modem cable
into a null modem cable. The wires in a null modem cable do not go straight through, but
are cross-connected in various ways as shown in Figure II-6 on the next page, which also
shows the DB-25 pin numbers. The computers are tricked into believing they are con-
nected to real modems. With the ‘‘fakeout’’ model (A), the two computers can transmit
data but cannot signal each other in any other way. With a true null modem (B), each
computer can detect when the other computer crashes or otherwise stops communicating.

In UNIX and VMS computer systems, the system administrator may define serial com-
munication devices as either modem-controlled or direct lines. On a modem-controlled
line, the operating system insists on receiving the CD signal, and possibly also DSR and
CTS. If carrier drops, the next attempt to read a character from the device will result in a
‘‘device error,’’ unless the device is opened in a special mode (such as the CLOCAL mode
in UNIX).

On a direct line, modem signals are ignored. A direct line is typically used for a terminal,
PC, or printer connected directly to a computer serial communication device with a short
RS-232 null modem cable containing as few as three or four wires (sometimes the frame
ground wire is omitted, but this is not recommended).

Cables and Connectors 525

External and Internal Modems
An external modem is a separate device that connects to your computer’s serial port with a
data cable, and connects to the telephone jack with a telephone cable. An internal modem
plugs directly into your computer’s bus or backplane and takes the place of a serial port,
allowing direct connection of your computer to the telephone jack. Your computer does
not know it is a modem; it appears to the computer to be a serial port.

Even though they are usually more expensive, external modems are recommended over
internal ones because you can use them on different kinds of computers, they are easier to
support and configure and less likely to cause problems (like interrupt conflicts), and they
have status lights that can be helpful in troubleshooting problem connections. And also
because you can unplug an external modem from your serial port and use the port for
other things, including diagnostic devices.

DB-25 versus Miniature Connectors
In the neverending quest for miniaturization, computer manufacturers continue to find
new ways to shrink the serial connector. The original DB-25 RS-232 connector, ap-
proximately 3.5 by 0.6 cm and very well standardized, appeared in a 9-pin variety on the
PC/AT, only 1.5 by 0.6 cm, a substantial savings in space on the back of the computer, an
increasingly important consideration as computers become smaller, and especially impor-
tant for laptops. The pin assignments are as shown in Table II-1. The reduction in the
number of pins was possible because the pins that were eliminated were used only in
synchronous communication, e.g. on leased-line computer-to-computer connections.

Meanwhile the original Macintosh also used a DB-9 connector for its serial port, but not
only were the pin assignments different, so was the communication method: RS-423 [34]
instead of RS-232. RS-423 uses four wires for data, rather than two, and does not include
all the modem signals of RS-232. To use RS-423 with an RS-232 device (such as
modem), a special wiring configuration is used in which certain of the circuits are
cross-connected or grounded out.

The next generation of Macintosh reduced the size of the connector again, this time to the
Mini-Din8 configuration shown in Figure II-5, appoximately 0.75 cm in diameter (the
diagrams in the figure are roughly to scale). This reduction was possible because one of
the wires in the RS-423 DB-9 was not used.

Since then, Mini-Din8 connectors have found their way onto numerous laptops and
workstations. Unfortunately, the pin assignments differ from one implementation to the
next, even though the connectors are identical. Thus different cables might be required to
connect a modem to the Mini-Din8 on one computer than to the Mini-Din8 on another.

526 A Condensed Guide to Serial Data Communications / Appendix II

Furthermore, since RS-423 offers only a limited complement of control signals, you must
choose between a cable that uses the CD and DTR circuits to allow the modem and the
computer to detect a broken connection, and a cable that uses the RTS and CTS circuits
for hardware flow control. You can’t have both.

So, for example, if you have a hardware flow-control cable, you can’t hang up the phone
by lowering DTR — there is no DTR. Similarly, you can’t tell if the other computer has
hung up the connection by monitoring CD, because there is no CD either. You must con-
figure your modem to ignore the DTR signal, and you must configure your communica-
tions software to ignore the CD signal. On the other hand, if you use a CD / DTR cable,
you are likely to lose data because you don’t have local flow control with the modem, and
you must configure your modem to ignore the CTS signal and your software to ignore the
RTS signal.

When purchasing a Mini-Din8 modem cable, you must specify not only whether you want
a hardware-flow-control or a CD / DTR model, but also exactly which kind of computer it
is for (Macintosh, SGI, NeXT, etc). Luckily most external modems still have female
DB-25 connectors, so at least there are only two variables in the equation, not three.

Summary

It is not practical to list specific cabling and connector requirements for every kind of
computer that C-Kermit runs on. Such a list would be very long indeed and obsolete by
the time it was printed. Instead, please consult the technical documentation for your com-
puter and/or modem, plus any supplementary material that comes with your specific ver-
sion of C-Kermit. Meanwhile, a few general tips might smooth the way:

• For modem connections, use whatever modem cable is supplied or recommended by
your computer manufacturer.

• For direct connections between two computers, use the supplied or recommended
modem cable for each computer and interconnect the two modem cables with a
female-female DB-25 modem eliminator.

• If your connections suffer from electrical interference, shielded cables and connectors
(which are more expensive) might help.

Use hardware flow control if it is available. Enable it at each point along the connection;
e.g. computer A, modem A, modem B, and computer B. And if you have an error-correct-
ing, data-compressing modem, fix its interface speed at two to four times its maximum
modulation speed for best performance.

Summary 527

Detailed debugging of cables and modem signals can be accomplished with a device
called an RS-232 breakout box, available in computer supply catalogs. Another handy
tool is the loopback connector, which can be used to test integrity at various points along
the connection. Organizations that are large enough to have data communications or net-
working departments might also have a line analyzer or ‘‘data scope’’ available, that lets
you view both modem signals and data going in both directions, often complete with his-
tory buffers and printouts.

Declarations that modems have reached the upper limits of telephone network capacity al-
ways prove premature. While many recently believed that V.34 was ‘‘as fast as you can
go,’’ we are already seeing (nonstandard) ‘‘V.34+’’ modems with a modulation speed of
33600 bps, and we are hearing talk of experimental models communicating at 512K bps.
But whatever the speed, the general notions described here should apply for some time to
come, or at least until today’s telephone / modem combinations are made obsolete by
ISDN, ADSL, cable modems, or who-knows-what.

528

529

Appendix III

UNIX C-Kermit

This appendix explains how to configure and use C-Kermit on a computer with the UNIX
operating system. For an up-to-date list of limitations and restrictions in the UNIX ver-
sion of C-Kermit, also read the files ckcker.bwr and ckuker.bwr.

UNIX has become a generic term, referring to a large family of operating systems whose
members include AIX, BSD, DG/UX, Digital UNIX, DNIX, FreeBSD, HP-UX, IRIX,
Linux, NetBSD, ODT, OSF/1, POSIX, QNX, Solaris, SunOS, System V, ULTRIX,
XENIX, and many more. Each of these products differs from the others in numerous
ways and each product goes through numerous releases. An important goal in the design
of C-Kermit has been portability among the many releases of the many UNIX products on
the market (see page -UNIXVERSIONS for a list) and easy adaptibility to future products
and releases; see the files ckcplm.doc, ckccfg.doc, and ckuins.doc for details.

Installation

❍ ❍ ❍ ❍

Detailed instructions for building and installing UNIX C-Kermit are given in the
file ckuins.doc in the C-Kermit software distribution and in the UNIX
C-Kermit makefile itself. This section discusses the thorny issues of dialout
device access that are of interest not only to the C-Kermit installer but all too of-
ten to the C-Kermit user too. Skip ahead to page 537 if you do not need to use
C-Kermit for dialing out, or if C-Kermit is already configured correctly for dial-
ing out on your UNIX computer.

530 UNIX C-Kermit / Appendix III

Configuring tty Devices for Dialing Out
A device appears to the UNIX user as a file, usually in the /dev area. Here are some
samples from a Sun computer (ls -l /dev/*) :

crw-rw-rw- 1 root 13, 0 Jun 26 11:33 /dev/mouse (A Mouse)
crw-rw-rw- 1 root 3, 2 Feb 14 13:44 /dev/null (The null device)
crw-rw-rw- 1 root 30, 0 Feb 8 12:38 /dev/rmt0 (A magnetic tape)
crw-rw-rw- 1 root 2, 0 Aug 8 14:24 /dev/tty (Controlling tty)
crw-rw-rw- 1 root 44, 0 Jun 11 12:03 /dev/ttyh0 (Specific ttys)
crw--w--w- 1 root 44, 1 Jun 11 15:03 /dev/ttyh1
crw--w---- 1 cmg 44, 2 Aug 8 15:00 /dev/ttyh2
crw--w---- 1 fdc 44, 3 Jun 11 05:09 /dev/ttyh3

The tty devices are the ones we’re interested in. Different UNIX systems have different
names for them, but they are generally of the form /dev/tty followed by two charac-
ters, such as 00 or h2 (/dev/tty by itself is a special generic device that refers to the
user’s controlling terminal, or console). Other commonly used forms include /dev/acu,
/dev/cua, /dev/cub, etc. (cu stands for ‘‘calling unit,’’ acu for ‘‘automatic calling
unit’’), or more complex forms such as /dev/term/b or /dev/cua0p0. Write per-
mission (w) does not allow users to delete the file, but it does allow them to write to the
associated device.

A UNIX terminal device is inbound, outbound, or both. An inbound terminal is for people
to use as the controlling terminal of an interactive UNIX session. Each inbound terminal
on the computer is being watched by a process called ‘‘getty,’’ which waits for a connec-
tion to appear, and then issues the login prompt. Outbound terminals are not watched by
getty, and cannot be logged in to. These are used for dialing out to other computers.
Some UNIX systems allow terminal devices to be bidirectional, meaning they can be used
for both logging in and dialing out.

The system administrator (superuser) configures each terminal device as inbound, out-
bound, or bidirectional. The method varies from system to system. You must consult
your UNIX system administration manual for the relevant method. Traditionally, tty con-
figuration is done by editing a file called /etc/ttys, which contains entries that look
like this:

12console
02ttya
12ttyb
02ttyh0
12ttyh1
12ttyh2
12ttyh3

This file is read by the init process at system startup time. Two digits precede the tty
name; you are concerned with the first digit: 0 means the line is outbound (no getty), 1
means the line is inbound (has getty).

Installation 531

Some UNIX systems have a more generalized way of defining terminals to the init
process. For example, SunOS uses the file /etc/ttytab, which includes information
about the terminal speed and type as well as whether getty is on or off:

ttyh0 "/usr/etc/getty std.9600" vt100 off
ttyh1 "/usr/etc/getty std.19200" vt100 on
ttyh2 "/usr/etc/getty std.9600" vt100 on
ttyh3 "/usr/etc/getty std.9600" vt100 on

Dialout lines must be configured with getty off, or if your system allows it, as bidirec-
tional lines.

It is normally not necessary to shut down and restart your UNIX system in order to recon-
figure a terminal device. Rather, you can edit the appropriate tty configuration file and
then restart the init process, which is always process number 1:

$ kill -1 1

This operation, of course, requires superuser (root) privilege.

Once the tty device is configured to allow dialout, its permissions must also be set to let
users access it in read and write mode:

$ ls -l /dev/ttyh4
crw--w---- 1 root 44, 2 Aug 8 15:00 /dev/ttyh4
$ chmod go+rw /dev/ttyh4
$ ls -l /dev/ttyh4
crw-rw-rw- 1 root 44, 2 Aug 8 15:00 /dev/ttyh4

The chmod command adds read and write (rw) permission to ttyh4 for members of its
group (g) and all others (o).

Finally, on certain workstations, it might be necessary to configure the terminal driver for
dialing out. For example, Sun SPARCstations might come with serial ports that are not
set up for use with a modem. To configure the serial port for dialout use, follow the direc-
tions in your system installation or network manager’s guide. This might involve chang-
ing jumpers on your serial port board, reconfiguring the serial device driver, or both.

Ensuring Exclusive Access
Most operating systems allow serial devices such as terminals and magnetic tapes to be
opened by only one job at a time. Any attempt to open the same device by another job
results in an error like ‘‘exclusive access denied’’ or ‘‘device assigned by another user.’’

UNIX devices, however, can be shared by all users who have access to them based on
their permissions. So if user A has a dialout connection over /dev/ttyh4, UNIX does
not prevent user B from using /dev/ttyh4 at the same time, even though there is no
conceivable reason to allow this. The result of multiple users reading from the same serial

532 UNIX C-Kermit / Appendix III

device is that the incoming characters are fanned out to them, as if they were hands of
poker — nobody sees the whole deck. And of course, if multiple users write to the same
device, then who- or whatever is on the other end will receive only a confused jumble of
characters, impossible to sort out.

Before there was Kermit, there was UUCP, the UNIX-to-UNIX Copy Program [60].
UUCP was developed at AT&T Bell Laboratories by Mike Lesk in 1976, and publicly dis-
tributed for the first time with Version 7 of UNIX. It soon became the basis of Usenet, a
loose voluntary confederation of UNIX computers that call each other up at night and ex-
change files, news, and electronic mail. It was not long until someone discovered that
running two copies of UUCP at the same time on the same dialout line resulted in no use-
ful exchange of data. The solution was, and remains to this day, the UUCP lock file.

UUCP and every other program on the computer that might be using a dialout line, includ-
ing kermit, cu, and tip, are expected to observe a special convention: if the program wants
to use a particular dialout tty device, first it checks to see if a file with a certain name ex-
ists in a certain directory, and if so the program does not attempt to use the tty device. If
the file does not exist, the program must create it before starting to use the device and
must destroy the file when it is finished. This file is called the UUCP lock file; its name is
based on the tty device name.

Within a particular UNIX vendor’s software offerings, this convention tends to work —
uucp, cu, and tip are produced in the vendor’s controlled proprietary environment. Unfor-
tunately, the situation is not so controlled for Kermit, which needs to run on UNIX plat-
forms from many manufacturers:

• The directory that contains the UUCP lock files is different on different systems:
/usr/spool/uucp, /usr/spool/locks, /var/spool/locks, many others.

• The directory that contains the lock file might or might not be publicly readable and/or
writable.

• The format of the lock file name can vary from system to system: ttyh4,
LCK..ttyh4, and so on.

• Although the lock file name includes the device name, it might be subtly modified; for
example, in SCO Xenix, the lock file for /dev/tty1A is LCK..tty1a (lowercase a).

• The same physical device might have multiple names, such as /dev/tty0p0,
/dev/ttyd0p0, /dev/cua0p0, /dev/cul0p0 in HP-UX 10.0.

• There might be more than one lock file; certain versions of IBM AIX require two lock
files, one named (for example) LCK..tty0, and the other simply tty0 (in fact, the
second is a link to the first).

Installation 533

• The lock file itself may or may not be publicly readable and/or writable.

• The creation date and time of the lock file may or may not be significant.

• The contents of the lock file may or may not be significant. Some versions of UUCP
require that the lock file contain the process ID (pid) of the process that created it.

• The format of the contents of the lock file can vary from system to system: the pid
may be a binary integer (or other data type, such as short or long), or an integer in
ASCII string format, with or without various numbers of leading spaces or zeros.

• Even on the same computer, lock file conventions can change from one UNIX release
to the next, e.g. from SunOS 4.0 to SunOS 4.1, from AT&T System V R3 to R4.

• Recent UNIX standards like POSIX don’t even try to address this issue.

Therefore, you must determine what lock file conventions are in use on your system and
build Kermit to correspond to them; this is not always an easy task, because this informa-
tion tends to be missing from vendor documentation. Each C-Kermit ‘‘make’’ option
takes a best guess, but for Kermit to fit in properly with uucp, cu, and tip, you should
make certain that this guess is correct. Here is one way to check:

1. Get a directory listing (ls -lg) from each of the possible lock file directories:
/usr/spool/uucp, /usr/spool/locks, /var/spool/locks, /etc/locks (this
is not necessarily a complete list).

2. Run one of your vendor-supplied UUCP-family communication programs, such as cu,
giving the name of your dialout device (you might first have to find and edit the
UUCP ‘‘Devices’’ file). Example:

$ cu -l /dev/ttya

This procedure assumes you are using cu (syntax can vary from system to system;
check the ‘‘man’’ (manual) page for cu on your computer for details).

3. Escape from cu back to your local shell by typing carriage return, then tilde (~), then
exclamation mark (!).

4. At the shell prompt, repeat step 1.

5. Exit from the inferior shell, exit from cu (carriage return, tilde, period).

6. Compare the directory listings to see which files, in what format, with what permis-
sions, in which directories were created by cu.

534 UNIX C-Kermit / Appendix III

In recent years, UNIX vendors have been converting to a new and somewhat more stan-
dardized version of UUCP called Honey DanBer (after its authors, Peter Honeyman,
David A. Nowitz, and Brian E. Redman, who rewrote the original UUCP in 1983). If this
trend continues, some of the confusion can be eliminated.

Installing Kermit without Privileges
If you are the sole user of a UNIX workstation, you don’t have to worry about other users
abusing their privileges or interfering with your work, so you need not be concerned with
the material in this section unless you use UUCP.

If you are the manager of a multiuser UNIX system where all the users trust each other,
and you trust them, you can make access to your tty devices and lock file directory un-
restricted. For example, if your lock file directory is /usr/spool/uucp and your
dialout device is ttyh4, give the following commands from superuser command level:

su% chmod 777 /usr/spool/uucp
su% chmod 666 /dev/ttyh4

The risk here is a free-for-all in the lock file directory; users can store any file there at all,
and delete any file as well. They can even remove each others’ lock files, despite the fact
that the lock files are created with 444 (read-only) permission. Deletion is possible be-
cause the directory has write permission, which is required for people to create their lock
files in the first place. And there is also some risk of one user interfering with another’s
use of the tty device.

To make your tty devices available only to a selected group of users, put those users in the
uucp group (or whatever other group is used by uucp, tip, and cu). The method for doing
this varies from system to system, but generally involves editing the /etc/group file to
add these users to the uucp entry in that file. You don’t have to make the Kermit program
setuid or setgid, or give it any particular owner or group, but you do have to ensure that
the uucp lock directory and the appropriate tty devices are members of the uucp group,
and have the appropriate permissions in the group field:

su% chgrp uucp /usr/spool/uucp
su% chmod 770 /usr/spool/uucp
su% chgrp uucp /dev/ttyh4
su% chmod 660 /dev/ttyh4

Installing Kermit with Privileges
On multiuser UNIX systems where access to the uucp directory or to tty devices is a
security issue, it is possible to restrict access to the lock file directory and the dialout tty
devices, then give the Kermit program privileges to override these restrictions, and some
or all users the ability to run the privileged Kermit. This prevents users from circumvent-
ing the lock file conventions built into Kermit (and uucp, cu, and tip), and therefore from
accessing a tty device that somebody else is already using.

Installation 535

Despite the attractions of this setup, there are also serious risks. Any program that runs in
privileged mode poses a tremendous security threat to your system, much greater than the
possible inconveniences of open lock directories and tty devices. Although every effort
has been made to ensure C-Kermit contains no loopholes, the slightest bug or oversight on
the part of the authors or anyone who has modified or customized the source code — not
to speak of the damage that could be done intentionally — could open doors for intruders.
This warning is not particular to Kermit: it applies to all UNIX programs.

If you really want to make Kermit a privileged program, first make sure you have built it
correctly for your system. There are several important compile-time options that must be
considered, and that vary from system to system. The most important of these is whether
your version of UNIX supports the ‘‘saved original setuid’’ feature. If it does not, then
Kermit will not work right as a privileged program — it should not pose a security risk,
but it won’t be able to access protected files or tty devices either. For details, read the
files ckuins.doc (the installation instructions), ckuker.bwr (the ‘‘beware’’ file), and
ckcplm.doc (the program logic manual).

To install Kermit as a privileged program, make the owner of the Kermit program the
same as the owner of the lock file directory and the tty device, and set the setuid bit in the
Kermit program’s permissions, so that while running Kermit, the user has the privileges of
user uucp. For example:

su% chown uucp kermit (kermit’s owner is uucp)
su% chmod u=srwx,g=rx,o=rx kermit (Turn setuid bit on)
su% chown uucp /usr/spool/uucp (Lock directory owned by uucp)
su% chmod 700 /usr/spool/uucp (Can be accessed only by owner)
su% chown uucp /dev/ttyh4 (Dialout device owned by uucp)
su% chmod 600 /dev/ttyh4 (Can be accessed only by owner)

The UNIX version of C-Kermit includes special code to turn off these privileges as soon
as it starts up, and to turn them on only when it is manipulating lock files or opening the
tty device, so that files are accessed and subprocesses are run with the user’s own identity
and access rights, but this code cannot be guaranteed to work correctly for every release of
every variation of UNIX.

Caveat Installator!
For the lock file mechanism to achieve its desired purpose — prevention of access to the
same tty device by more than one process at a time — all programs on a given computer
that open, read or write, and close tty devices (kermit, uucp, cu, tip, and so on) must use
the same lock file conventions.

Be alert to changes in new releases of your UNIX operating system. The installation pro-
cedure might change the permissions on your lock file directories and tty devices. What’s
more, it is quite common these days for new UNIX releases to change their lock file con-

536 UNIX C-Kermit / Appendix III

ventions; the new versions of uucp, tip, and cu will follow the new conventions, but Ker-
mit and other communication programs that are not distributed by your UNIX vendor will
still be using the old ones until you reconfigure (or reprogram!) them.

Installation 537

Using UNIX C-Kermit

UNIX operating systems are available for computers ranging from small desktop systems
to large mainframes and supercomputers. To accommodate smaller computers that have
restrictions on physical memory, address space, disk space, or compiler or linker capacity,
C-Kermit can be built in reduced configurations. This is required primarily for UNIX ver-
sions running on DEC PDP-11s and on 8088, 8086, 80186, or 80286 PCs, and generally is
not necessary elsewhere. The three major C-Kermit configurations are:

1. Fully configured, but perhaps without networking, Kanji character sets, and/or
fullscreen display. In most cases, these features can be added by simple changes to the
build procedure (see the files ckccfg.doc and ckuins.doc for instructions).

2. Minimum interactive. The C-Kermit prompt appears and a minimum set of com-
mands is available for terminal connection and file transfer. There is no character-set
translation, script programming language, or built-in HELP text.

3. Command-line only. This configuration has no prompt, no interactive dialog, and no
initialization file. It is controlled exclusively with the command-line options listed in
Appendix I, with the exception of -y, -Y, -C, -S, and any others that imply the
availability of interactive commands.

See the file ckccfg.doc for detailed information about C-Kermit configuration options.

If you have an interactive version of C-Kermit, you can use the SHOW FEATURES com-
mand to find out exactly which features are included and excluded. If the SHOW

FEATURES command itself is missing, you can use the CHECK command, which is included
in all interactive configurations, for example:

C-Kermit>check kanji
Not available
C-Kermit>

Preparing UNIX for C-Kermit
To make effective use of C-Kermit in the UNIX environment and, for that matter, to use
UNIX itself to best advantage, you should ensure that your UNIX session is speaking the
same language as the terminal or emulator that you are using to access it.

Establishing Your Terminal Type
Before starting C-Kermit, you should tell the UNIX system what kind of terminal you
have so C-Kermit’s FULLSCREEN file transfer display (if available) will work correctly.

538 UNIX C-Kermit / Appendix III

Table III-1 Setting Your Terminal Type in UNIX

Shell Command

Bourne shell (sh) TERM=vt320 ; export TERM

Korn shell (ksh) export TERM=vt320

C-shell (csh) setenv TERM vt320

To identify your terminal to UNIX, try one of the methods from Table III-1, which uses
the DEC VT300-series terminal as an example. The actual method used depends not only
on your shell, but on the site- or vendor-dependent peculiarities of your UNIX system.
For example, some UNIX systems use a program called term or tset; others might
prompt you for a terminal type when you log in.

To test whether your terminal type is set correctly, try a command that changes the ap-
pearance of your screen, such as ‘‘clear’’ (Berkeley UNIX) or ‘‘tput clear’’ (AT&T UNIX)
to erase the terminal screen, or start a screen-oriented editor like VI or GNU EMACS. If
your screen does not respond as expected, try another terminal type. In most cases, lower-
case letters are required in the terminal name.

If you use a speaking or Braille device to read the screen to you, tell UNIX that you have a
simple hardcopy terminal, such as a Teletype Model 33. Most UNIX systems support this
under the name ‘‘tty’’ or ‘‘tty33.’’ Also use this terminal type if you are logging in from a
real hardcopy terminal, such as an ASCII TDD (Telecommunication Device for the Deaf).

UNIX Control Characters
The UNIX operating system and many UNIX applications support the use of control
characters (and sometimes also printable characters) for editing or interrupting commands.
The repertoire of functions available, and the characters assigned to them, can be dis-
covered by using the stty command:

% stty all

(or stty -a, or stty everything).

In response, you should see a report that includes the following information (specific ap-
pearance may vary):

erase kill werase rprnt flush lnext susp intr quit stop eof
^? ^U ^W ^R ^O ^V ^Z/^Y ^C ^\ ^S/^Q ^D

These are the ‘‘significant characters’’ in your UNIX login session. Their meanings are
listed in Table III-2. Control characters are shown in circumflex notation; ^U means
Control-U, ^\ means Control-Backslash, and ^? means Delete. (For a complete listing of
circumflex notation, see Table VII-2 on page 594.)

Using UNIX C-Kermit 539

Table III-2 UNIX Terminal Control Characters

Notation Meaning

eof The character that generates an end of file condition at the terminal

erase The character that erases the rightmost character from the current line

flush The character that starts or stops discarding screen output

intr The character that interrupts the current foreground process

kill The character that erases the current line

lnext The character that quotes the next character

quit The character that terminates a process and creates a ‘‘core dump’’ file

rprnt The character that reprints the current line to show the effects of any editing

stop The software flow control stop and start characters

susp The character that suspends the current foreground process

werase The character that erases the rightmost word from the current line

You can change the interrupt character or any of the others in the list with the UNIX
stty command. Normally, the method is to give the name of the terminal function you
want to change, followed by the character you want to change it to, written in circumflex
notation. For example, to change your interrupt character to Ctrl-B, enter:

% stty intr ^B

(that’s circumflex followed by the letter B, not a real Ctrl-B). To disable a function al-
together, use (depending on your UNIX version) undef or ^- (circumflex hyphen):

% stty quit undef or stty quit ^-

For details about the use of the stty command on your system, type man stty.

Flow Control
In your terminal session with the UNIX system, before you start C-Kermit, you should en-
sure that your UNIX login terminal device is using the same kind of flow control as your
local terminal or emulator. For example, if your local terminal is using Xon/Xoff software
flow control, then your UNIX session should be using it too. This can help prevent loss of
data and fractured screens during your terminal session. Use the stty command to check
whether Xon/Xoff flow control is enabled for your UNIX session. The Xon/Xoff charac-
ters are shown in the ‘‘stop’’ field of the stty report. If they are missing, you can enable
them with a command like:

$ stty ixon ixoff

Consult man stty for details specific to your UNIX system.

540 UNIX C-Kermit / Appendix III

If you are entering UNIX through a terminal server, you might find that Xon/Xoff flow
control does not work promptly enough to prevent loss of data. In that case, you can en-
able it at the terminal server rather than at your UNIX session. For example, at the prompt
of a Cisco terminal server, use:

ts>terminal flowcontrol software in out

However, this prevents transmission of Ctrl-S and Ctrl-Q characters as data, as required
by certain UNIX applications such as the EMACS editor.

Some UNIX systems also support hardware flow control, most commonly RTS/CTS, but
in most cases it won’t be used unless you request it. In certain UNIX versions, like Dell
System V Release 4, a login terminal must be permanently configured by the system
manager for hardware flow control. In others, you can enable or disable hardware flow
control by giving a UNIX command after you have logged in. Consult your system’s
‘‘man pages’’ to find out the proper incantation. Here are some examples:

$ stty crtscts (SunOS 4.0 or later)
$ stty rtsxoff ctsxon (System V R4, some versions)

If you are entering UNIX through a terminal server, you might be able to enable hardware
flow control there if it is not already enabled. On a Cisco terminal server, for example, the
command is:

ts>terminal flowcontrol hardware in out

When C-Kermit is active, it attempts to use the type of flow control you have specified in
your most recent SET FLOW command (Xon/Xoff by default). Hardware flow control,
however, is often available only through the use of tricks that C-Kermit might not know
about, for example stty commands like the ones just shown, special device names such
as /dev/tty00h instead of /dev/tty00, or /dev/cufa instead of /dev/cua.
Once again, consult your system documentation for details.

It can’t be stressed enough that terminal connection and file transfer work best when an
effective flow control method is active. Hardware flow control, if available, should be
used in preference to software flow control.

Using International Characters in UNIX
Even though C-Kermit has extensive facilities for handling and converting character sets,
you can’t depend on UNIX itself for any help in this area. Older versions of UNIX do not
support 8-bit no-parity terminal connections. They give you 7-bit terminal connections
with even parity, restricting you to using only ASCII or a 7-bit national character set
during your UNIX terminal session. UNIX terminal drivers make no provision, such as
Shift-In/Shift-Out, for use of 8-bit characters in the 7-bit communications environment.

Using UNIX C-Kermit 541

There is, however, a movement afoot to make newer versions of UNIX ‘‘8-bit clean’’ so
8-bit character sets such as the ISO Latin alphabets can be used. 8-bit cleanliness is a
standard feature of many recent UNIX releases. In others, it is available upon request; for
example in SunOS 4.1 and ULTRIX 4.0, where it is enabled by the command:

$ stty pass8

Other UNIX systems might or might not be 8-bit clean. Try stty pass8, stty
-parenb cs8, or stty -parity. Check your UNIX system manuals or man stty
for details. If you are accessing UNIX from a terminal or emulator, make sure that it is
also set up for 8 data bits and no parity, as well as for the character set you want to use. If
you are coming into UNIX through a terminal server or network connection, make sure
that it is set up for 8-bit transparency too; for example, use rlogin -8 rather than
rlogin.

Program Control
C-Kermit is a character-mode application designed to be used from a terminal. If you are
accessing your UNIX system from a terminal or terminal emulator, you can start the Ker-
mit program in the normal way; that is, by typing its name possibly followed by
command-line arguments. Then you can have an interactive dialog with it, using your
keyboard and screen in the traditional manner.

If you have a desktop UNIX workstation with a mouse-and-window-oriented graphical
user interface (GUI) such as Motif, NeXTstep, SunView, DECwindows, AIX Windows,
and the like, you might find that clicking on C-Kermit in the File Browser, File Viewer, or
whatever else it might be called in your windowing environment, does not work well.
Some workstations complain that C-Kermit is not a (name-of-GUI) application. Others
might automatically create a terminal window for C-Kermit, but one that does not have all
the features of a UNIX terminal device, in which case C-Kermit will not work correctly.

The best way to start Kermit in a GUI environment is first to open a terminal emulation
window that gives you the UNIX shell prompt, then start Kermit in the normal way from
the shell prompt. On some systems you can write a shell script to do this, then you can
click on the shell script in your GUI environment. See the ckuker.bwr file for ideas.

Starting C-Kermit
To start C-Kermit, just type ‘‘kermit’’ at the shell prompt:

$ kermit
C-Kermit 7.1.199 29 Apr 2001, SCO OpenServer R5
Type ? or HELP for help
C-Kermit>

542 UNIX C-Kermit / Appendix III

If you get a message like ‘‘not found’’ rather than C-Kermit’s herald and prompt, it means
that C-Kermit’s directory is not in your PATH (in which case you should change the
PATH definition in your login profile to include it), or it is called by some other name
(such as ‘‘wermit’’ or ‘‘ckermit’’), or it isn’t there at all. If you get a message like ‘‘cannot
execute’’ or ‘‘permission denied,’’ C-Kermit is installed incorrectly. Review the instal-
lation instructions in the file ckuins.doc, or show them to whoever is responsible.

Initialization File
UNIX C-Kermit’s initialization file is called .kermrc. Because the name begins with a
period, it is a hidden file and normally does not show up in directory listings, and it is nor-
mally immune from rm * operations. The .kermrc file must be located in your home
(login) directory. We recommend that you use the standard C-Kermit initialization file;
create a separate file called .mykermrc to make any desired personal customizations.
Your dialing directory file, if any, should be called .kdd, your network directory .knd,
and your services directory .ksd, all in your home directory.

Redirection of Input and Output
C-Kermit reads its interactive-mode commands from the standard input device, normally
your keyboard, and prints its messages on the standard output device, your screen. To
redirect Kermit’s standard input to come from a file, use the < operator on the UNIX
command line:

$ kermit < commandfile

In this example, the file commandfile contains Kermit commands. Kermit executes
them, one after the other, until it comes to the end of the file (or to a QUIT or EXIT com-
mand), and then it exits back to the system prompt.

You can also redirect Kermit’s screen output to a file using similar mechanisms:

$ kermit > kermit.log

Of course, redirecting Kermit’s screen output without also redirecting its input doesn’t
make much sense, because then you’ll be typing Kermit commands to a blank screen. To
redirect both input and output:

$ kermit < kermit.tak > kermit.log

You can even feed commands to Kermit from another process, if your mind is agile
enough to conceive of a reason to do this:

$ grep ^send commandfile | sort | kermit

But note that Kermit does not have any way to jump around in the standard input stream;
therefore commands fed to Kermit via redirection can not include GOTO.

Using UNIX C-Kermit 543

Background Operation
If you’re using Kermit in local mode, you can have it transfer files in the background
while you do other work in the foreground. This can be accomplished by redirecting
Kermit’s standard input and output to command and log files and terminating the shell
command that invokes Kermit with an ampersand:

$ kermit < cmdfile > logfile &

C-Kermit makes various system-dependent tests to see if it is running in the background.
If it concludes that it is, prompts and most messages are not issued. If you start Kermit in-
teractively but get no prompt after the greeting is printed, that means your operating sys-
tem is reporting the symptoms of background operation even though Kermit is in the fore-
ground. In such cases, you can force Kermit to behave as though it were in the foreground
by including the -z command-line option:

$ kermit -z
C-Kermit 7.1.199 29 Apr 2001, MIPS RISC/OS
Type ? or HELP for help
C-Kermit>

Don’t use the -z option if you really are starting C-Kermit in the foreground.

Running C-Kermit in cron Jobs
cron is the UNIX way of scheduling and running tasks automatically without human in-
tervention (‘‘man cron’’ for details). Kermit jobs can be run this way too. Your crontab
entry would normally look something like this:

0 0,6,12,18 * * * (cd /someplace; kermit cmdfile > kermit.log)

in which the material on the left is scheduling information, and the parentheses contain a
list of commands to execute. Typically, you would change to a specific directory and then
start Kermit, directing it to execute commands from a particular file (remember, if the first
item on the C-Kermit command line is a filename, it is treated as a command file), and
redirecting its output (messages, etc) to a log file.

A typical command file might be a login script with some file transfer commands. For
neatness in the log file, you would probably want to include SET FILE DISPLAY NONE.

Interrupting C-Kermit
C-Kermit can be interrupted at its prompt, while typing a command, during execution of
any command except CONNECT or remote-mode file transfer, and during local-mode file
transfer by typing the interrupt character, which is normally Ctrl-C. The interrupt charac-
ter should echo as ^C... and it should return you to the C-Kermit prompt immediately if
you were running C-Kermit interactively, or back to the system prompt if you started
C-Kermit with command-line action options (Appendix I).

544 UNIX C-Kermit / Appendix III

If Ctrl-C does not interrupt C-Kermit, use the UNIX stty command as described on page
538 to find out what your UNIX intr character is. Use that character instead or change
your interrupt character to Ctrl-C.

If you type the interrupt character while C-Kermit is executing its initialization file or
command-line options, it exits.

To interrupt C-Kermit during remote-mode file transfer, type three Ctrl-C characters in a
row (or whatever has been declared in the most recent SET TRANSFER CANCELLATION

command).

To interrupt C-Kermit during CONNECT mode, use the CONNECT-mode escape character,
followed by the letter C to get back to the prompt, or any of the other escape-level com-
mands described in Chapter 8.

Suspending C-Kermit
On UNIX systems with job control (generally those that are based on Berkeley UNIX,
AT&T UNIX System V R4, or POSIX), you can suspend Kermit by typing Ctrl-Z or
whatever your suspend character is (you can find out by using the stty command as
described on page 538; your suspend character is listed under susp):

C-Kermit>^Z
[4] + Stopped (signal) kermit
$

You can suspend C-Kermit this way at any time except when it is in CONNECT mode or
engaged in remote-mode file transfer. When at C-Kermit prompt level, you can also
suspend Kermit by using the SUSPEND command:

SUSPEND
Suspends C-Kermit. Stops C-Kermit and returns to the system prompt, but does not
remove C-Kermit from memory. Synonym: Z.

SET SUSPEND { ON, OFF }
ON, the normal setting, means C-Kermit handles SUSPEND signals if it was built in an
environment that supports them. OFF means C-Kermit ignores SUSPEND signals, and
can not be suspended.

After you have suspended C-Kermit, you can get back to it by using the UNIX fg (fore-
ground) command with Kermit’s job number (as shown when you suspended Kermit, and
also shown by the shell’s jobs command) preceded by a percent sign:

$ fg %4
C-Kermit>

or its process ID number (as shown by the UNIX ps command). If Kermit was executing

Using UNIX C-Kermit 545

a command, it should resume where it left off. If it was at the prompt, you should get a
new prompt. If you type ‘‘kermit’’ again, instead of ‘‘fg’’, you will start a new copy of
Kermit; the old one will still be sitting in the background.

WARNING: The UNIX version of C-Kermit allows itself to be suspended and
continued if the underlying operating system supports this feature. But (and this
is a Big But), you should not attempt to suspend Kermit or any other program if
your UNIX shell does not also support this feature (Kermit cannot tell). Most
C-Shells and K-Shells do, but most Bourne shells do not.50 If you suspend
C-Kermit in an environment that does not properly support job control, your
session might become hopelessly hung. Your login session must be killed from
another terminal (use the UNIX ps and kill commands).

There are three ways to deal with this problem:

1. Use a shell that supports job control. At most sites, you can use the chsh command
to choose a different shell. For example, to use the C-Shell (csh):

$ chsh csh

Type man chsh for further information.

2. Give C-Kermit the command SET SUSPEND OFF to make C-Kermit ignore the suspend
signal:

C-Kermit>set suspend off

3. Disable the suspend signal before starting C-Kermit:

% stty susp undef

Fixing Your UNIX Login Terminal Modes
If C-Kermit exits abnormally, for example because it was halted from another terminal,
your login terminal might not function normally. In particular, it might not echo the
characters you type and it might not recognize the Return or Enter key as a command ter-
minator. In such cases, you should be able to restore your terminal to normal operation by
issuing the reset or stty sane command (depending on your UNIX version). Type
Ctrl-J, then the characters of the command, and terminate with another Ctrl-J (not Return
or Enter); for example:

$ <Ctrl-J>reset<Ctrl-J>

50An exception is the Bourne shell distributed with AT&T System V Release 4.

546 UNIX C-Kermit / Appendix III

UNIX C-Kermit Command Procedures
When creating a shell script program in UNIX, you can specify which shell (such as sh,
csh, or ksh) is to execute the program by including a special type of ‘‘comment’’ as the
first line, for example:

#!/bin/ksh

The # character is the shell comment introducer, and the second character, !, tells the shell
that the rest of the line gives the name of the program that should be run to execute the
shell script. The example tells your current shell to start /bin/ksh and to feed the file
into ksh’s standard input.

C-Kermit follows the same convention, which is possible because the # character is not
only a UNIX shell comment introducer but also, by happy coincidence, a C-Kermit com-
ment introducer. If you put a line like this:

#!/usr/local/bin/kermit

at the beginning of a C-Kermit command file and you also give execute permission to the
file, you can run the file simply by typing its name at the system prompt, just as you
would run a shell script. But in this case, the shell feeds the file to Kermit rather than to a
UNIX shell. Of course, you can also use C-Kermit’s TAKE command to execute the same
file, in which case the #! line is ignored.

On your own UNIX system, substitute the actual pathname of the Kermit program if it is
not /usr/local/bin/kermit. To give execute permission to the command file, use the
chmod +x command at the UNIX shell prompt:

$ chmod +x cmdfile

The commands in the file are executed after your initialization file has been completely
processed, but before the C-Kermit prompt appears. If you want the command file to exit
to the system without issuing the C-Kermit prompt, include an EXIT command at the end.

You can also include C-Kermit command-line options in the command file invocation:

$ cmdfile -p e -l /dev/ttyh8

or, to have C-Kermit skip its initialization-file processing:

$ cmdfile -Y

When you start Kermit from a command file, the UNIX shell constructs a command of
this form:

kermit-path-name command-file-name options

so you can also invoke Kermit like this yourself, for example:

$ kermit cmdfile -p e -l /dev/ttyh8

Using UNIX C-Kermit 547

Terminal Connection
In the UNIX version of C-Kermit, terminal emulation is provided by your console driver,
workstation terminal window, terminal emulator, or terminal. C-Kermit does not, itself,
provide any particular type of terminal emulation beyond what is described in Chapter 8.

The CONNECT-Mode Escape Character
UNIX C-Kermit’s default CONNECT-mode escape character is Ctrl-\ (Control-Backslash)
except on certain workstations (such as the NeXT) that cannot generate this character
from the keyboard, in which case Ctrl-] (Control-Rightbracket) is used. Use SHOW

ESCAPE to find out what your escape character is, and SET ESCAPE to change it.

Key Mapping
C-Kermit’s SET KEY command is effective only with keys that generate single-byte 7-bit
or 8-bit codes. 7-bit keycodes are supported by C-Kermit for all UNIX versions, provided
C-Kermit was configured with the key-mapping feature. 8-bit codes can be used if you
have a keyboard capable of generating them, if C-Kermit has a clean 8-bit path to the
keyboard, and if you have told C-Kermit to SET COMMAND BYTESIZE 8.

Suspending C-Kermit While in CONNECT Mode
During terminal connection, you can follow the CONNECT-mode escape character by the
letter Z to suspend Kermit. This stops Kermit without breaking the connection and returns
you to the same UNIX shell that you started Kermit from. Unlike the ! option, the Z op-
tion lets you get at any other jobs (text editors, mail programs, etc.) that you might be run-
ning in parallel with Kermit. Use the UNIX fg command to continue Kermit’s CONNECT

session, as in this example:

C-Kermit>connect (CONNECT to remote host)
% (Remote system prompt is %)
% ^\z (Suspend Kermit)
[3] + Stopped (signal) kermit
$ (Back at local system, prompt is $)
$ jobs (List my jobs)

[3] + Stopped (signal) kermit
[2] - Stopped emacs
[1] Stopped (signal) mm

(Here you can run other programs,
continue your background jobs, etc.)

$
$ fg %3 (Restart C-Kermit)
% (Connect session continues)
%

The usual cautions apply here. Don’t try to suspend C-Kermit if it was invoked from a
shell that does not support job control.

548 UNIX C-Kermit / Appendix III

File Transfer
UNIX C-Kermit offers the full range of file transfer features, including text and binary
transfers, file groups, attributes, recover, and the FULLSCREEN file transfer display if it has
been configured in your version (use the CHECK FULLSCREEN command to find out). For
text files, UNIX record format (lines terminated by LF) is automatically converted to
Kermit’s standard intermediate form (CRLF) during file transfer.

C-Kermit’s packet buffers are a certain size, depending on the specific build options. Use
SHOW PROTOCOL to find out what the buffer size is. The product of the window size and
packet length can not be greater than the buffer size. If your version of UNIX C-Kermit
was built with the DYNAMIC compilation option (use CHECK DYNAMIC to find out), you
can use the SET BUFFERS command to increase the buffer size to allow more window slots
or longer packets, for example:

C-Kermit>set buffers 80000
C-Kermit>set window 20
C-Kermit>set receive packet-length 4000

If your C-Kermit was built without the DYNAMIC feature, the buffer size can’t be changed.

Interruption of Local-Mode File Transfer
In most C-Kermit versions, you can interrupt a local-mode file transfer by typing single
letters like X, Z, or E (see Chapter 9). In C-Kermit versions based on AT&T System V
UNIX or in POSIX, however, you might have to type the CONNECT-mode escape charac-
ter (normally Ctrl-Backslash) before you type the interruption key.51 C-Kermit’s message
at the start of file transfer gives you the information you need. Example:

C-Kermit>s oofa.txt
SF
Type escape character (^\) followed by:
X to cancel file, CR to resend current packet
Z to cancel group, A for status report
E to send Error packet, Ctrl-C to quit immediately:
A
Sending: oofa.txt => OOFA.TXT
Size: 20659, Type: text
..........Ctrl-\X
Cancelling File [interrupted]
ZB
C-Kermit>

In this case the escape character was Control-Backslash, so the user typed Ctrl-\ followed
by the letter X to interrupt the file transfer.

51The control-character prefix is required because of limitations in the System V and POSIX terminal
drivers. Nevertheless, your version of C-Kermit might include a workaround, so also try entering the
interruption characters without the control-character prefix.

Using UNIX C-Kermit 549

Background File Transfer
On UNIX systems with job control, you can type your suspend character (normally
Ctrl-Z) to suspend Kermit during local-mode file transfer. This stops Kermit so you can
talk to your shell or run other programs. Later (but not too much later) you can bring it
back in the foreground (using the UNIX fg command); the file transfer resumes where it
left off, provided the other Kermit has not timed out.

C-Kermit>s order.log
SF
Sending: order.log => ORDER.LOG
Size: 3712745, Type: text
X to cancel file, CR to resend current packet
Z to cancel group, A for status report
E to send Error packet, Ctrl-C to quit immediately: A
........Ctrl-Z
[3] + Stopped (signal) kermit
$ fortune (Quick, I need a fortune)
The moon is full. Today is your lucky day. You are very hungry.

$ fg %3 (Resume Kermit)
kermit
N%........................... [OK]
ZB<BEEP>
C-Kermit>exit

You can also continue the file transfer in the background, leaving your terminal free for
other work in the meantime:

.....Ctrl(Z)
[3] + Stopped (signal) kermit
$ bg %3 (Continue Kermit in the background)
[3] kermit&
$ jobs
[3] + Running kermit
[2] - Stopped emacs
[1] Stopped (signal) mm

Eventually, your shell will give you a message that the job has stopped because it wants
‘‘tty input,’’ which means the transfer has completed. At that point you can put Kermit
back in the foreground:

[3] + Stopped (tty input) kermit
$ fg %3 (Back to the foreground)
C-Kermit> (Prompt reappears)

Sending Files
C-Kermit processes wildcard characters (metacharacters) in the SEND and related com-
mands, and the C-Kermit server also processes them when it receives a GET command.

UNIX C-Kermit offers two options for processing wildcards: its own internal wildcard ex-
pander and that of your shell. Select the desired expansion method with this command:

550 UNIX C-Kermit / Appendix III

SET WILDCARD-EXPANSION { KERMIT, SHELL }

Unless you say otherwise, Kermit expands wildcards itself. In this case, three special
characters are recognized and expanded:

~ (Tilde) (at the beginning of a filename only) is translated into your login directory
name (if followed immediately by a slash) or into the login directory of the user whose
username immediately follows the tilde:

C-Kermit>send ~/.profile (My own .profile file)
C-Kermit>send ~jrd/mskermit.ini (JRD’s mskermit.ini file)

* (asterisk) Matches zero or more characters within a file or directory name. The as-
terisk does not match the slash (/) character; that is, it does not work across directory
separators.

C-Kermit>send * (All files in current directory)
C-Kermit>send ~/*/*.ini (.ini’s in all subdirectories)
C-Kermit>send o*a (o-anything-a)

In UNIX, ‘‘hidden’’ files (whose names begin with a period character), such as
.login, are not sent unless the filespec also begins with a period:52

C-Kermit>send * (All nonhidden files)
C-Kermit>send .* (All hidden files)
C-Kermit>msend * .* (All files)

? (question mark) Matches any single character except a directory separator (slash) or
the leading period of a hidden file. You must quote the question mark with a back-
slash to override its normal help-giving function:

C-Kermit>send ckcker.\? (ckcker.1-character)
C-Kermit>send ckcker.\?\?\? (ckcker.3-characters)
C-Kermit>send ~kermit/\?* (~kermit/-at-least-1-character)

If you don’t quote the question mark, you get a list of matching filenames, and then
you are reprompted with what you have typed so far:

C-Kermit>send ckcmai.? File(s) to send, one of the following:
ckcmai.c ckcmai.o
C-Kermit>send ckcmai.

The UNIX shells csh, ksh, and bash, but not the original Bourne shell, provide additional
filename-matching wildcard characters. If you SET WILD SHELL, Kermit uses the shell
whose file specification is given in the SHELL environment variable:

$ echo $SHELL
/bin/ksh

52This is compatible with the file matching of the UNIX shell and the ls command.

Using UNIX C-Kermit 551

or if that fails, it uses your login shell (as recorded in the etc/passwd file). Internally,
Kermit uses the specified shell’s echo command to expand metacharacters. Exactly
which metacharacters are available depends on your shell and its echo command. The
following are generally available in addition to those listed; consult your shell’s ‘‘man
page’’ for further information.

[abc]

(csh, ksh, bash) Matches any single character that appears within the brackets:

C-Kermit>send ck[cuw]*.[cwh] (The UNIX Kermit source files)

[a-z]

(csh, ksh, bash) Matches any single character in the range indicated in the brackets,
in this case a through z. The characters in the range are determined by the internal
numeric codes for the characters (for example their ASCII values):

C-Kermit>send x[0-9][0-9].log (x00.log thru x99.log)
C-Kermit>send [Ff][Ii][Ll][Ee] ("file" in any case)

{aaa,bbb}

(csh, bash) Matches any of the comma-separated character strings within the braces:

C-Kermit>send ckcker.{upd,bwr}
C-Kermit>send {oofa.txt,hex.c}
C-Kermit>send ck[cuw]*.{[cwh],doc,bwr,nr}

As you can see, shell expansion can be more flexible than Kermit’s own, and it is consis-
tent with your own use of your preferred shell. But it also has several possible drawbacks:

• It might be difficult or impossible to refer to files whose names contain shell
metacharacters. (Try quoting such characters with a backslash or two, or enclosing
the filename in doublequotes, but this might not always work.)

• The same Kermit file transfer command might behave differently depending on what
your current shell is. This is a particularly important consideration for command files.
Kermit’s internal expansion, on the other hand, works consistently.

• The echo command of certain shells (notably csh) might print not only filenames, but
other words. For example, in the C-Shell:

$ echo foo*
echo: no match

In this case, if you happen to have files called echo:, no, or match, Kermit might try
to transfer them.

• The echo command has an option -n. If you try to refer to a file whose name is -n,
you must prefix it with a directory specification (for example, ./-n) to prevent echo
from interpreting its name as a command option.

552 UNIX C-Kermit / Appendix III

When you give the -s option on the C-Kermit command line, the file specification that
follows can include any wildcard notation understood by your shell, regardless of
C-Kermit’s WILDCARD-EXPANSION setting. The shell expands wildcards into a list of files
that is provided to Kermit via the ‘‘argv’’ mechanism. For example:

$ kermit -s *.txt

The shell, not Kermit, expands *.txt into a list of all the files in your current directory
whose names end with ‘‘.txt’’. If any of the files actually contains a wildcard character
as part of its name, C-Kermit makes no attempt to expand it further.

Receiving Files
Incoming files are stored in the current directory unless you told the RECEIVE command
otherwise, or if the incoming file header packet includes a pathname and you have SET

RECEIVE PATHNAMES ON, or if you have specified a FILE DOWNLOAD-DIRECTORY. A file
can be created only if you have write access to the directory where the file is to be stored.
If a file of the same name already exists in the target directory and C-Kermit’s FILE

COLLISION is set to BACKUP or OVERWRITE, you must also have write access to the
previously existing file. C-Kermit will not create or delete files for you that you could not
otherwise create or delete yourself.

Files are stored with the permissions of the containing directory combined with your
‘‘umask’’ (see the ‘‘man page’’ for your shell for further information). In other words,
C-Kermit creates files with exactly the same permissions they would have if you created
them any other way; for example, with the cat command or with a text editor.

C-Kermit does not set execute permission on incoming files. If you are using C-Kermit to
receive shell scripts, executable binary programs, or other types of files that require ex-
ecute permission, use chmod +x after the transfer.

If a UNIX file must be renamed because of your FILE COLLISION setting, C-Kermit ap-
pends a pseudo-version-number to the end of the file’s name:

oofa.~n~

where oofa is the name the two files share and .~n~ is a version number, for example:

oofa.~8~

If oofa exists, the new file is called oofa.~1~. If oofa and oofa.~1~ exist, the new
file is oofa.~2~, and so on. If the new name would be longer than the maximum length
for a filename on your UNIX system, then characters are deleted from the end first. For
instance, thelongestname on a system with a limit of 14 characters would become
thelongest.~1~. This scheme is compatible with the backup mechanism used by
GNU EMACS on UNIX, and in fact the renamed files are recognized as backup files by
EMACS, which can be used to clean up excessive numbers of them.

Command Summary 553

UNIX-to-UNIX Transfers
When using C-Kermit 6.0 or later to transfer files between two UNIX systems, each Ker-
mit recognizes that the other system is UNIX, and the two programs switch to binary
transfer mode and literal filenames automatically, regardless of your current FILE TYPE and
FILE NAMES settings. This switching, however, does not affect your global settings, which
are restored once the transfer is finished.

Should you wish to defeat this effect, you can use the command:

SET TRANSFER MODE MANUAL

(as opposed to AUTOMATIC, which is the default). In most cases automatic mode-switch-
ing is appropriate and desirable, but an exception would be if you wanted to use text trans-
fer mode to force record-format or character-set conversion.

Command Summary

Here is a quick reference list of C-Kermit commands peculiar to or related to UNIX.

CHECK feature-name
SET SUSPEND { ON, OFF }
SET TRANSFER MODE { AUTOMATIC, MANUAL }
SET WILDCARD-EXPANSION { KERMIT, SHELL }
SHOW FEATURES
SUSPEND

UNIX shell commands useful with C-Kermit:

bg process-id
chgrp group file...
chmod permissions file...
chown user file...
chsh shell
cu
echo text
fg process-id
kill process-id
man command
stty

554

555

Appendix IV

VMS C-Kermit

❍ ❍ ❍ ❍

This appendix explains how to use C-Kermit on a Digital Equipment Corpora-
tion VAX or Alpha computer with the VMS or OpenVMS operating system.
For a current list of limitations and restrictions of VMS C-Kermit, also read the
files CKCKER.BWR and CKVKER.BWR provided with the VMS C-Kermit dis-
tribution files. Prior to installing VMS C-Kermit, be sure to read the installation
instructions in the file CKVINS.DOC.

VMS (Virtual Memory System) is the operating system for Digital Equipment Corpora-
tion (DEC) 32-bit VAX (Virtual Address Extended) computers, a product line ranging
from desktop workstations to minicomputers to large mainframes. VMS is a multiuser,
multitasking operating system. OpenVMS is the new name for the VMS operating sys-
tem; OpenVMS runs on both VAX and 64-bit Alpha processors. C-Kermit runs under
both VMS and OpenVMS, on both VAX and Alpha. In this book, the term VMS includes
OpenVMS on both VAX and Alpha architectures.

Preparing Your VMS Session for C-Kermit

Before starting C-Kermit, make sure that VMS knows what kind of terminal you have so
C-Kermit’s FULLSCREEN file transfer display will work correctly. VMS C-Kermit (like
VMS itself) supports only Digital Equipment Corporation terminal types for formatted
screen display functions. If you are using C-Kermit on a terminal that is not compatible
with these terminals, you should not use Kermit’s FULLSCREEN file transfer display.

556 VMS C-Kermit / Appendix IV

When you log in, most VMS systems send a special DEC-specific ‘‘What Are You?’’
query (<ESC>Z or <ESC>[0c to the terminal. All DEC terminals respond automatically
with a character sequence indicating the terminal model — LA36, VT52, VT100, VT200,
VT300, VT400, etc. If you are using a VT or compatible terminal, or a PC with a cor-
rectly functioning VT terminal emulator, such as Kermit 95, Kermit/2, or MS-DOS Ker-
mit, your VMS terminal type is set automatically. Otherwise, there is a lengthy pause
while VMS waits for a valid reply, doesn’t get one, and then sets your terminal type to
UNKNOWN.

You can find out what terminal types are supported by your VMS system by issuing the
VMS command HELP SET TERMINAL/DEVICE. If your terminal appears on this list, you
can give a VMS command to set your terminal type correspondingly, like:

$ set terminal /device=vt100

You can find out your VMS terminal characteristics with the SHOW TERMINAL command.

If you are using a speaking device or an ASCII TDD (Telecommunication Device for the
Deaf), you should choose a hardcopy terminal type, such as LA36.

7-Bit versus 8-Bit Connections
If the communication channel between you and the VMS system permits transmission of
8-bit data, you should ensure that VMS itself is set up to allow 8-bit communication.
Otherwise you will not be able to use 8-bit character sets (such as Latin-1 or DEC MCS)
during your session, nor can you use the more efficient 8-bit form of the DEC terminal es-
cape sequences. Conversely, if you have a 7-bit connection, but VMS believes your con-
nection is 8 bits, 8-bit characters and escape sequences will be corrupted and your VMS
session will consist mainly of gibberish.

VMS decides whether you have an 8-bit data path or not based upon your terminal type:
for VT200-series and above, VMS assumes 8 bits, for VT173 and below, it assumes 7
bits. After logging in, use the VMS SHOW TERMINAL command to discover its idea of
your terminal type and byte size. In the listing, ‘‘No Eightbit’’ means 7 bits, and
‘‘Eightbit’’ means 8 bits. To change its mind, if necessary:

$ set terminal /noparity /eight_bit ! Tell VMS to use 8 bits
$ set terminal /noeight_bit ! Tell VMS to use 7 bits

If you can’t obtain an 8-bit connection, you are restricted to a 7-bit character code during
terminal operations. This code may be ASCII or any other 7-bit code supported by your
terminal or terminal emulator, such as an ISO 646 national character set.

Using VMS C-Kermit 557

Using VMS C-Kermit

VMS users might find C-Kermit’s command processing to be somewhat unfamiliar. It
lacks certain VMS features (such as arrow-key editing) and has some others (such as
context-sensitive help menus, file menus, completion, and macros) that you will soon wish
VMS had. C-Kermit’s ‘‘user interface’’ is intended to be compatible with other Kermit
programs, rather than with a particular operating system. Once you have learned to con-
trol one Kermit program, you will also be conversant with most others.

Program Control
VMS C-Kermit is a character-mode application designed to be used from a terminal. If
you are accessing your VMS system from a terminal or terminal emulator, you can start
the Kermit program in the normal way, that is, by typing its name possibly followed by
command line arguments.53 Then you can have an interactive dialog with C-Kermit,
using your keyboard and screen:

$ kermit
C-Kermit 7.1.199 29 Apr 2001, OpenVMS VAX
Type ? or HELP for help
C-Kermit>

If you have a desktop VMS workstation with a mouse-and-window-oriented graphical
user interface (GUI) such as DECwindows, you should run C-Kermit in a VT terminal
emulation window, also known as a DECterm.

Command-line options are converted to lowercase before C-Kermit sees them, which can
interfere with important case distinctions, for example between the -y and -Y or -c and
-C options. To include an uppercase option on the VMS C-Kermit command line, enclose
it in doublequotes:

$ kermit "-Y"

The C-Kermit Initialization File
VMS C-Kermit identifies its initialization file by the following steps:

1. The file CKERMIT.INI, if it exists, in the directory designated by the system-wide
logical name CKERMIT_INI:, if it is defined. You can override the system-wide
definition, if any, by redefining this logical name, e.g. in your LOGIN.COM file.

2. The file designated by the logical name CKERMIT_INIT, if it is defined.

53Or, if Kermit has not been installed as a system command, use the RUN command. The RUN command,
however, does not permit command-line arguments.

558 VMS C-Kermit / Appendix IV

3. The file CKERMIT.INI in your login (home) directory.

If the CKERMIT_INI logical name does not exist, or does not turn up a CKERMIT.INI file,
then the search proceeds down the list.

The system manager can install the standard C-Kermit initialization file in a central loca-
tion and define the system-wide logical name CKERMIT_INI to identify the directory where
this file is. To institute site-wide customizations, a C-Kermit command file called
CKERMIT.SYS can be placed in the same directory as the system-wide CKERMIT.INI file.

The standard initialization file automatically executes the user’s own customization file,
CKERMOD.INI, if it exists in the user’s home directory, so each user can create a personal-
ized C-Kermit environment without having to duplicate the common material from the
standard initialization file.

Users can further customize C-Kermit to use different settings when started from different
directories. For example, you can put a different CKERMIT.INI file in each of your sub-
directories. Then include the following as the last line in your login directory’s
CKERMOD.INI file:

if not equal \v(home) \v(dir) -
if exist []ckermit.ini take []ckermit.ini

If you have a services directory file, it should installed in your login directory as
CKERMIT.KSD. Dialing or network directory files go in the same place under the names
CKERMIT.KDD and CKERMIT.KND, respectively. Of course, you can specify different,
more, or fewer names by including the appropriate SET DIAL DIRECTORY or SET NETWORK

DIRECTORY commands in your CKERMOD.INI file.

Interrupting C-Kermit
C-Kermit can be interrupted at its prompt, in the middle of typing a command, during ex-
ecution of any command except CONNECT or remote-mode file transfer, and during
local-mode file transfer by typing either one of the VMS interrupt characters, Ctrl-C or
Ctrl-Y. Both should have the same effect.

The interrupt character should echo as ^C... and return you to the C-Kermit prompt im-
mediately (if you were running C-Kermit interactively), or else back to the system prompt
if you started C-Kermit with command-line action options (Appendix I).

To interrupt C-Kermit during remote-mode file transfer, type three consecutive Ctrl-C
characters. This should return you to the C-Kermit prompt or, if you started C-Kermit
with command-line action options, to the VMS system prompt.

Using VMS C-Kermit 559

To interrupt C-Kermit during CONNECT mode, use the CONNECT-mode escape character,
followed by C to get back to the prompt, or any of the other escape-level commands
described in Chapter 8.

Redirection of Input and Output
C-Kermit reads its interactive-mode commands from the standard input device, normally
your keyboard, and prints its messages on the standard output device, which is normally
your screen. To redirect Kermit’s standard input to come from a file, redefine the
SYS$INPUT logical name:

$ define /user_mode sys$input kermit.ksc
$ kermit

In these examples, the file KERMIT.KSC contains C-Kermit commands. C-Kermit ex-
ecutes them, one after the other, until it comes to the end of the file (or to an EXIT, STOP,
or similar command), and then it exits back to the system prompt.

You can also redirect C-Kermit’s screen output to a file by redefining the SYS$OUTPUT

logical name before starting C-Kermit:

$ define /user_mode sys$output kermit.log
$ kermit

But if you redirect Kermit’s screen output without also redirecting its input, you’ll be
typing Kermit commands to a blank screen. To redirect both input and output:

$ define /user_mode sys$input kermit.ksc
$ define /user_mode sys$output kermit.log
$ kermit

Background operation in VMS can be accomplished with the SPAWN/NOWAIT command:

$ spawn /nowait /input=kermit.ksc /output=kermit.log kermit

or by running Kermit in a batch job, using the VMS SUBMIT command.

Running C-Kermit in DCL Command Procedures
In a DCL .COM file, lines beginning with dollar sign are commands that you would type at
the VMS system prompt; all others are input for a program. The following example
shows how to construct a DCL command file that feeds interactive-mode commands to
C-Kermit. The first two lines are DCL commands, the next three are C-Kermit com-
mands, and the last line is another DCL command:

$ write sys$output "Starting Kermit..."
$ kermit
set file type binary
receive
exit
$ write sys$output "Kermit finished."

560 VMS C-Kermit / Appendix IV

To make VMS C-Kermit read its commands from your keyboard when invoked from a
DCL command procedure, include the following redefinition of the SYS$COMMAND logi-
cal name:

$ write sys$output "Starting Kermit..."
$ define /user_mode sys$input sys$command
$ kermit
$ write sys$output "Kermit finished."

DCL command procedures can pass their command-line arguments along to C-Kermit.
For example, the following DCL command file, KSEND.COM, sends up to eight files (or
groups of files) from a remote VMS system to the user’s local Kermit program:

$ kermit -s ’p1’ ’p2’ ’p3’ ’p4’ ’p5’ ’p6’ ’p7’ ’p8’

The p’s in single quotes are DCL variables, similar to Kermit’s macro argument variables.
They are used here to pass command-line arguments from the DCL command procedure
to C-Kermit. To use this command procedure, type (for example):

$ @ksend ckvker.mak ck*.h ck*.c

This example assumes the KSEND.COM file is in your current directory.

You can also define convenient aliases to run Kermit with different command files, by
using VMS’s DEFINE command, for example:

$ define compuserve syssystem:kermit.exe sys$login:compuserve.ini
$ define sprintnet syssystem:kermit.exe sys$login:sprintnet.ini

Put these definitions in your VMS LOGIN.COM file.

Using C-Kermit in Batch Jobs
Kermit procedures that require no interaction with the user can be run as batch jobs, per-
haps scheduled for execution at a later time. Batch jobs are simply DCL command
procedures (that is, .COM files) are executed using the VMS SUBMIT command, rather than
with @. Here is a sample batch job showing the various controls that are available; lines
beginning with dollar sign ($) are DCL commands, other lines are executed by Kermit.
The line numbers are for discussion and should not be included in the .COM file.

1. $ write sys$output "Hello from DCL"
2. $ set default [myuserid.mysubdirectory]
3. $ kermit
4. set prompt {}
5. echo Hello from C-Kermit
6. @ write sys$output "Hello from DCL from inside C-Kermit"
7. take update.ksc
8. exit
9. $ write sys$output "All done."

Using VMS C-Kermit 561

Lines 1–3 are DCL commands. Line 3 starts C-Kermit. Lines 4–8 are C-Kermit com-
mands. Line 4 shows how to set C-Kermit’s prompt to nothing to reduce clutter in the
batch log, should you desire. Line 5 shows how to enter messages in the batch log. Line
6 shows how to run DCL commands from within Kermit (you can use @ (at-sign), ! (ex-
clamation mark), or the word RUN — all of them are synonyms — followed by a DCL
command). Line 8 exits from C-Kermit back to DCL. In line 7, C-Kermit is told to ex-
ecute a script program from another file, UPDATE.KSC. Script programs to be run during
the batch session are best kept in separate C-Kermit command files because certain com-
mands, such as GOTO, do not work when entered in the batch command stream. Include
SET TAKE ECHO ON in your script file if you want the commands from the script file to be
written to the batch log.

Suppose the batch file name is UPDATE.COM and it’s in your default directory. To execute
it immediately, give the following command to VMS:

$ submit update

Include the /NOTIFY switch to have VMS send you a message when it’s done:

$ submit /notify update

The log file UPDATE.LOG is created in your login directory. To execute the job later, and
specify a particular name and place for the log file:

$ submit /after="7-Aug-1996 23:59:59" /log=[olga]hhb.log update

Use the VMS HELP SUBMIT command or see the appropriate VMS manuals for more infor-
mation about batch jobs.

Exit Status
VMS C-Kermit does not provide program status codes in the normal VMS manner.
Rather, it returns the codes listed in Table I-1 on page 491, by assigning them to the sym-
bol CKERMIT_STATUS. For example, if a RECEIVE operation failed:

$ show symbol ckermit_status
CKERMIT_STATUS == "4"

$

Arguments supplied to the EXIT (or QUIT) commands take precedence:

C-Kermit> exit 1234
$ show symbol ckermit_status
CKERMIT_STATUS == "1234"

$

If C-Kermit encounters no execution errors, and EXIT (QUIT) is given without an operand,
then:

562 VMS C-Kermit / Appendix IV

C-Kermit> exit
$ show symbol ckermit_status

CKERMIT_STATUS == "0"
$

You can use the CKERMIT_STATUS symbol as in this DCL example:

$ kermit "-C" "take inventory.ksc"
$ if ckermit_status .eq. 0 then goto ok

Terminal Connection
VMS C-Kermit’s default CONNECT-mode escape character is Ctrl-\ (Control-Backslash).
Terminal emulation is provided by your console driver, workstation terminal window, ter-
minal emulator, or terminal. VMS C-Kermit recognizes keystrokes as single 7- or 8-bit
bytes. 8-bit codes can be used if you have a keyboard capable of generating them, if
C-Kermit has a clean 8-bit path to the keyboard, if you have told C-Kermit to SET

COMMAND and TERMINAL BYTESIZE 8, and if your VMS terminal has the EIGHTBIT charac-
teristic, as shown by the VMS SHOW TERMINAL command.

File Transfer
VMS C-Kermit sends most common types of files in the correct manner automatically,
with no SET FILE TYPE commands required, and supports the full range of VMS wildcard
characters for file group selection.

Wildcards
VMS lets you refer to groups of files in a single file specification by using wildcard
characters. VMS wildcard characters are asterisk (*) and percent (%). Asterisk matches
all or part of a directory name, file name, or file type. It can also be used to stand for all
version numbers, but it cannot be used to match part of a version number. In the directory
field, the asterisk does not operate across the periods that separate directory names. Per-
cent sign matches any single character in a directory name, file name, or file type, but it
cannot be used in the version number field. The following command:

$ directory [kermit.*]a*.%%%;0

lists the names of the most recent versions (;0) of all files whose names start with the let-
ter A (alphabetic case does not matter in VMS filenames) and that have a three-character
filetype, in all subdirectories of the [KERMIT] top-level directory of the current disk.

There are also two special wildcards for use with directory names. The ellipsis (...)
means ‘‘from here all the way down,’’ and hyphen (-) means ‘‘one level up.’’ Two
hyphens means two levels up, and so on.

Here are some sample wildcard file specifications:

Using VMS C-Kermit 563

$ dir [*]

All files in all top-level directories

$ dir [.*]

All files in all directories immediately below the current directory (one level down)

$ dir [...]

All files in the current directory and all directories below it

$ dir [OLGA.PROGRAMS...]

All files in OLGA.PROGRAMS and all directories below it

$ dir [-]

All files in the directory immediately above the current directory (one level up)

$ dir [--]

All files in the directory two levels up

$ dir [000000]

All files in the root directory of the current disk (if you have access)

Sending Files from VMS
When you are sending files from VMS C-Kermit and its FILE TYPE is set to TEXT or
BINARY, it chooses the mode of transfer automatically. The rules are:

1. If the record format is Undefined, BINARY mode is used.

2. If the record format is Fixed and the file has no record attributes (the VMS
DIRECTORY/FULL command reports ‘‘Record attributes: None’’), BINARY mode is used.

3. If the record format is Fixed and the file has any record attributes (for example, Car-
riage Return Carriage Control), TEXT mode is used.

4. In all other cases, including Stream and Variable record formats, TEXT mode is used.

VMS C-Kermit automatically tells the receiving Kermit the transfer mode, text or binary,
in an Attribute packet. This lets receiving Kermit interpret and store the file in the correct
mode automatically if it understands Attribute packets (most modern Kermit programs do;
see Table -FEATURZ on page -FEATURZ). It also allows transfer of a mixture of text
and binary files in a single SEND command. For example, you can send the C-language
(text) source file OOFA.C and the (binary) executable OOFA.EXE together with one com-
mand:

C-Kermit>send oofa.*

564 VMS C-Kermit / Appendix IV

When sending text files, C-Kermit handles all combinations of record format and carriage
control, including Fortran (ANSI) and Print, converting each into Kermit standard
ASCII/CRLF stream format. It also translates the file’s character set according to any SET

FILE CHARACTER-SET and SET TRANSFER CHARACTER-SET commands you have given.

When sending a binary file, VMS C-Kermit does no interpretation, translation, or refor-
matting of the file’s data. Record-length and carriage control fields are discarded, and no
characters are inserted at record boundaries or at the end of the file.

VMS C-Kermit also sends the file’s size and creation date and time in the Attribute
packet. This allows the receiving Kermit program to reject the file if it is too big for avail-
able storage and to set the file’s creation date to match the original or to take file collision
actions based on the date. The reported size of a text file might differ from the actual size
due to record format conversions.

VMS C-Kermit also lets you include DECnet node names in filenames:

C-Kermit>send netlab::$disk1:[jrd.kermit]msvibm.boo
C-Kermit>receive kervax::lpt:
C-Kermit>send {spcvxa"TERRY PASSWORD"::kermit:ckvcvt.c}

The first example sends a publicly readable file from node NETLAB. The second ex-
ample receives a file to a publicly accessible line printer on DECnet node KERVAX and
then prints it.

The third example sends a file that is not publicly readable from node SPCVXA, so a
valid user ID and password for that node must be included as part of the node name.
These must be given in uppercase. Since the file specification includes a space, it must be
enclosed in curly braces to prevent C-Kermit from thinking that the space introduces the
next field of the command. Alternatively, the space can be represented as \32:

C-Kermit>send spcvxa"TERRY\32PASSWORD"::kermit:ckvcvt.c

If you invoke VMS C-Kermit with the command-line option to send files (-s, see Appen-
dix I), wildcard characters are expanded internally by C-Kermit, using underlying VMS
operating system services:

$ kermit -s a*.* login.com ckermit.ini [.*]*.com

This example sends all files in the current directory whose names start with A, plus
LOGIN.COM and CKERMIT.INI from the current directory, plus all .COM files from all im-
mediate subdirectories of the current directory.

VMS C-Kermit sends the most recent version of each file unless you include a specific
version number:

Using VMS C-Kermit 565

C-Kermit>send [olaf]paper.txt (Most recent version only)
C-Kermit>sen [olaf]stone.txt;3 (A specific version)
C-Kermit>s [olaf]scissors.txt;* (All versions)

Receiving Files
When receiving files, VMS C-Kermit chooses between text and binary mode as follows:

1. If the Kermit program that is sending the file to C-Kermit includes an Attribute packet
specifying the file type (text or binary), C-Kermit uses the given type.

2. If there is no Attribute packet, if the Attribute packet does not mention a file type, or if
you have given the command SET ATTRIBUTE TYPE OFF, C-Kermit uses its current FILE

TYPE setting.

VMS C-Kermit checks for sufficient free disk space if the remote Kermit supplies file size
information. If there isn’t enough space on the disk, the file is rejected. User quotas are
not checked. If the device for the received file is not a disk (for example, the system
lineprinter) the file is assumed to fit. To defeat space checking, give the command SET

ATTRIBUTE LENGTH OFF.

Received text files are stored in ‘‘Sequential variable, carriage-return carriage control’’
format, with each line (record) terminated by carriage return and linefeed (CRLF). Lone
carriage returns or linefeeds are stored within the record.

Files received in binary mode are stored by C-Kermit in fixed 512-byte records. If the last
record does not end on a 512-byte boundary, the exact end of the file is marked using the
RMS ‘‘first free byte’’ construct.

If there is valid date and time information in the incoming Attribute packet, C-Kermit sets
the new file’s creation date and time accordingly. The file is also marked as being revised
once (initial creation) on the current date and time to ensure that the file is backed up on
the next BACKUP run.

When the Automatic Methods Don’t Work
❍ ❍ ❍ ❍

If you can successfully transfer both text and binary files to and from VMS with
C-Kermit, feel free to skip the rest of this appendix, which presents special
methods for transferring the kinds of VMS files that C-Kermit does not handle
automatically.

VMS supports a wide variety of file formats. Information about each file is recorded in
the file’s directory entry and, in most cases, also in the file itself. Most other computers

566 VMS C-Kermit / Appendix IV

have simpler file systems, with no natural way to record or represent VMS’s file types and
attributes. When a complicated type of file is sent from VMS to, say, UNIX or MS-DOS,
much of the VMS-specific information can be lost. When the file is sent back to VMS, it
is no longer in its original format and might be unusable. Even when a file is transferred
from VMS to VMS the results can be less than satisfactory if the transfer program can’t
convey all the descriptive information along with its contents.

Each VMS application defines its own data file formats. Everyday text-oriented applica-
tions like the CREATE command and the editors EDT and EVE use ordinary text files:
stream files with lines terminated by carriage return and line feed, the same as Kermit’s
default for text files. The VMS operating system requires its executable program images
to be in fixed 512-byte record format, the same as Kermit’s default for binary files.

But the VMS linker requires its (binary) object files to have variable length records. A
BACKUP saveset must have fixed-length records with a record length of at least 2048
bytes. A database file might have indexed or relative organization, rather than sequential.
Some applications deliberately coerce their files into unusual formats to make it difficult
for other applications to use them. File attributes such as record format and length can’t
be handled by other operating systems like Microsoft Windows, MS-DOS, OS/2, UNIX,
or CP/M, so these files need special handling when you transfer them.

You can find out the particulars of a VMS file with the DIR/FULL command, for example:

$ dir /full oofa.obj

Directory $DISK1:[OLGA]

OOFA.OBJ;2 File ID: (3201,349,0)
Size: 37/38 Owner: [USER,OLGA]
Created: 8-FEB-1996 14:20:55.17
Revised: 8-FEB-1996 14:21:48.47 (1)
Expires: <None specified>
Backup: 14-FEB-1996 09:19:47.43
File organization: Sequential
File attributes: Allocation:38, Extend:10, Global buffercount:0

No version limit
Record format: Variable length, maximum 512 bytes
Record attributes: None
RMS attributes: None
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: None

Total of 1 file, 37/38 blocks.

VMS C-Kermit lets you store incoming binary files with any record length you like in ei-
ther fixed or undefined format, and it offers you two VMS-specific file types for transfer-
ring VMS files that don’t fit the normal mold.

Using VMS C-Kermit 567

Selecting the Record Length for Incoming Files
When VMS C-Kermit receives a text file, it stores it on disk using variable-length records,
one record per line, using carriage return and linefeed to delimit the lines. The maximum
length for a line is 65,534 characters. If you try to send VMS C-Kermit a line of text
longer than this, the file transfer will fail with the message ‘‘Error writing data.’’54

Binary files, however, do not have lines and there is no automatic way for C-Kermit to
sense record boundaries in arriving binary files. So unless you say otherwise, C-Kermit
stores incoming binary files using fixed-length 512-byte records. When an incoming bi-
nary file, such as a BACKUP saveset, must be stored using some other record length, you
can use the following command:

SET FILE RECORD-LENGTH number
Specifies the record length used by VMS C-Kermit to store an incoming file of type
BINARY or IMAGE. The number can be up to 65534.

The record length setting is ignored when sending files; VMS C-Kermit uses the file’s
record length from its VMS directory entry. The record-length setting is also ignored
when receiving text files.

To illustrate, let’s create a BACKUP saveset on disk and transfer it to a PC. Remember to
take careful note of the file’s record length:

$ backup oofa.* /interchange testing.bck /save
$ dir /full testing.bck
...
Record format: Fixed length 32256 byte records
...
$ kermit
C-Kermit>send testing.bck (Send the file)
Alt-x (Escape back to the PC)
MS-Kermit>receive (Receive the file)

Note that no SET commands were necessary. VMS C-Kermit recognizes the file as binary
because it has fixed-length records and automatically tells MS-DOS Kermit that the file-
transfer mode is binary.

Now let’s send the BACKUP saveset from the PC to a different VMS system and restore the
files from it. The connection is already made and VMS C-Kermit is already started. The
trick here is to tell VMS C-Kermit what record length to use when storing the file and to
tell MS-DOS Kermit to send the file in binary mode, which also causes MS-DOS Kermit
to tell C-Kermit that it is a binary file:

54This is a limitation of the VMS file system. If you really have a text file with lines longer than 64K,
you can send it in binary mode.

568 VMS C-Kermit / Appendix IV

C-Kermit>set file record-length 32256 (Use the same number!)
C-Kermit>receive (Wait for the file)
Alt-x (Escape back to the PC)
MS-Kermit>set file type binary (Use binary mode)
MS-Kermit>send testing.bck (Send the file)

(The file is transferred)

MS-Kermit>connect (Go back to VMS)
C-Kermit>exit (Quit from C-Kermit)
$ backup testing.bck/save/log *.* (Restore the files)
%BACKUP-S-CREATED, created OOFA.C;12
%BACKUP-S-CREATED, created OOFA.H;3
%BACKUP-S-CREATED, created OOFA.EXE;8
%BACKUP-S-CREATED, created OOFA.OBJ;11
$

If the record length had not been set correctly, BACKUP would have become very upset
when you tried to restore the files:

%BACKUP-E-READERR, error reading TESTING.BCK
-BACKUP-E-BLOCKCRC, software block CRC error
%BACKUP-E-INVBLKSIZE, invalid block size in save set
%BACKUP-E-INVRECSIZ, invalid record size in save set
%BACKUP-E-INVRECSIZ, invalid record size in save set
%BACKUP-E-READERRS, excessive error rate reading TESTING.BCK
-BACKUP-I-HDRCRC, software header CRC error
%BACKUP-I-OPERSPEC
%BACKUP-I-OPERASSIST, operator assistance has been requested

Not only has BACKUP flooded your screen with complaints, it has also reported your mis-
behavior to the system operator!

Odd Record Lengths
When sending binary files that have an odd record length, note that these files are actually
stored with an even record length on disk. For example, suppose DIR/FULL X.VDM says
‘‘fixed-length records, record length 17’’. On disk, the file really has 18-byte records;
each 17-byte record is padded with a NUL (0) byte to make its length even; this is
revealed by the VMS DUMP command.

C-Kermit sends the raw records, including the padding. Thus, if you send such a file to
(say) DOS or UNIX for actual use, your DOS or UNIX application must be coded to ac-
count for this — if the record length is odd, add 1 to it. If you send the file back to VMS,
just tell VMS C-Kermit to SET FILE RECORD-LENGTH to the original odd length, and the
resulting file will be identical to the original one.

Using VMS C-Kermit 569

Storing Incoming Binary Files in Undefined Format
We have said that VMS C-Kermit detects the transfer mode of an incoming file automati-
cally if the Attribute packet information is given. If an incoming file is announced as bi-
nary, C-Kermit normally stores it in Fixed format. But certain applications (such as Con-
cept Omega Thoroughbred BASIC) require their files to be in Undefined format. VMS
C-Kermit’s SET FILE TYPE BINARY command has an optional trailing field to let you
specify whether incoming binary files should be stored in Fixed or Undefined format.
Here is a complete description of the SET FILE TYPE BINARY command for VMS:

SET FILE TYPE BINARY [{ FIXED, UNDEFINED }]
Incoming files are to be processed in binary mode unless they are accompanied by an
Attribute packet identifying their type as text. When receiving a binary file, C-Kermit
stores it using fixed-length records (no length fields), with the record length specified
in the most recent SET FILE RECORD-LENGTH command, 512 by default, and uses the
RMS ‘‘first free byte’’ attribute to record the precise end of file. By default, the record
format of the incoming file is set to Fixed. If you SET FILE TYPE BINARY UNDEFINED,
the record format of the incoming file is set to Undefined instead of Fixed. Only the
directory entry is affected by your choice of Fixed or Undefined, not the storage for-
mat of the data itself.

RMS, the VMS Record Management System, cannot deal with undefined-format files, so
only use BINARY UNDEFINED if you have an application that requires it. Here is an ex-
ample in which a Thoroughbred BASIC file is transferred from a PC to a VAX:

$ kermit (Start Kermit on the VAX)
C-Kermit 7.1.199 29 Apr 2001, VAX/VMS
Type ? or HELP for help
C-Kermit>set file type binary undef
C-Kermit>receive
Alt-x (Escape back to the PC)
MS-Kermit>set file type binary (PC uses binary mode)
MS-Kermit>send schedule.bas (Send the file)

(The file is transferred)

MS-Kermit>connect (Let’s go back and take a look)
C-Kermit>dir /full schedule.bas
...
Record format: Undefined, maximum 512 bytes
...
C-Kermit>

When C-Kermit is sending files from VMS, it recognizes Undefined-format files and
sends them correctly in binary mode.

570 VMS C-Kermit / Appendix IV

The SET FILE TYPE IMAGE Command
IMAGE mode is a kind of ‘‘super-binary’’ mode, in which raw disk blocks are transmitted.
Use it when SET FILE TYPE BINARY doesn’t work.

SET FILE TYPE IMAGE
This command might better be called ‘‘binary, and this time I mean it!’’ When receiv-
ing a file, this mode is equivalent to SET FILE TYPE BINARY, except that it overrides the
incoming Type attribute, if any. When sending a file, C-Kermit declares the file to be
of type Binary in the Attribute packet and the blocks of the file are sent exactly as
stored on disk, including any imbedded record-length fields and excluding any format-
ting characters (such as line terminators) that would normally be supplied by RMS
based on the file’s carriage-control attributes. Use SET FILE TYPE IMAGE to send files
that have inappropriate or unusual file characteristics, such as a binary file that is
stored in Stream LF format. Synonym: SET FILE TYPE BLOCK.

Here’s an example. You have Lotus 1-2-3 on your PC and a version of Lotus 1-2-3 run-
ning on your VMS system. You can send a PC Lotus spreadsheet file to VMS using SET

FILE TYPE BINARY, and VMS Lotus reads it perfectly and without complaint. But when
you try to send a VMS Lotus spreadsheet to the PC in the same way, PC Lotus can’t read
it at all. Why not? Because VMS Lotus creates its spreadsheet files with carriage return
carriage control, which makes C-Kermit send carriage return and line feed at the end of
each record, resulting in an invalid format for PC Lotus. Use SET FILE TYPE IMAGE to cir-
cumvent the problem:

C-Kermit>set file type image (The important command)
C-Kermit>send budget.wks (Send the file)
Alt-x (Escape back to the PC)
MS-Kermit>receive (Receive the file)

Another case where IMAGE mode is required is for files created by the VMS version of
UNZIP, a dearchiving program, from VMS-resident ZIP files. Even when these are bi-
nary files, the VMS ZIP program creates them with a ‘‘Stream_LF’’ record format, which
C-Kermit treats as text unless you tell it otherwise. Use IMAGE for sending. BINARY

works for receiving.

The same goes for any other VMS application that always creates Stream_LF files,
regardless of the actual purpose of the file. This includes the Lynx Web browser, LHARC
programs, and even DEC’s own PATHWORKS file service.

Using VMS C-Kermit 571

VMS Labeled File Transfer
We’ve seen how to coax VMS C-Kermit into transferring simple types of sequential files
whose record size or format might not match C-Kermit’s defaults. But there still remain
certain types of VMS files that defy all normal means of transfer — databases with in-
dexed or relative organization, binary files with variable length records, and so on. Yes,
you can transfer them, but when you bring them back to VMS, they are unusable. You
can’t even transfer them directly from one VMS system to another.

To illustrate, let’s look at VMS object files. These are the files created by language com-
pilers like Macro, Fortran, Pascal, and C, with names that end in .OBJ. For example, the
command:

$ macro ckvhex

runs the Macro assembler on a source file called CKVHEX.MAR and produces an object file
called CKVHEX.OBJ. This object file is composed of variable length records, like a text
file, but it is binary. You can’t use text mode to transfer it because the format of the
record boundaries would be changed (carriage returns and linefeeds would be added), and
you can’t use binary mode because the record boundaries would be lost altogether. Image
mode doesn’t work either; the record boundaries are preserved but the record format infor-
mation is lost from the directory entry.

For situations like this, you need a way of sending not only the contents of the file, but its
entire directory entry along with it. To do this, C-Kermit offers a fourth file type, called
LABELED. Labeled mode is used to preserve all the characteristics of the file after transfer,
including its directory entry, internal record layout, RMS attributes, and so forth. It can be
used directly between two VMS systems, in which case all kinds of files arrive and are
stored with all their proper characteristics.

Labeled mode transfers can also be done between VMS and any other kind of computer.
A VMS file sent in labeled form to a non-VMS computer is unusable on the other com-
puter. A labeled file sent to a VMS computer is recreated in its original form.

Thus labeled mode is suitable for both VMS-to-VMS transfers and archiving VMS files
on non-VMS systems. A labeled file can float from one computer to another until it
finally finds its way back to a VMS system, where it is reincarnated. The command to
select labeled file transfers is:

SET FILE TYPE LABELED
When sending a file, C-Kermit sends an Attribute packet declaring the file to be of
type Binary, then transmits all of the file’s characteristics in a specially coded heading
as part of the file data. The file data itself is transmitted in Image mode.

572 VMS C-Kermit / Appendix IV

When C-Kermit’s FILE TYPE is LABELED, incoming files (which must be sent in binary
mode) are treated as LABELED if the Type Attribute says the file is binary, or if there is
no Attribute packet at all. If C-Kermit’s file type is LABELED and the incoming at-
tribute says the file is Text, C-Kermit rejects the file. Once having agreed to accept a
file in labeled mode, VMS C-Kermit interprets the labeling information and attempts
to use it to create the transferred file with all the same characteristics as the original,
but with the version number set in the normal way.

Labeled files carry with them certain information that you will want to use in certain cir-
cumstances and not in others. C-Kermit always includes this information when sending
files in labeled format. Use the SET FILE LABEL command to say what it should do with
this information when receiving files:

SET FILE LABEL NAME { OFF, ON }
The labeled file contains the file’s full VMS file specification. The default is ON,
meaning C-Kermit attempts to store the incoming file with its original name rather
than the name that the other Kermit sent it with. Use SET FILE LABEL OFF to have it
stored under the name it was sent with or any alternate name you may have given in
the RECEIVE command.

SET FILE LABEL PATH { OFF, ON }
The labeled file also includes the file’s original disk and directory name. Normally
C-Kermit stores an incoming labeled file in the current disk and directory. Use SET

FILE LABEL PATH ON to have C-Kermit attempt to store the file in the disk and direc-
tory recorded within the labeled file itself. If FILE LABEL PATH is OFF, the path is
ignored.

SET FILE LABEL ACL { OFF, ON }
The labeled file includes the file’s original ACL (access control list), which contains
information that would normally be useful only on the computer where the file
originated. For example, VMS records access lists as binary numbers; restoring them
on a different computer could wind up granting access to a random collection of users.
Normally this data is ignored. SET FILE LABEL ACL ON to use it.

This command also governs the RMS Journaling, RMS Statistics, DDIF, PATHWORKS,
and other file ACL entries. Note that you can create ACL entries that you can’t see
with DIR/FULL unless you have VMS Security privilege (but you should still be able to
view — but not modify — them with EDIT/ACL). Unprivileged users can not delete or
modify incorrect ACL entries without deleting the file itself. Even when FILE LABEL

ACL is ON, RMS Journaling is not enabled for a received file.

SET FILE LABEL BACKUP { OFF, ON }
Tells C-Kermit whether to preserve the file’s backup date, if one was included. OFF,
which is the default, means that C-Kermit should ignore the backup date in the incom-

Using VMS C-Kermit 573

ing labeled file and store the new file so it will be backed up. ON means to keep the
labeled file’s backup date.

SET FILE LABEL OWNER { OFF, ON }
C-Kermit normally makes you the owner of the incoming file. SET FILE LABEL OWNER

ON if you want C-Kermit to preserve the file’s original owner (privileges required).

SET FILE TYPE LABELED can be used for all VMS-to-VMS transfers, as long as character
set translation is not required and C-Kermit is running on both ends. It is the only mode
of transmission that works for all kinds of VMS files. The SET FILE TYPE LABELED com-
mand must be given to both VMS C-Kermit programs.

To send a VMS file to another kind of computer (UNIX or MS-DOS, for example) for ar-
chival, just give the SET FILE TYPE LABELED command to VMS C-Kermit before sending
the file and make sure the other Kermit receives it in binary mode (it will do so automati-
cally if it understands Attribute packets):

C-Kermit>set file type labeled (Archival format)
C-Kermit>send oofa.x (Send any kind of file)
Alt-x (Escape back to PC)
MS-Kermit>r (Receive the file)

(The file is transferred)

The resulting file contains all the necessary information to reconstruct it on a VMS sys-
tem, no matter where it may travel in the meanwhile, as long as all its travels are in binary
mode. When the time eventually comes for it to return to VMS, make sure to send it in bi-
nary mode and to tell VMS C-Kermit to SET FILE TYPE LABELED:

C-Kermit>set file type labeled (Archival format)
C-Kermit>r (Wait for the file)
Alt-x (Escape back to PC)
MS-Kermit>set file type binary (Use binary mode)
MS-Kermit>send oofa.x (Send the file)

(The file is transferred)

You can easily identify a labeled file. Its first 20 characters are ‘‘KERMIT LABELED
FILE:’’. If one of these files should happen to find its way back to VMS without being
decoded by Kermit, you can use a separate program distributed with C-Kermit, called
CKVCVT, to decode it into its original form, just as C-Kermit would have done if it had
received the file with SET FILE TYPE LABELED in effect:

$ ckvcvt oofa.x
Creating OOFA.X...
...done.
$

574 VMS C-Kermit / Appendix IV

A labeled file stored on your VMS disk can even be mistakenly sent in labeled mode to
another computer, and then brought back to VMS in this form: labels within labels! The
CKVCVT program can be used to peel away excessive layers of labeling. When transfer-
ring files in LABELED mode, the file transfer display will show the name the file was sent
as, not the "true" name within the labeled file. Also, note that a transfer may fail with an
obscure error (can’t create output file) if there is something incorrect with the label infor-
mation (for example, if you specified that the file should be restored to the original direc-
tory and you don’t have privilege to write to that directory on this system).

VMS-to-VMS File Transfer
When two modern Kermit programs initiate a file transfer, they identify their underlying
operating systems to each other. This allows them to skip certain conversions (such as file
name or data record format) if they see each other as ‘‘kin.’’ When two VMS C-Kermit
programs recognize each other, they automatically switch to labeled transfer mode to en-
sure that all files, no matter how complex in structure, are transferred correctly. Under
certain circumstances, however, you might wish to override this feature:

• There is a high probability that the transfer will be interrupted, in which case you want
to be able to recover the transfer from the point of failure. Recovery does not work for
partial files transferred in labeled mode.

• If the process on the receiving computer lacks privileges that might be required to
manipulate the incoming file’s directory structure. In this case, you can also give SET

FILE LABEL commands to the file receiver to work around the trouble areas.

To inhibit automatic switching to labeled mode during VMS-to-VMS transfers, tell one or
both of the C-Kermit programs to SET TRANSFER MODE MANUAL.

VMS C-Kermit Summary
Important filenames:

CKERMIT.INI

The standard initialization file. It can be in your home (login) directory, or in a central
shared location designated by the system-wide logical name CKERMIT_INI.

CKERMIT.SYS

The system-wide customization file, used to augment or override the definitions made
in the standard initialization file on a system-wide basis. VMS C-Kermit executes this
file if it can be found in the directory denoted by the CKERMIT_INI logical name.

CKERMOD.INI

Your personal customization file, used to augment or override the definitions made in
the standard initialization file. Must be stored in your home directory.

Using VMS C-Kermit 575

CKERMIT.KDD, CKERMIT.KND
Your dialing and network directories, stored in your home directory.

CKERMIT.KSD

Your services directory, stored in your home directory.

VMS C-Kermit has the unique ability to send a mixture of text and binary files in the
same SEND or MSEND command. Any other Kermit program that supports Attribute pack-
ets (see Table -FEATURZ on page -FEATURZ) can accept such a mixture.

All VMS-to-VMS transfers are done in labeled mode unless you use SET TRANSFER MODE

MANUAL.

Table IV-1 summarizes the interaction of the various file types, the SEND and RECEIVE

commands, and Attribute (A) packets in VMS C-Kermit.

Table IV-2 shows the types and record lengths to be used for transferring selected types of
files between VMS C-Kermit and various PC-based Kermits. The same settings should
apply for other non-VMS Kermits, such as C-Kermit for UNIX or IBM mainframe Ker-
mit. You can fill in the bottom of the table with any others that you encounter.

Table IV-1 VMS Kermit SET FILE Commands

SET FILE
Command Send Receive

RECORD-LENGTH Ignored Used for Binary and Image, but not Text, transfers

TYPE TEXT Ignored Used unless overridden by A-packet

TYPE BINARY Ignored Used unless overridden by A-packet

TYPE IMAGE Used Used, overrides A-packet

TYPE LABELED Used Used if A-packet does not say the file is text and if the file is in
legitimate Labeled format.

576 VMS C-Kermit / Appendix IV

Table IV-2 PC – VMS File Transfer

Application
VMS
File Type

PC
File Type

VMS
Record
Length Comments

VMS EDT, EVE, etc. TEXT TEXT N/A Files created with text editors

VMS FORTRAN TEXT TEXT N/A Fortran CC becomes CRLF

DCL-created TEXT TEXT N/A VFC files become stream

VMS LOTUS IMAGE BINARY 512 Can be used on VMS and PC

PC LOTUS IMAGE BINARY 512 Can be used on VMS and PC

VMS .EXE BINARY BINARY 512 Cannot be executed on PC

VMS .OBJ LABELED BINARY N/A Object files

VMS .OLB BINARY BINARY 512 Object libraries

BACKUP Saveset BINARY BINARY ≥ 2048 Use same record length as original

PC .EXE BINARY BINARY 512 Cannot be executed on VMS

SPSS Export TEXT TEXT 80 Can be used on VMS and PC

Thoroughbred
BASIC

BINARY
UNDEFINED BINARY N/A A closed, non-RMS application

VMS .ZIP IMAGE BINARY 512 Can be used on both VMS and PC

VMS .LZH IMAGE BINARY 512 Can be used on both VMS and PC

VMS Lynx IMAGE BINARY 512 Can be used on both VMS and PC

PC .ZIP BINARY BINARY 512 Can be used on both VMS and PC

VMS Indexed LABELED BINARY N/A Archive only - not usable on PC

VMS Relative LABELED BINARY N/A Archive only - not usable on PC

Add others:

Command Summary 577

Command Summary

Here is a quick reference list of C-Kermit commands specific to VMS:

SET FILE LABEL ACL { OFF, ON }
SET FILE LABEL BACKUP { OFF, ON }
SET FILE LABEL NAME { OFF, ON }
SET FILE LABEL OWNER { OFF, ON }
SET FILE LABEL PATH { OFF, ON }
SET FILE RECORD-LENGTH number
SET FILE TYPE BINARY [{ FIXED, UNDEFINED }]
SET FILE TYPE IMAGE
SET FILE TYPE LABELED

The following VMS DCL commands were discussed in this chapter:

BACKUP source-files /INTERCHANGE backup-file /SAVE
BACKUP backup-file /SAVE/LOG *.*
DEFINE [/USER_MODE] name value
DIRECTORY [/FULL] [filespec]
DUMP filename
SET TERMINAL { /DEVICE=name, /NOPARITY, /[NO]EIGHT_BIT }
SHOW SYMBOL name
SPAWN [/NOWAIT] program
SUBMIT [{ /NOTIFY, /AFTER=time }] filename
WRITE SYS$OUTPUT [TEXT]

For more information about VMS commands, use the VMS HELP command, for example
HELP SET TERMINAL or HELP SET TERMINAL /DEVICE. Or consult the VMS User’s Manual.

578

579

Appendix V

AOS/VS C-Kermit

❍ ❍ ❍ ❍

This appendix lists the particulars of using C-Kermit on Data General MV-
series computers with the AOS/VS and AOS/VS-II operating systems. For a
current list of limitations and restrictions of C-Kermit for AOS/VS, also read the
files CKCKER.BWR and CKDKER.BWR that were provided with the C-Kermit
distribution.

AOS/VS (Advanced Operating System/Virtual System) is the operating system for the
Data General Eclipse MV family of minicomputers. It is a multiuser, multitasking operat-
ing system that comes in two basic varieties: AOS/VS ‘‘Classic’’ and an enhanced version
called AOS/VS II. Outgoing TCP/IP TELNET connections can be established only on
AOS/VS II systems configured with TCP/IP II.

C-Kermit runs on both AOS/VS and AOS/VS II. As of this writing, the current revisions
are 7.71x for AOS/VS and 3.20x for AOS/VS II, where the x in the revision number sig-
nifies a minor update, and appears as a single digit, 0–9. In this book, the term AOS/VS
(or simply VS) refers to both operating systems, unless explicitly noted otherwise.

See reference [23] for a general introduction to AOS/VS. Reference [26] is the Command
Language Interface (CLI) manual. Reference [24] describes the structure and functions of
the AOS/VS operating system. For information about using AOS/VS CLI commands, you
can also give the HELP command.

580 AOS/VS C-Kermit / Appendix V

C-Kermit must be installed by the AOS/VS system manager. Refer to the file
CKDINS.DOC for detailed instructions for installing C-Kermit under AOS/VS and con-
figuring MV system communication devices (particularly serial ports and modems)
appropriately.

Using C-Kermit in AOS/VS

C-Kermit for AOS/VS includes support for serial connections, both direct and dialed, as
well as for TCP/IP TELNET connections.

Preparing Your AOS/VS Session for Kermit
AOS/VS systems are normally accessed via Data General DASHER terminals or
emulators. When you log in to AOS/VS, it automatically sends a DASHER-specific
‘‘Read Model ID’’ escape sequence to your terminal. If you have a DASHER terminal or
emulator (such as MS-DOS Kermit, Kermit/2, or Kermit 95), it responds appropriately
and your terminal type is set automatically.

AOS/VS also supports DEC VT-100, 200, and 300 series terminals to a limited extent. To
identify this type of terminal to AOS/VS, you must issue the command:

) characteristics/on/nas/xlt

where NAS and XLT are defined as follows:

NAS
When ON, NAS specifies a non-ANSI standard terminal. On input, this causes a car-
riage return to be converted to a carriage return and a line feed, and a linefeed to be
converted to a carriage return. On output, it causes a linefeed to be converted to a car-
riage return and a linefeed.

XLT
When ON, XLT enables support for the VT100-compatible family of terminals. Sup-
port for VT100-compatible terminals must have been specified by the system manager
in advance during system generation. If you turn on XLT, but still have problems with
the backspace key, check with the system manager.

If you are using a speaking device or hardcopy terminal, you can inform AOS/VS with the
following command:

) characteristics/hardcopy

You should also be sure that your terminal has the BMOB characteristic:

) characteristics/break=bmob

Using C-Kermit in AOS/VS 581

This ensures that if C-Kermit ever gets stuck, you can interrupt it by typing CMD-BRK55

followed by Ctrl-C and Ctrl-B, which is the normal AOS/VS method for interrupting a
process.

To enable Xon/Xoff software flow control on your login terminal, give this command:

) characteristics/on/ifc/ofc

and you can enable RTS/CTS hardware flow control as follows:

) characteristics/on/hifc/hofc

To use international character sets, you must issue the following command:

) char/on/8bt

which causes all 8 bits of each character to be treated as data. You can also use /16BT

(and, for VT terminals, /XLT/KVT) to enable 16-bit character sets, such as for Japanese
Kanji. The 8-bit text character set most commonly used in the AOS/VS environment is
Data General International (DGI, see Table VII-4 on page 596).

The changes you make to your console’s characteristics via the CHARACTERISTICS com-
mand are in effect only for the current session. To have them take effect in all of your ter-
minal sessions, you can include the CHARACTERISTICS command that sets them to the
desired values in your login macro, normally called LOGON.CLI. Check with your system
manager for more information.

Starting C-Kermit in AOS/VS
The name of the C-Kermit executable image is KERMIT.PR. To see if it exists on your
system, issue the following command:

) pathname kermit.pr

If the system returns an indication that it found KERMIT.PR, then you should check its
revision number by issuing a REVISION command:

) rev/v kermit.pr

The revision should be 00.07.199.00, or greater. If it is not, it might lack some of the
capabilities described in this book; consult your system manager. Otherwise, check to see
if the KERMIT.CLI macro exists:

) pathname kermit.cli

55This is the DASHER key combination to send a BREAK signal; hold down CMD and press BRK/ESC.
On other terminals or emulators, use the normal method for sending a BREAK, such as Alt-B in
MS-DOS Kermit, Kermit/2, or Kermit 95.

582 AOS/VS C-Kermit / Appendix V

You can use this macro to start C-Kermit:

) kermit

Otherwise, you can start KERMIT.PR directly by typing:

) x kermit

C-Kermit can also be run with redirected input and output. Suppose you have a file called
INPUT.TEST containing C-Kermit commands:

echo Hello from Kermit.
exit

and you also have a file called OUTPUT.TEST, which is empty, but it has to exist. If you
start C-Kermit like this:

) process/block/default/input=input.test/output=output.test kermit

then, after C-Kermit exits, OUTPUT.TEST has the following contents:

C-Kermit 7.1.199, 29 Apr 2001, Data General AOS/VS
Type ? or HELP for help
C-Kermit>Hello from Kermit.
C-Kermit>

Initialization File
AOS/VS C-Kermit uses the standard initialization file, CKERMIT.INI. If a file with this
name exists in your home directory, it is used. Otherwise, if a file of this name exists in
the UTIL: directory, it is used. The file CKERMOD.INI, if it exists in your home direc-
tory, is executed after CKERMIT.INI. You can use SED or another text editor to create or
modify your CKERMOD.INI file (type X SED filename to start the SED editor, then issue the
HELP command for instructions on how to use it).

Interrupting C-Kermit
Most C-Kermit commands can be interrupted by typing Ctrl-C. C-Kermit commands,
such as DIRECTORY or WHO, that work by running the AOS/VS command processor (CLI)
as an inferior process, must be interrupted with the CLI interrupt sequence, BREAK fol-
lowed by Ctrl-C and then Ctrl-A. To interrupt C-Kermit during remote-mode file transfer,
type three Ctrl-C characters in a row (or whatever other sequence you have chosen with
the SET TRANSFER CANCELLATION command):

C-Kermit>send oofa.txt (Send a file)
...
^A0 Sz* @-#Y1~* yE (A packet appears)
^C^C (Type two Ctrl-C’s)
^C... (Ctrl-C is echoed by C-Kermit)
C-Kermit> (The prompt returns)

Using C-Kermit in AOS/VS 583

To interrupt C-Kermit during CONNECT mode, use the CONNECT-mode escape character,
followed by the letter C to get back to the prompt, or any of the other escape-level com-
mands described in Chapter 8. In an emergency, the C-Kermit process itself can be inter-
rupted by sending a BREAK signal and then typing Ctrl-C and Ctrl-B.

Terminal Emulation
C-Kermit’s CONNECT command and associated features work in AOS/VS as described in
Chapter 8. The default CONNECT-mode escape character is Ctrl-Backslash, which is en-
tered on DASHER terminals by holding down the CTRL key and pressing the backslash
(\) key. The default local terminal character-set is DG-International. If this agrees with
your terminal or emulator, you need specify only the remote set when selecting your ter-
minal character-set, for example:

C-Kermit>set term char latin1

Otherwise you must specify the appropriate local set too, for example:

C-Kermit>set term char latin1 spanish

File Transfer
C-Kermit for AOS/VS offers the full range of file transfer features. For text files,
AOS/VS record format (lines terminated by the single character, linefeed) is automatically
converted to Kermit’s standard intermediate form during file transfer. As in other
C-Kermit versions, character-set translation is available. The default file character-set is
DG-International, so to enable translation the only command you need to give is:

set transfer character-set latin1

Sending Files
In outbound AOS/VS filenames, dollar sign ($) and question mark (?) are converted to
the letter X unless you have SET FILE NAMES LITERAL. You can use AOS/VS templates to
specify a group of files in any of C-Kermit’s commands that accept wildcard file
specifications, as well as in GET commands sent to an AOS/VS C-Kermit server. AOS/VS
template characters are listed in Table V-1.

Receiving Files
Incoming files are stored in the current directory unless you specified a different directory
in the RECEIVE command, or the incoming file header packet includes a pathname, or you
have designated a FILE DOWNLOAD-DIRECTORY, in which case C-Kermit attempts to store
the file in the specified directory (and fails if the directory does not exist or is not
writable).

A file can be created only if you have write access to the directory where the file is to be
stored. The file is created using your default access control list (ACL), which, unless you

584 AOS/VS C-Kermit / Appendix V

Table V-1 AOS/VS Template Characters

Character Meaning

+ (plus sign) Matches any character string.

* (asterisk) Matches any single filename character except a period (.).
Example: FIG* matches FIG1 and FIG2, but not FIG. or FIGURE.

- (dash) Matches any series of filename characters that does not contain a
period. Example: TEST- matches TEST1 and TESTING, but not TEST.1.

\ (backslash) Omits the specified series of characters from the search. Ex-
ample: +.DOC\KERMIT+ matches all files ending in .DOC except for files
that start with the string KERMIT. Because backslash is also C-Kermit’s
command-quote character, you must enter two copies of it.

^ (circumflex) Causes the action to be applied to the parent directory instead
of the current one. Example: ^+.DOC matches all files in the parent
directory whose names end in .DOC.

(number sign) Causes the action to be applied to all directories beneath the
current one. Example: #+.DOC matches all files in all inferior directories
with names ending in .DOC.

have changed it with the AOS/VS DEFACL command, grants the site-dependent default ac-
cess control list.

If a file of the same name already exists in the target directory and C-Kermit’s FILE

COLLISION is set to BACKUP or OVERWRITE, you must also have write access to the
previously existing file. C-Kermit will not create, rename, or delete files for you that you
could not otherwise create, rename, or delete yourself.

When AOS/VS C-Kermit receives a file that has the same name as an existing file, it
might rename the existing file or the incoming file, according to your FILE COLLISION set-
ting. The new name is the old name with a period and a version number appended. For
example, OOFA.TXT would become OOFA.TXT.1. If both OOFA.TXT and OOFA.TXT.1

existed, an OOFA.TXT.2 would be created, and so on.

Dash (-) characters in incoming filenames are converted to underscores (_) unless you
have SET FILE NAMES LITERAL.

It has been widely observed that, although AOS/VS C-Kermit can send files using large
packet lengths and window sizes, the reverse is not generally true. If you have trouble
sending files to AOS/VS C-Kermit, try reducing the packet and/or window size. This ad-
vice holds for both serial and Telnet connections.

585

Appendix VI

Other C-Kermit Versions

C-Kermit is also available for several other computers and operating systems, including
Stratus VOS, the Apple Macintosh, the Commodore Amiga, the Atari ST, Microware
OS-9, and perhaps others by the time you read this. Consult the CKCKER.UPD file for
news.

Amiga C-Kermit

❍ ❍ ❍ ❍

This section describes the Commodore Amiga version of C-Kermit. For further
information, refer to the files CKCKER.BWR and CKIKER.BWR.

The Commodore Amiga is a desktop workstation with a graphical user interface called In-
tuition. Its multiprocessing operating system, AmigaDOS, gives you multiple windows
selectable by mouse. You may create one or more character-oriented Command Line In-
terpreter (CLI) or Shell windows in which to type AmigaDOS commands. Commonly-
used commands include LIST to display a list of files, DELETE to delete a file or files, TYPE

to display the contents of a file, CD to change directory, INFO to display information about
system usage, and STATUS to display process status. CLI and Shell are not case-sensitive;
commands may be entered in uppercase, lowercase, or any mixture.

AmigaDOS has a hierarchical file system similar to OS/2. File specifications can option-
ally begin with a device name terminated by a colon (:). The directory specification
shows the path through the directory tree from its root on the given device; the directory

586 Other C-Kermit Versions / Appendix VI

separator is slash (/), as in UNIX. Upper- and lowercase letters are not distinguished in
Amiga file specifications. File specifications that do not begin with a device name are on
the current device. File specifications that do not have a slash at the beginning (or immed-
iately after the device name) are relative to the current directory.

Install the KERMIT program in your C: directory or another directory along your PATH,
and place your initialization file CKERMIT.INI, your customization file CKERMOD.INI,
and your services directory CKERMIT.KSD in the S: directory. If desired, you can create
an icon for C-Kermit by using the Icon Editor; create a script file containing the two com-
mands:

stack 10000
Kermit

and save it. Then use the Icon Editor to create a Project icon whose ‘‘default tool’’ is
C:IconX for this file.

You can start C-Kermit from the desktop by clicking on its icon (if you made one) or from
a CLI or Shell window by typing KERMIT or RUN KERMIT. In both cases, C-Kermit creates
a new window for itself. Before starting C-Kermit in a CLI or Shell window, allocate a
stack size of at least 10000 with the AmigaDOS STACK command as shown above.

When starting C-Kermit in a CLI or Shell window, you can include command-line options
(see Appendix I). If any of these are action options, C-Kermit exits automatically when
they are complete. If you want to run C-Kermit in this manner without having it create a
new window, include the -q (quiet) command-line option.

During interactive operation, Amiga C-Kermit can be interrupted by typing Ctrl-C (hold
down the Ctrl key and press the C key). A requestor window pops up to let you choose
whether to quit C-Kermit or continue it.

Communications and Terminal Emulation
The default communication device is serial.device/0. Other devices can be
specified using the same form: type.device/unit-number. You can configure the
communication device in the Preferences window, including (for a serial device) its speed
and flow control. Both software (Xon/Xoff) and hardware (RTS/CTS) flow control op-
tions are available.

Network connections, including TCP/IP and DECnet, can be accomplished by running a
serial.device emulator over the network link, provided you have the underlying net-
work hardware, software, and connection, and a suitable serial.device emulator.

Amiga C-Kermit 587

The CONNECT command creates an AmigaDOS console device window. Using the default
Preferences setting, this gives a 23-row by 77-column screen. In AmigaDOS 2.0 and
later, you can increase the screen size in Preferences. In AmigaDOS releases prior to 2.0,
the MoreRows program allows you to increase the size of the Workbench window beyond
the 640 by 200 default size; increasing the number of rows by 8 and the number of
columns by 16 allows a 24-row by 80-column Kermit window.

The Amiga console driver provides ANSI [4] (similar to VT100) terminal emulation;
C-Kermit CONNECT mode uses the console driver, and does not provide any particular ter-
minal emulation of its own.

The default CONNECT-mode escape character is Control-Backslash (Ctrl-\). You can
use Ctrl-\H to close the serial device and exit CONNECT mode; this turns the DTR sig-
nal off, causing most modems to hang up the phone line. In addition to the normal
CONNECT-mode commands, extra session-logging control is available. If a session log file
is open, the Ctrl-\Q sequence lets you temporarily suspend logging and the Ctrl-\R
sequence resumes logging if it has been suspended.

Character-set translation is not available during CONNECT mode. The Amiga’s native
character set is ISO 8859 Latin Alphabet 1, and it is used during CONNECT mode if PARITY

is NONE and you SET COMMAND BYTESIZE 8. Special characters are entered according to
your keymap, configurable in Preferences, normally using ‘‘dead keys.’’

File Transfer
Amiga C-Kermit supports most of the file transfer features described in this book, includ-
ing character-set translation (Latin-1 is the normal file character-set), the FULLSCREEN file
transfer display, and the full range of file collision options.

When sending files, Amiga C-Kermit internally expands wildcards in SEND and similar
commands, as well as in GET commands sent to an Amiga C-Kermit server. Asterisk (*)
stands for any sequence of characters and question mark (?) matches any single character.
When you use ? in a command, it must be preceded by backslash (\) to suppress its nor-
mal function of displaying a file menu:

C-Kermit>send cki*.\?

If the use of Attribute (A) packets has been successfully negotiated, Amiga C-Kermit in-
cludes an A-packet with each file it sends, containing the file’s length, creation date, and
transfer mode (text or binary).

When receiving files, Amiga C-Kermit reads the incoming A-packet (if any), sets the
transfer mode (text or binary) accordingly, and sets the incoming file’s creation date from
the A-packet if a date is given and ATTRIBUTE DATE is ON. If an incoming file has the

588 Other C-Kermit Versions / Appendix VI

same name as an existing file, the selected FILE COLLISION action is taken. Files that must
be renamed because of collision have a tilde (~) and a number appended; for example,
oofa.txt becomes oofa.txt~1; oofa.txt~1 becomes oofa.txt~2, and so on.

OS-9 C-Kermit

❍ ❍ ❍ ❍

This section describes the OS-9 version of C-Kermit. For further information,
refer to the files CKCKER.BWR and CK9KER.BWR.

OS-9/68000 is a multiuser, multitasking operating system designed to run on all Motorola
68000-family processors. A related operating system, OS-9000, is more portable; for ex-
ample, to Intel as well as to various RISC processors. However, OS-9 C-Kermit has not,
as of this writing, been tested under OS-9000. For news about this, as well as further in-
formation about C-Kermit under OS-9, please read the file CK9KER.BWR.

OS-9’s 100% ROM-able, fast, compact code in conjunction with its real-time capabilities
make OS-9/68000 ideal for ROM-based systems used in measuring and control systems in
scientific and industrial spheres. Yet, a full disk-based OS-9 system offers a program
development environment similar to UNIX, including limited UNIX software compatibil-
ity at the C source-code level and conformance to the UNIX input/output and task models
as well as a UNIX-like shell and networking environment.

The basic commands of OS-9 are somewhat different from their UNIX counterparts:

DEL Deletes a file

DELDIR Deletes a directory

MAKDIR Creates a directory

DIR Displays a directory listing

PROCS Shows processes currently running

LIST Displays the contents of a text file

CWD Changes working directory

PD Prints working directory

Command references (like all references to names on OS-9/68000) are case-independent.
All commands can be given a -? switch, which displays a brief (usually sufficient) help
message.

OS-9 C-Kermit 589

OS-9 allows redirection of standard input, standard output, and standard error, just like
UNIX, and supports command pipelines as well as background execution of programs and
commands.

The OS-9 File System
All devices (terminal lines, networks, disks) can have arbitrary names but the usual con-
ventions are:

Terminal devices:
term The console terminal
t1 Terminal line number 1
tn Terminal line number n

Hard disks:
h0 Hard disk number 0
h1 Hard disk number 1
hn Hard disk number n

Diskettes:
d0 Diskette drive number 0
d1 Diskette drive number 1
dn Diskette drive number n

Directories are hierarchical, as in UNIX, MS-DOS, and OS/2. The directory separator is
slash (/). A pathname (file specification) starting with a slash must always include a
device name as the first field. Pathnames that do not start with a slash are relative to the
current device and directory.

OS-9/68000 files are sequential streams of 8-bit bytes, just like in UNIX, except that car-
riage return (CR, ASCII 13) is the line terminator, rather than linefeed (LF, ASCII 10).
Binary files are simply streams of arbitrary 8-bit bytes. The OS-9 operating system and
utilities are ‘‘8-bit clean,’’ so text files can use any character set that is compatible with
your display and data entry devices, for example ISO 8859-1 Latin Alphabet 1.

The OS-9 Console
The console terminal is either a real terminal, or the screen and keyboard of a workstation
such as a Macintosh, Amiga, or Atari ST that is running OS-9. Terminal emulation is not
done by OS-9 C-Kermit, but rather by the real terminal or the workstation console driver.
This includes the capability to display national and international characters. As with other
C-Kermit versions, you must SET COMMAND BYTESIZE 8 in order to enter and view 8-bit
characters.

590 Other C-Kermit Versions / Appendix VI

Using OS-9 C-Kermit
The C-Kermit program should be installed somewhere in your OS-9 PATH. Start it
simply by typing its name, kermit. It reads its initialization, dialing directory, and services
directory files from your home directory.

The OS-9 version of C-Kermit is very similar to the UNIX version. The primary differen-
ces between OS-9 and UNIX are the names of the common system commands and the line
terminator used in text files.

If you start OS-9 C-Kermit with command-line action options (see Appendix I), C-Kermit
executes the given commands and exits. The shell expands any unquoted wildcards on the
command line, for example in the -s option. The available wildcard characters are *,
which matches any sequence of characters of any length, and ?, which matches any single
character.

If you start C-Kermit without command-line action options, it issues its prompt and runs
interactively. C-Kermit’s interruption character is Control-C. C-Kermit also expands
wildcards itself, using the same notation as the OS-9 shell, for example:

C-Kermit>send ck*.\?

Note that the question mark must be prefixed by backslash to override its normal function
of giving a help message.

When receiving files, OS-9 C-Kermit handles the full range of file collision options.
When C-Kermit renames a file because of a collision, it appends an underscore and a digit
to the file name:

oofa.txt

becomes:

oofa.txt_1

oofa.txt_1 becomes oofa.txt_2, and so on.

The commands and operation of OS-9 C-Kermit should be identical to those of UNIX
C-Kermit, with the exceptions noted above and in the ‘‘beware file,’’ CK9KER.BWR.

Others

For documentation on other versions of C-Kermit, including Stratus VOS, the Atari ST,
and the Apple Macintosh, please read the online files that are included with the software.

For Windows 95 and NT and OS/2, be sure to read the appropriate user manuals.

591

Appendix VII

Character Set Tables

The standard structure for character sets is specified in ISO Standard 4873 [43] and il-
lustrated in Figure VII-1 on the next page.

A standard 7-bit character set consists of 32 control characters (C0), 94 graphic (printing)
characters (GL = Graphics Left), plus the characters Space (SP) and Delete (DEL), for a
total of 128 characters, as shown in the left half of the figure.

The left half of a standard 8-bit character set is the 7-bit 128-character set known as the
International Reference Version of ISO 646 [41], which happens to be identical to
ASCII [1] and which is listed in greater detail in Tables VII-1 and VII-2 on pages
593–594. Many nonstandard 8-bit character sets, such as PC code pages, also use ASCII
as their left halves.

The right half of a standard 8-bit character set has a similar structure to the left half.
There is a second control region (C1) with 32 additional control characters and a second
graphic region (GR = Graphics Right) with 94 or 96 additional graphic characters. The
best-known standard 8-bit character sets are those specified by ISO Standard 8859 [44]:
the Latin Alphabets. The blank GR area in the figure can have any of the various Latin
Alphabets plugged into it: Latin-1, Latin-2, Latin/Greek, Latin/Arabic, Latin/Hebrew,
Latin/Cyrillic, and so on. The blank C1 area is most commonly used for the control
characters specified by ISO Standard 6429 [46]. A 94-character graphics set does not use
the 10/0 and 15/15 positions, shown gray in the figure. A 96-character set does use them.

592 Character Set Tables / Appendix VII

Figure VII-1 Structure of a Standard 8-Bit Character Set

Nonstandard 8-bit character sets, such as PC code pages or the Macintosh and NeXT
character sets, use C1 and sometimes even C0 for graphic characters.

Each character in an 8-bit character set is represented internally by a number in the range
0–255. This can be a simple decimal number, like 65 for uppercase letter A, the
hexadecimal (base 16) or octal (base 8) equivalent, or the column and row position from
the table, for example 04/01 for uppercase letter A, where the value (code) of a character
is 16 times the column number plus the row number (16 × 4 + 1 = 65).

Rules for designation and invocation of character sets during data transmission are
specified in ISO Standard 2022 [42]. In the 8-bit communications environment, a charac-
ter with its 8th (high order) bit set to 0 denotes a character from the left half and a charac-
ter with its 8th bit set to 1 denotes a right-half character. The rules for transmission of
8-bit characters in the 7-bit communication environment are, predictably, somewhat more
complicated and are spelled out in the standard.

The ASCII and ISO 646 IRV Character Set 593

The ASCII and ISO 646 IRV Character Set

Key: Dec = decimal value, Hex = hexadecimal value, ^X = Ctrl-X.

Table VII-1 Character Codes of ASCII and ISO 646 IRV

Dec Hex Name Char Dec Hex Char Dec Hex Char Dec Hex Char

000 00 NUL ^@ 032 20 SP 064 40 @ 096 60 ‘

001 01 SOH ^A 033 21 ! 065 41 A 097 61 a

002 02 STX ^B 034 22 " 066 42 B 098 62 b

003 03 ETX ^C 035 23 # 067 43 C 099 63 c

004 04 EOT ^D 036 24 $ 068 44 D 100 64 d

005 05 ENQ ^E 037 25 % 069 45 E 101 65 e

006 06 ACK ^F 038 26 & 070 46 F 102 66 f

007 07 BEL ^G 039 27 ’ 071 47 G 103 67 g

008 08 BS ^H 040 28 (072 48 H 104 68 h

009 09 HT ^I 041 29) 073 49 I 105 69 i

010 0A LF ^J 042 2A * 074 4A J 106 6A j

011 0B VT ^K 043 2B + 075 4B K 107 6B k

012 0C FF ^L 044 2C , 076 4C L 108 6C l

013 0D CR ^M 045 2D - 077 4D M 109 6D m

014 0E SO ^N 046 2E . 078 4E N 110 6E n

015 0F SI ^O 047 2F / 079 4F O 111 6F o

016 10 DLE ^P 048 30 0 080 50 P 112 70 p

017 11 CD1 ^Q 049 31 1 081 51 Q 113 71 q

018 12 DC2 ^R 050 32 2 082 52 R 114 72 r

019 13 DC3 ^S 051 33 3 083 53 S 115 73 s

020 14 DC4 ^T 052 34 4 084 54 T 116 74 t

021 15 NAK ^U 053 35 5 085 55 U 117 75 u

022 16 SYN ^V 054 36 6 086 56 V 118 76 v

023 17 ETB ^W 055 37 7 087 57 W 119 77 w

024 18 CAN ^X 056 38 8 088 58 X 120 78 x

025 19 EM ^Y 057 39 9 089 59 Y 121 79 y

026 1A SUB ^Z 058 3A : 090 5A Z 122 7A z

027 1B ESC ^[059 3B ; 091 5B [123 7B {

028 1C FS ^\ 060 3C < 092 5C \ 124 7C |

029 1D GS ^] 061 3D = 093 5D] 125 7D }

030 1E RS ^^ 062 3E > 094 5E ^ 126 7E ~

031 1F US ^_ 063 3F ? 095 5F _ 127 7F DEL

594 Character Set Tables / Appendix VII

7-Bit Control Characters

Table VII-2 lists the 7-bit control characters used in the ASCII ISO 646 IRV character sets
and in character sets based upon them, including the ISO 646 national sets and the ISO
8859 international sets as well as IBM code pages and other private sets. The official ab-
breviation and full name of each character is shown, along with the control-key combina-
tion normally used to produce each character on a US keyboard.

The code for each character is 16 times the column heading plus the row heading; for ex-
ample, DC3 is in column 01, row 03, so its code is 19.

Table VII-2 7-Bit C0 Control Characters

00 01 07

00 NUL ^@ Null DLE ^P Data Link Escape

01 SOH ^A Start of Heading DC1 ^Q Device Control 1

02 STX ^B Start of Text DC2 ^R Device Control 2

03 ETX ^C End of Text DC3 ^S Device Control 3

04 EOT ^D End of Transmission DC4 ^T Device Control 4

05 ENQ ^E Enquiry NAK ^U Negative Acknowledge

06 ACK ^F Acknowledge SYN ^V Synchronous Idle

07 BEL ^G Bell ETB ^W End of Transmission Block

08 BS ^H Backspace CAN ^X Cancel

09 HT ^I Horizontal Tab EM ^Y End of Medium

10 LF ^J Line Feed SUB ^Z Substitute

11 VT ^K Vertical Tab ESC ^[Escape

12 FF ^L Form Feed FS ^\ File Separator

13 CR ^M Carriage Return GS ^] Group Separator

14 SO ^N Shift Out RS ^^ Record Separator

15 SI ^O Shift In US ^_ Unit Separator DEL ^? Delete

7-Bit Roman Character Sets 595

7-Bit Roman Character Sets

Table VII-3 shows the 7-bit character sets used by C-Kermit. These sets are identical to
ASCII (Table VII-1) except in the positions shown in this table. ASCII is United States
ANSI X3.4-1986, which is the same as the ISO 646 International Reference Version.
British, French, German, Hungarian, Italian, Japanese Roman, Norwegian, Portuguese,
Spanish, and Swedish are ISO 646 national versions registered in the ISO International
Register of Coded Character Sets. The others are taken from DEC VT terminal manuals
and other sources. The Icelandic 7-bit set, rarely used any more, also includes two-
character sequences to represent vowels with acute accents, not shown in the table.

Table VII-3 7-Bit National Character Sets, Differences from ASCII

Row/Column
Decimal
Hexadecimal
ASCII

2/03
35
23
#

4/00
64
40
@

5/11
91
5B
[

5/12
92
5C
\

5/13
93
5D
]

5/14
94
5E
^

5/15
95
5F
_

6/00
96
60
‘

7/11
123
7B
{

7/12
124
7C
|

7/13
125
7D
}

7/14
126
7E
~

British £ @ [\] ^ _ ‘ { | } ~

Chinese Roman # @ [¥] ^ _ ‘ { | } ¯

Danish # @ Æ Ø Å ^ _ ‘ æ ø å ~

Dutch £ 3/4 ÿ 1/2 | ^ _ ‘ ¨ ƒ 1/4 ’

Finnish # @ Ä Ö Å Ü _ é ä ö å ü

French £ à ° ç § ^ _ µ é ù è ¨

Fr-Canadian # à â ç ê î _ ô é ù è û

German # § Ä Ö Ü ^ _ ‘ ä ö ü ß

Hungarian # Á É Ö Ü ^ _ ú é ö ü ’’

Icelandic # Þ Ð \ Æ Ö _ þ ð | æ ö

Italian £ § ° ç é ^ _ ù à ò è ì

Japanese Roman # @ [¥] ^ _ ‘ { | } ¯

Norwegian § @ Æ Ø Å ^ _ ‘ æ ø å |

Portuguese # ’ Ã Ç Õ ^ _ ‘ ã ç õ ~

Spanish £ § ¡ Ñ ¿ ^ _ ‘ ° ñ ç ~

Swedish # É Ä Ö Å Ü _ é ä ö å ü

Swiss ù à é ç ê î è ô ä ö ü û

596 Character Set Tables / Appendix VII

West European Character Sets

Table VII-4 shows the graphic characters of the right half of ISO 8859-1 Latin Alphabet 1,
which is supported as both a transfer character-set and a file character-set by C-Kermit,
along with the code values in Latin-1, the DEC Multinational Character Set (MCS), the
Data General International Character Set (DGI), Kermit’s Macintosh Extended Latin
character set (MAC), the NeXT workstation character set, and PC code pages 437 and
850. Characters shown in italics in the MAC column differ from the US version of the
Apple Quickdraw character set. Characters that are not present in Latin-1 cannot be trans-
lated by Kermit.

Table VII-4 West European Character Sets

Character
Name

Latin-1
dec hex

MCS
dec hex

DGI
dec hex

MAC
dec hex

NeXT
dec hex

CP437
dec hex

CP850
dec hex

No-break space 160 A0 160 A0 160 A0 202 CA 128 80 255 FF 255 FF

¡ Inverted exclamation 161 A1 161 A1 171 AB 193 C1 161 A1 173 AD 173 AD

¢ Cent sign 162 A2 162 A2 167 A7 162 A2 162 A2 155 9B 189 8B

£ Pound sign 163 A3 163 A3 168 A8 163 A3 163 A3 156 9C 156 9C

¤ Currency sign 164 A4 168 A8 166 A6 219 DB 168 A8 207 CF

¥ Yen sign 165 A5 165 A5 181 B5 180 B4 165 A5 157 9D 190 BE

| Broken bar 166 A6 201 C9 181 B5 221 DD

§ Paragraph sign 167 A7 167 A7 187 BB 164 A4 167 A7 021 15 021 15

¨ Diaeresis 168 A8 189 BD 172 AC 200 C8 249 F9

 Copyright sign 169 A9 169 A9 173 AD 169 A9 160 A0 184 B8

ª Feminine ordinal 170 AA 170 AA 170 AA 187 BB 227 E3 166 A6 166 A6

« Left angle quotation 171 AB 171 AB 176 B0 199 C7 171 AB 174 AE 174 AE

¬ Not sign 172 AC 161 A1 194 C2 190 BE 170 AA 170 AA

- Soft hyphen 173 AD 173 AD 208 D0 240 F0

 Registered trade mark 174 AE 174 AE 168 A8 176 B0 169 A9

¯ Macron 175 AF 248 F8 197 C5 238 EE

° Degree sign, ring 176 B0 176 B0 188 BC 161 A1 248 F8 248 F8

± Plus-minus sign 177 B1 177 B1 182 B6 177 B1 209 D1 241 F1 241 F1

2 Superscript two 178 B2 178 B2 164 A4 170 AA 201 C9 253 FD 253 FD

3 Superscript three 179 B3 179 B3 165 A5 173 AD 204 CC 252 FC

West European Character Sets 597

Table VII-4 West European Character Sets (continued)

Character
Name

Latin-1
dec hex

MCS
dec hex

DGI
dec hex

MAC
dec hex

NeXT
dec hex

CP437
dec hex

CP850
dec hex

´ Acute accent 180 B4 180 B4 190 BE 171 AB 194 C2 239 EF

µ Micro sign 181 B5 181 B5 163 A3 181 B5 157 9D 230 E6 230 E6

¶ Pilcrow sign 182 B6 182 B6 178 B2 166 A6 182 B6 020 14 244 F4

• Middle dot 183 B7 183 B7 185 B9 165 A5 180 B4 250 FA 250 FA

¸ Cedilla 184 B8 184 B8 252 FC 184 B8 247 F7

1 Superscript one 185 B9 185 B9 176 B0 192 C0 251 FB

º Masculine ordinal 186 BA 186 BA 169 A9 188 BC 235 EB 167 A7 167 A7

» Right angle quotation 187 BB 187 BB 177 B1 200 C8 187 BB 175 AF 175 AF

1/4 One quarter 188 BC 188 BC 178 B2 210 D2 172 AC 172 AC

1/2 One half 189 BD 189 BD 162 A2 179 B3 211 D3 171 AB 171 AB

3/4 Three quarters 190 BE 186 BA 212 D4 243 F3

¿ Inverted question mark 191 BF 191 BF 172 AC 192 C0 191 BF 168 A8 168 A8

À A grave 192 C0 192 C0 193 C1 203 CB 129 81 183 B7

Á A acute 193 C1 193 C1 192 C0 231 E7 130 82 181 B5

Â A circumflex 194 C2 194 C2 194 C2 229 E5 131 83 182 B6

Ã A tilde 195 C3 195 C3 196 C4 204 CC 132 84 199 C7

Ä A diaeresis 196 C4 196 C4 195 C3 128 80 133 85 142 8E 142 8E

Å A ring above 197 C5 197 C5 197 C5 129 81 134 86 143 8F 143 8F

Æ A with E digraph 198 C6 198 C6 198 C6 174 AE 225 E1 146 92 146 92

Ç C Cedilla 199 C7 199 C7 199 C7 130 82 135 87 128 80 128 80

È E grave 200 C8 200 C8 201 C9 233 E9 136 88 212 D4

É E acute 201 C9 201 C9 200 C8 131 83 137 89 144 90 144 90

Ê E circumflex 202 CA 202 CA 202 CA 230 E6 138 8A 210 D2

Ë E diaeresis 203 CB 203 CB 203 CB 232 E8 139 8B 211 D3

Ì I grave 204 CC 204 CC 205 CD 237 ED 140 8C 222 DE

Í I acute 205 CD 205 CD 204 CC 234 EA 141 8D 214 D6

Î I circumflex 206 CE 206 CE 206 CE 235 EB 142 8E 215 D7

Ï I diaeresis 207 CF 207 CF 207 CF 236 EC 143 8F 216 D8

Ð Icelandic Eth 208 D0 220 DC 144 90 209 D1

598 Character Set Tables / Appendix VII

Table VII-4 West European Character Sets (continued)

Character
Name

Latin-1
dec hex

MCS
dec hex

DGI
dec hex

MAC
dec hex

NeXT
dec hex

CP437
dec hex

CP850
dec hex

Ñ N tilde 209 D1 209 D1 208 D0 132 84 145 91 165 A5 165 A5

Ò O grave 210 D2 210 D2 210 D2 241 F1 146 92 277 E3

Ó O acute 211 D3 211 D3 209 D1 238 EE 147 93 224 E0

Ô O circumflex 212 D4 212 D4 211 D3 239 EF 148 94 226 E2

Õ O tilde 213 D5 213 D5 213 D5 205 CD 149 95 229 E5

Ö O diaeresis 214 D6 214 D6 212 D4 133 85 150 96 153 99 153 99

× Multiplication sign 215 D7 165 A5 158 9E 158 9E

Ø O oblique stroke 216 D8 216 D8 214 D6 175 AF 233 E9 157 9D

Ù U grave 217 D9 217 D9 217 D9 244 F4 151 97 235 EB

Ú U acute 218 DA 218 DA 216 D8 242 F2 152 98 233 E9

Û U circumflex 219 DB 219 DB 218 DA 243 F3 153 99 234 EA

Ü U diaeresis 220 DC 220 DC 219 DB 134 86 154 9A 154 9A 154 9A

Ý Y acute 221 DD 221 DD 160 A0 155 9B 237 ED

Þ Icelandic Thorn 222 DE 222 DE 156 9C 231 E7

ß German sharp s 223 DF 223 DF 252 FC 167 A7 251 FB 225 E1 225 E1

à a grave 224 E0 224 E0 225 E1 136 88 213 D5 133 85 133 85

á a acute 225 E1 225 E1 224 E0 135 87 214 D6 160 A0 160 A0

â a circumflex 226 E2 226 E2 226 E2 137 89 215 D7 131 83 131 83

ã a tilde 227 E3 227 E3 228 E4 139 8B 216 D8 198 C6

ä a diaeresis 228 E4 228 E4 227 E3 138 8A 217 D9 132 84 132 84

å a ring above 229 E5 229 E5 229 E5 140 8C 218 DA 134 86 134 86

æ a with e digraph 230 E6 230 E6 230 E6 190 BE 241 F1 145 91 145 91

ç c cedilla 231 E7 231 E7 231 E7 141 8D 219 DB 135 87 135 87

è e grave 232 E8 232 E8 233 E9 143 8F 220 DC 138 8A 138 8A

é e acute 233 E9 233 E9 232 E8 142 8E 221 DD 130 82 130 82

ê e circumflex 234 EA 234 EA 234 EA 144 90 222 DE 136 88 136 88

ë e diaeresis 235 EB 235 EB 235 EB 145 91 223 DF 137 89 137 89

ì i grave 236 EC 236 EC 237 ED 147 93 224 E0 141 8D 141 8D

í i acute 237 ED 237 ED 236 EC 146 92 226 E2 161 A1 161 A1

West European Character Sets 599

Table VII-4 West European Character Sets (continued)

Character
Name

Latin-1
dec hex

MCS
dec hex

DGI
dec hex

MAC
dec hex

NeXT
dec hex

CP437
dec hex

CP850
dec hex

î i circumflex 238 EE 238 EE 238 EE 148 94 228 E4 140 8C 140 8C

ï i diaeresis 239 EF 239 EF 239 EF 149 95 229 E5 139 8B 139 8B

ð Icelandic eth 240 F0 221 DD 230 E6 208 D0

ñ n tilde 241 F1 241 F1 240 F0 150 96 231 E7 164 A4 164 A4

ò o grave 242 F2 242 F2 242 F2 152 98 236 EC 149 95 149 95

ó o acute 243 F3 243 F3 241 F1 151 97 237 ED 162 A2 162 A2

ô o circumflex 244 F4 244 F4 243 F3 153 99 238 EE 147 93 147 93

õ o tilde 245 F5 245 F5 245 F5 155 9B 239 EF 228 E4

ö o diaeresis 246 F6 246 F6 244 F4 154 9A 240 F0 148 94 148 94

÷ Division sign 247 F7 214 D6 159 9F 246 F6 246 F6

ø o oblique stroke 248 F8 248 F8 246 F6 191 BF 249 F9 155 9B

ù u grave 249 F9 249 F9 249 F9 157 9D 242 F2 151 97 151 97

ú u acute 250 FA 250 FA 248 F8 156 9C 243 F3 163 A3 163 A3

û u circumflex 251 FB 251 FB 250 FA 158 9E 244 F4 150 96 150 96

ü u diaeresis 252 FC 252 FC 251 FB 159 9F 246 F6 129 81 129 81

ý y acute 253 FD 224 E0 247 F7 236 EC

þ Icelandic thorn 254 FE 223 DF 252 FC 231 E7

ÿ y diaeresis 255 FF 255 FF 253 FD 216 D8 253 F3 152 98 152 98

ı Dotless i 245 F5 245 F5 213 D5

Ł L with stroke 195 C3 195 C3 232 E8

ł l with stroke 212 D4 212 D4 248 F8

Œ O with E digraph 215 D7 215 D7 206 CE 234 EA

œ o with e digraph 247 F7 247 F7 207 CF 250 FA

Ÿ Y diaeresis 221 DD 221 DD 216 D8

ƒ Florin sign 180 B4 196 D4 166 A6 159 9F 159 9F

600 Character Set Tables / Appendix VII

East European Character Sets

Table VII-5 shows the graphic characters of the right half of ISO 8859 Latin Alphabet 2
for East European languages, which is supported as both a transfer character-set and a file
character-set by C-Kermit, along with the code values in Latin-2 and PC code page 852.

Table VII-5
East European Character Sets

Character
Name

Latin-2
dec hex

CP852
dec hex

No-break space 160 A0 255 FF

@ogonek[]A A ogonek 161 A1 164 A4

@breve() Breve 162 A2 244 F4

Ł L with stroke 163 A3 157 9D

¤ Currency sign 164 A4 207 CF

@caronL L caron 165 A5 149 95

Ś S acute 166 A6 151 97

§ Paragraph sign 167 A7 245 F5

¨ Diaeresis 168 A8 249 F9

Š S caron 169 A9 230 E6

Ş S cedilla 170 AA 184 B8

@caronT T caron 171 AB 155 9B

Ź Z acute 172 AC 141 8D

Soft hyphen 173 AD 170 AA

Ž Z caron 174 AE 166 A6

·
Z Z dot above 175 AF 189 BD

° Degree sign, ring 176 B0 248 F8

@ogonek[]a a ogonek 177 B1 165 A5

@ogonek() Ogonek 178 B2 242 F2

ł l with stroke 179 B3 136 88

´ Acute accent 180 B4 239 EF

@caron[]l l caron 181 B5 150 96

ś s acute 182 B6 152 98

Table VII-5
East European Sets (continued)

Character
Name

Latin-2
dec hex

CP852
dec hex

@caron() Caron 183 B7 243 F3

¸ Cedilla 184 B8 247 F7

š s caron 185 B9 231 E7

ş s cedilla 186 BA 173 AD

@caron[]t t caron 187 BB 156 9C

ź z acute 188 BC 171 AB

@dblacute() Double acute 189 BD 241 F1

ž z caron 190 BE 167 A7

·z z dot above 191 BF 190 BE

Ŕ R acute 192 C0 232 E8

Á A acute 193 C1 181 B5

Â A circumflex 194 C2 182 B6

@breve[]A A breve 195 C3 198 C6

Ä A diaeresis 196 C4 142 8E

Ĺ L acute 197 C5 145 91

Ć C acute 198 C6 143 8F

Ç C cedilla 199 C7 128 80

@caronC C caron 200 C8 172 AC

É E acute 201 C9 144 90

@ogonek[]E E ogonek 202 CA 168 A8

Ë E diaeresis 203 CB 211 D3

@caronE E caron 204 CC 183 B7

Í I acute 205 CD 214 D6

East European Character Sets 601

Table VII-5
East European Sets (continued)

Character
Name

Latin-2
dec hex

CP852
dec hex

Î I circumflex 206 CE 215 D7

@caronD D caron 207 CF 210 D2

Ð D stroke 208 D0 209 D1

Ń N acute 209 D1 227 E3

@caronN N caron 210 D2 213 D5

Ó O acute 211 D3 224 E0

Ô O circumflex 212 D4 226 E2

@dblacuteO O double acute 213 D5 138 8A

Ö O diaeresis 214 D6 153 99

× Multiplication sign 215 D7 158 9E

@caronR R caron 216 D8 252 FC

°U U ring 217 D9 222 DE

Ú U acute 218 DA 233 E9

@dblacuteU U double acute 219 DB 235 EB

Ü U diaeresis 220 DC 154 9A

Ý Y acute 221 DD 237 ED

Ţ T cedilla 222 DE 221 DD

ß German sharp s 223 DF 225 E1

ŕ r acute 224 E0 234 EA

á a acute 225 E1 160 A0

â a circumflex 226 E2 131 83

@breve[]a a breve 227 E3 199 C7

ä a diaeresis 228 E4 132 84

ĺ l acute 229 E5 146 92

ć c acute 230 E6 134 86

ç c cedilla 231 E7 135 87

@caron[]c c caron 232 E8 159 9F

é e acute 233 E9 130 82

Table VII-5
East European Sets (continued)

Character
Name

Latin-2
dec hex

CP852
dec hex

@ogonek[]e e ogonek 234 EA 169 A9

ë e diaeresis 235 EB 137 89

@caron[]e e caron 236 EC 216 D8

í i acute 237 ED 161 A1

î i circumflex 238 EE 140 8C

@caron[]d d caron 239 EF 212 D4

ð d stroke 240 F0 208 D0

ń n acute 241 F1 228 E4

@caron[]n n caron 242 F2 229 E5

ó o acute 243 F3 162 A2

ô o circumflex 244 F4 147 93

@dblacute()o o double acute 245 F5 139 8B

ö o diaeresis 246 F6 148 94

÷ Division sign 247 F7 246 F6

@caron[]r r caron 248 F8 253 FD

°u u ring 249 F9 133 85

ú u acute 250 FA 163 A3

@dblacute()u u double acute 251 FB 251 FB

ü u diaeresis 252 FC 129 81

ý y acute 253 FD 236 EC

ţ t cedilla 254 FE 238 EE

· Dot above 255 FF 250 FA

602 Character Set Tables / Appendix VII

Cyrillic Character Sets

Table VII-6 shows the characters of the ISO 8859-5 Latin/Cyrillic Alphabet (also known
as ECMA-113), Microsoft Code Page 866, Old KOI-8, and the Short KOI equivalents that
are used for displaying Russian words on ASCII devices by showing Cyrillic letters as
lowercase ASCII and Roman letters as uppercase ASCII; for example, ‘‘ ���������	�
���
�������������������������� Kermit’’ is written protokol pereda~i fajlow KERMIT.

The character names are taken from ISO Standard 8859-5, modified to show upper- or
lowercase typographically rather than spelling out UPPERCASE and LOWERCASE for
each letter. Unfortunately, the same name is used by ISO for two different characters:
Cyrillic I (1) is the one that looks like a backwards Roman letter N, and Cyrillic I (2) looks
like a Roman letter I.

CP866 and the KOI character sets lack the Macedonian and Serbocroatian letters, as well
as the old Cyrillic letters and one of the Ukrainian letters, found in ISO 8859-5. The
CP866 characters B0 through DF (hex) are identical to the line- and box-drawing charac-
ters of IBM CP437. The 8-bit ISO, KOI-8, and CP866 sets all include ASCII (ISO 646
IRV) as their first 128 characters (except $ is replaced by ¤in KOI-8).

Table VII-6 Cyrillic Character Sets

Character Name
ISO
Dec Hex

CP866
Dec Hex

KOI-8
Dec Hex

Short
KOI

�
Cyrillic A 176 B0 128 80 225 E1 a

� Cyrillic a 208 D0 160 A0 193 C1 a
�

Cyrillic Be 177 B1 129 81 226 E2 b
�

Cyrillic be 209 D1 161 A1 194 C2 b

Cyrillic Ve 178 B2 130 82 247 F7 w

� Cyrillic ve 210 D2 162 A2 215 D7 w
!

Cyrillic Ghe 179 B3 131 83 231 E7 g
" Cyrillic ghe 211 D3 163 A3 199 C7 g
#

Cyrillic De 180 B4 132 84 228 E4 d

� Cyrillic de 212 D4 164 A4 196 C4 d
$

Cyrillic Ie 181 B5 133 85 229 E5 e

� Cyrillic ie 213 D5 165 A5 197 C5 e
%

Cyrillic Io 161 A1 240 F0 e

Cyrillic Character Sets 603

Table VII-6 Cyrillic Character Sets (continued)

Character Name
ISO
Dec Hex

CP866
Dec Hex

KOI-8
Dec Hex

Short
KOI

�
Cyrillic io 241 F1 241 F1 e

�
Cyrillic Zhe 182 B6 134 86 246 F6 v

� Cyrillic zhe 214 D6 166 A6 214 D6 v
�

Cyrillic Ze 183 B7 135 87 250 FA z
� Cyrillic ze 215 D7 167 A7 218 DA z

�
Cyrillic I (1) 184 B8 136 88 233 E9 i

� Cyrillic i (1) 216 D8 168 A8 201 C9 i
�

Cyrillic Short I 185 B9 137 89 234 EA j
�

Cyrillic Short i 217 D9 169 A9 202 CA j
	

Cyrillic Ka 186 BA 138 8A 235 EB k

 Cyrillic ka 218 DA 170 AA 203 CB k

�
Cyrillic El 187 BB 139 8B 236 EC l

� Cyrillic el 219 DB 171 AB 204 CC l

Cyrillic Em 188 BC 140 8C 237 ED m
� Cyrillic em 220 DC 172 AC 205 CD m

�
Cyrillic En 189 BD 141 8D 238 EE n

� Cyrillic en 221 DD 173 AD 206 CE n
�

Cyrillic O 190 BE 142 8E 239 EF o
� Cyrillic o 222 DE 174 AE 207 CF o

�
Cyrillic Pe 191 BF 143 8F 240 F0 p

� Cyrillic pe 223 DF 175 AF 208 D0 p
�

Cyrillic Er 192 C0 144 90 242 F2 r
� Cyrillic er 224 E0 224 E0 210 D2 r

�
Cyrillic Es 193 C1 145 91 243 F3 s

� Cyrillic es 225 E1 225 E1 211 D3 s
�

Cyrillic Te 194 C2 146 92 244 F4 t
� Cyrillic te 226 E2 226 E2 212 D4 t

�
Cyrillic U 195 C3 147 93 245 F5 u

� Cyrillic u 227 E3 227 E3 213 D5 y

604 Character Set Tables / Appendix VII

Table VII-6 Cyrillic Character Sets (continued)

Character Name
ISO
Dec Hex

CP866
Dec Hex

KOI-8
Dec Hex

Short
KOI

�
Cyrillic Ef 196 C4 148 94 230 E6 f

�
Cyrillic ef 228 E4 228 E4 198 C6 f

�
Cyrillic Ha 197 C5 149 95 232 E8 h

� Cyrillic ha 229 E5 229 E5 200 C8 h
�

Cyrillic Tse 198 C6 150 96 227 E3 c
� Cyrillic tse 230 E6 230 E6 195 C3 c

�
Cyrillic Che 199 C7 151 97 254 FE ~

� Cyrillic che 231 E7 231 E7 222 DE ~
�

Cyrillic Sha 200 C8 152 98 251 FB {
	 Cyrillic sha 232 E8 232 E8 219 DB {

Cyrillic Shcha 201 C9 153 99 253 FD }

� Cyrillic shcha 233 E9 233 E9 221 DD }
�

Cyrillic Hard Sign 202 CA 154 9A
 Cyrillic hard sign 234 EA 234 EA 207 CF

�
Cyrillic Yeri 203 CB 155 9B 249 F9 y

� Cyrillic yeri 235 EB 235 EB 217 D9 y
�

Cyrillic Soft Sign 204 CC 156 9C 248 F8 x
� Cyrillic soft sign 236 EC 236 EC 216 D8 x

�
Cyrillic E 205 CD 157 9D 252 FC |

� Cyrillic e 237 ED 237 ED 220 DC |
�

Cyrillic Yu 206 CE 158 9E 224 E0 @
� Cyrillic yu 238 EE 238 EE 192 C0 @
�

Cyrillic Ya 207 CF 159 9F 241 F1 q
� Cyrillic ya 239 EF 239 EF 209 D1 q

�
Cyrillic Dze 175 AF

� Cyrillic dze 255 FF
�

Cyrillic I (2) 166 A6
�

Cyrillic i (2) 246 F6
�

Cyrillic Je 168 A8 244 F4

Cyrillic Character Sets 605

Table VII-6 Cyrillic Character Sets (continued)

Character Name
ISO
Dec Hex

CP866
Dec Hex

KOI-8
Dec Hex

Short
KOI

�
Cyrillic je 248 F8 245 F5

�
Cyrillic Lje 169 A9

� Cyrillic lje 249 F9
�

Cyrillic Nje 170 AA
� Cyrillic nje 250 FA
�

Belorussian Short U 174 AE 246 F6
�

Belorussian short u 254 FE 247 F7
�

Macedonian Dze 165 A5
� Macedonian dze 245 F5

	
Macedonian Gje 163 A3

Macedonian gje 243 F3

�
Macedonian Kje 172 AC

�
Macedonian kje 252 FC

Serbocroatian Dje 162 A2

�
Serbocroatian dje 242 F2

�
Serbocroatian Chje 171 AB

�
Serbocroatian chje 251 FB

�
Ukrainian Ie 164 A4 242 F2

� Ukrainian ie 244 F4 243 F3
�

Ukrainian Yi 167 A7
�

Ukrainian yi 247 F7

No-break space 160 A0 255 FF
�

Number Acronym 240 F0 252 FC

§ Paragraph sign 253 FD

Soft hyphen 173 AD

606 Character Set Tables / Appendix VII

Hebrew Character Sets

Table VII-7 shows the characters of the ISO 8859-8 Latin/Hebrew Alphabet
(ECMA-121), PC Code Page 862, and DEC Hebrew-7. Character names are taken from
the ISO Standard [44]. Hebrew-7 is a form of ASCII (Table VII-1) in which characters 96
through 122 (accent grave and the lowercase letters a–z) are replaced by Hebrew letters;
the Hebrew-7 column shows not only the character codes, but the equivalent ASCII
character, for convenience of typing (or reading).

Latin/Hebrew and CP862 include ASCII as their ‘‘lower half.’’ Note that Hebrew letters
do not have upper- and lowercase forms. None of these character sets includes vowel
points, cantillation marks, special Hebrew punctuation marks, or Yiddish digraphs.

Table VII-7 Hebrew Character Sets

Character Name
ISO
Dec Hex

CP862
Dec Hex

Hebrew-7
Dec Hex

No-Break space 160 A0 255 FF

¢ Cent sign 162 A2 155 9B

£ Pound sign 163 A3 156 9C

¤ Currency sign 164 A4

¥ Yen sign 165 2A 157 9D

| Broken bar 166 A6

§ Paragraph sign 167 A7

¨ Diaeresis 168 A8

 Copyright sign 169 A9

ª Feminine ordinal 170 AA 166 A6

« Left angle quotation 171 AB 174 AE

¬ Not sign 172 AC 170 AA

Soft hyphen 173 AD

 Registered trade mark 174 AE

¯ Macron 175 AF

° Degree sign, ring above 176 B0 248 F8

± Plus-minus sign 177 B1 241 F1

2 Superscript two 178 B2 253 FD

Hebrew Character Sets 607

Table VII-7 Hebrew Character Sets (continued)

Character Name
ISO
Dec Hex

CP862
Dec Hex

Hebrew-7
Dec Hex

3 Superscript three 179 B3

´ Acute accent 180 B4

µ Micro sign 181 B5 230 E6

¶ Pilcrow sign 182 B6

• Middle dot 183 B7

¸ Cedilla 184 B8

1 Superscript one 185 B9

º Masculine ordinal 186 BA 167 A7

» Right angle quotation 187 BB 175 AF

1/4 One quarter 188 BC 172 AC

1/2 One half 189 BD 171 AB

3/4 Three quarters 190 BE

� Double lowline 223 DF 202 CA
� Hebrew letter Aleph 224 E0 128 80 96 60 ‘

� Hebrew letter Bet 225 E1 129 81 97 61 a
�

Hebrew letter Gimel 226 E2 130 82 98 62 b

� Hebrew letter Dalet 227 E3 131 83 99 63 c

� Hebrew letter He 228 E4 132 84 100 64 d

� Hebrew letter Waw 229 E5 133 85 101 65 e
�

Hebrew letter Zain 230 E6 134 86 102 66 f

� Hebrew letter Chet 231 E7 135 87 103 67 g

	 Hebrew letter Tet 232 E8 136 88 104 68 h

 Hebrew letter Yod 233 E9 137 89 105 69 i
�

Hebrew letter terminal Kaph 234 EA 138 8A 106 6A j

� Hebrew letter Kaph 235 EB 139 8B 107 6B k

 Hebrew letter Lamed 236 EC 140 8C 108 6C l

� Hebrew letter terminal Mem 237 ED 141 8D 109 6D m

� Hebrew letter Mem 238 EE 142 8E 110 6E n

� Hebrew letter terminal Nun 239 EF 143 8F 111 6F o

608 Character Set Tables / Appendix VII

Table VII-7 Hebrew Character Sets (continued)

Character Name
ISO
Dec Hex

CP862
Dec Hex

Hebrew-7
Dec Hex

� Hebrew letter Nun 240 F0 144 90 112 70 p

� Hebrew letter Samech 241 F1 145 91 113 71 q

� Hebrew letter Ayin 242 F2 146 92 114 72 r

� Hebrew letter terminal Pe 243 F3 147 93 115 73 s

� Hebrew letter Pe 244 F4 148 94 116 74 t

� Hebrew letter terminal Zade 245 F5 149 95 117 75 u

� Hebrew letter Zade 246 F6 150 96 118 76 v

� Hebrew letter Qoph 247 F7 151 97 119 77 w

� Hebrew letter Resh 248 F8 152 98 120 78 x

	 Hebrew letter Shin 249 F9 153 99 121 79 y

 Hebrew letter Taw 250 FA 154 9A 122 7A z

609

Appendix VIII

Country Codes

Table VIII-1 Country Codes

Country Code

Afghanistan +93
Albania +355
Algeria +213
American Samoa +684
Andorra +376
Angola +244
Anguilla +1
Antigua & Barbuda +1
Argentina +54
Armenia +374
Aruba +297
Ascension +247
Australia +61
Australian External Territories +672
Austria +43
Azerbaijan +994
Azores +351
Bahamas +1
Bahrain +973
Bangladesh +880
Barbados +1
Belarus +375
Belgium +32

Table VIII-1 Country Codes (cont’d)

Country Code

Belize +501
Benin +229
Bermuda +1
Bhutan +975
Bolivia +591
Bosnia-Herzegovina +387
Botswana +267
Brazil +55
Brunei +673
Bulgaria +359
Burkina Faso +226
Burundi +257
Cambodia (Kampuchea) +855
Cameroon +237
Canada +1
Canary Islands +34
Cape Verde Islands +238
Cayman Islands +1
Central African Republic +236
Chad +235
Chile +56
China, People’s Republic of +86
China, Republic of +866/+886

610 Country Codes / Appendix VIII

Table VIII-1 Country Codes (cont’d)

Country Code

Colombia +57
Congo +242
Cook Islands +682
Costa Rica +506
Croatia +385
Cuba +53
Cyprus +357
Czech Republic +42
Denmark +45
Diego Garcia +246
Djibouti +253
Dominica +1
Dominican Republic +1
Ecuador +593
Egypt +20
El Salvador +503
Equatorial Guinea +240
Eritrea +291
Estonia +372
Ethiopia +251
Færoe Islands +298
Falkland Islands +500
Fiji +679
Finland +358
France +33
French Polynesia +689
Gabon +241
Gambia +220
Georgia +995
Germany +49
Ghana +233
Gibraltar +350
Greece +30
Greenland +299
Grenada +1
Grenadines +1
Guadeloupe +590
Guam +671/+1
Guatemala +502
Guiana, French +594
Guinea +224
Guinea-Bissau +245
Guyana +592
Haiti +509
Honduras +504
Hong Kong +852
Hungary +36
Iceland +354

Table VIII-1 Country Codes (cont’d)

Country Code

India +91
Indonesia +62
Iran +98
Iraq +964
Ireland +353
Ireland, Northern +44
Israel +972
Italy +39
Ivory Coast (Côte d’Ivoire) +225
Jamaica +1
Japan +81
Jordan +962
Kazakstan +7
Kenya +254
Kiribati Republic +686
Korea, Democratic P.R. +850
Korea, Republic of +82
Kuwait +965
Kyrgyzstan +7/+996
Laos +856
Latvia +371
Lebanon +961
Lesotho +266
Liberia +231
Libya +218
Liechtenstein +41
Lithuania +370
Luxembourg +352
Macau +853
Macedonia +389
Madagascar +261
Madeira +351
Malawi +265
Malaysia +60
Maldives +960
Mali +223
Malta +356
Mariana Islands +670
Marshall Islands +692
Martinique +596
Mauritania +222
Mauritius +230
Moyotte +269
Mexico +52
Micronesia +691
Moldova +373
Monaco +377
Mongolia +976

Country Codes 611

Table VIII-1 Country Codes (cont’d)

Country Code

Montserrat +1
Morocco +212
Mozambique +258
Myanmar +95
Namibia +264
Nauru +674
Nepal +977
Netherlands +31
Netherlands Antilles +599
Nevis +1
New Caledonia +687
New Zealand +64
Nicaragua +505
Niger +227
Nigeria +234
Niue +683
Northern Marianas +670
Norway +47
Oman +968
Pakistan +92
Palau +680
Panama +507
Papua New Guinea +675
Paraguay +595
Peru +51
Philippines +63
Poland +48
Portugal +351
Puerto Rico +1
Qatar +974
Reunion +262
Romania +40
Russian Federation +7
Rwanda +250
Saint Helena +290
Saint Kitts & Nevis +1
Saint Lucia +1
Saint Pierre & Miquelon +508
Saint Vincent & Grenadines +1
Samoa, Western +685
San Marino +378
São Tome and Principe +239
Saudi Arabia +966
Senegal +221
Serbia-Montenegro +381
Seychelles +248
Sierra Leone +232
Singapore +65

Table VIII-1 Country Codes (cont’d)

Country Code

Slovak Republic +42
Slovenia +386
Solomon Islands +677
Somalia +252
South Africa +27
Spain +34
Sri Lanka +94
Sudan +249
Suriname +597
Swaziland +268
Sweden +46
Switzerland +41
Syria +963
Tahiti +689
Tajikistan +7
Tanzania +255
Thailand +66
Togo +228
Tokelau +690
Tonga +676
Trinidad & Tobago +1
Tunisia +216
Turkey +90
Turkmenistan +7/+993
Turks & Caicos Islands +1
Tuvalu +688
Uganda +256
Ukraine +380
United Arab Emirates +971
United Kingdom +44
United States of America +1
Uruguay +598
Uzbekistan +7/+998
Vanuatu +678
Vatican City State +39/+379
Venezuela +58
Viet Nam +84
Virgin Islands +1
Wallis & Futuna +681
Western Samoa +685
Yemen +967
Zaire +243
Zambia +260
Zanzibar +255/+259
Zimbabwe +263

612

613

Appendix IX

Hexification Programs

The C programs hex.c and unhex.c translate between 8-bit binary files and straight
hex files, in which every pair of hexadecimal digits corresponds to a single 8-bit byte.
The hex.c program translates the standard input into hexadecimal notation and sends the
result to standard output. Usage on UNIX, DOS, Windows, OS/2:

hex < binaryfile > hexfile

__

#include <stdio.h> /* For EOF symbol */
#ifdef MSDOS /* Or Windows or OS/2 */
#include <fcntl.h> /* For MS-DOS O_BINARY symbol */
#endif /* MSDOS */

unsigned int c; int count = 0; char a, b; char h[16] = {
’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’};
main() {
#ifdef MSDOS

setmode(fileno(stdin),O_BINARY); /* Avoid DOS conversions */
#endif /* MSDOS */

while ((c = getchar()) != EOF) { /* For each file char */
b = c & 0xF; /* Get low 4 bits */
a = (c >> 4) & 0xF; /* and high 4 bits */
putchar(h[a]); /* Hexify & output them */
putchar(h[b]);
if (++count == 36) { /* 72 chars per line */

putchar(’\n’); count = 0;
}

}
putchar(’\n’); /* Terminate final line */

}
__

614 Hexification Programs / Appendix IX

The unhex program converts a hex file back into its original binary format. Usage on
UNIX or MS-DOS:

unhex < hexfile > binaryfile

__

#include <stdio.h> /* Include this for EOF symbol */
#ifdef MSDOS
#include <fcntl.h> /* For MS-DOS setmode() symbol */
#endif

unsigned char a, b; /* High and low parts of byte */
unsigned int c; /* Char to translate them into */
unsigned char decode(); /* Function to decode them */

main() {
#ifdef MSDOS

setmode(fileno(stdout),O_BINARY); /* Avoid DOS conversions */
#endif /* MSDOS */

while ((c = getchar()) != EOF) { /* Read first hex digit */
a = c; /* Convert to character */
if (a == ’\n’ || a == ’\r’) { /* Ignore line ends */

continue;
}
if ((c = getchar()) == EOF) { /* Read second hex digit */

fprintf(stderr,"File ends prematurely\n");
exit(1);

}
b = c; /* Convert to character */
putchar(((decode(a) * 16) & 0xF0) + (decode(b) & 0xF));

}
exit(0); /* Done */

}

/* Function to decode a hex char */
unsigned char
decode(x) char x; {

if (x >= ’0’ && x <= ’9’) /* 0-9 offset by hex 30 */
return (x - 0x30);

else if (x >= ’A’ && x <= ’F’) /* A-F offset by hex 37 */
return(x - 0x37);

else { /* All others illegal */
fprintf(stderr,"\nInput is not in legal hex format\n");
exit(1);

}
}
__

615

Appendix X

Shift-Out/Shift-In Filter

Use this program, so.c, to display 8-bit text on your screen when your connection to the
host is 7 bits. Usage examples:

$ so < german.txt
$ kermit -z | so

__

#include <stdio.h> /* Standard i/o library */
main() { /* Main routine */

int x = 0, shift = 0; /* Declarations */
unsigned char c;

while ((x = getchar()) != EOF) { /* Read a character */
c = x; /* Convert int to char */
if (c > 127) { /* 8-bit character */

if (shift == 0) { /* Shifted already? */
putchar(’\16’); /* No, output SO (^N) */
shift = 1; /* Remember shift */

}
} else { /* 7-bit character */

if (shift == 1) { /* Shifted? */
putchar(’\17’); /* Yes, output SI (^O) */
shift = 0; /* Remember */

}
}
putchar(c & 0x7F); /* Output the character */

}
putchar(’\17’); /* Return to normal */

}
__

616

617

Acronyms and Abbreviations

3270
A type of block-mode terminal used with IBM 370-series mainframes.

ACK
Acknowledgement.

ACL
Access Control List, a property of the VMS, OpenVMS, and AOS/VS file systems.

ACS
Asynchronous Communication Server. A device on a PC network that houses one or
more serial ports that can be shared by all the PCs on the network.

ACU
Automatic Calling Unit. A modem that includes a dialer.

ADSL
Asymmetric Digital Subscriber Line.

Alt
The key that you hold down while pressing another key in order to produce an Alt
character, on keyboards that have an Alt (or Alternate) key. For example, Alt-X is
produced by holding down Alt and pressing X.

ANSI
The American National Standards Institute, which issues standards such as ASCII.

618 Acronyms and Abbreviations

AOS/VS
Advanced Operating System / Virtual System, the operating system for Data General
Eclipse MV-series computers.

APC
Application Program Command.

API
Application Program Interface.

ARQ
Automatic Repeat (or Retransmission) Request. Applies to a communications protocol
in which retransmission of damaged messages can be requested.

ASCII
American Standard Code for Information Interchange, ANSI X3.4-1986. A
128-character code widely used by computers for representing and transmitting charac-
ter data, in which each character corresponds to a number between 0 and 127. Listed in
Table VII-1.

AXP
The Digital Equipment Corporation 64-bit computer architecture, now called Alpha.

BBS
Bulletin board system. A dialup computer service that lets you exchange messages with
other users of the same BBS, read news on various topics, and upload and download
software and files.

bis
[L] ‘‘twice’’ (used with ITU-T standards).

bps
Bits per second (transmission speed).

C
The programming language used predominantly on UNIX systems, and in which
C-Kermit is written.

C0
(C Zero) A set of 32 7-bit control characters.

C1
(C One) A set of 32 8-bit control characters.

CB
Citizens Band.

Acronyms and Abbreviations 619

CCITT
The International Telegraph and Telephone Consultative Committee of the International
Telecommunications Union, which issues standards called Recommendations, such as
CCITT Recommendations V.24, X.25 (q.v.). Renamed to ITU-T (q.v.) in 1993.

CD
Carrier Detect. The signal from a modem indicating it is connected to another modem.
Also called Data Carrier Detect (DCD), Receive Line Signal Indicator (RLSI).

cd
Change Directory. The command used in UNIX, MS-DOS, OS/2, and several other
operating systems to change your current (default) directory.

CECP
Country Extended Code Page. An EBCDIC-based national or international character set
used on IBM mainframes.

CK
Filename prefix for C-Kermit files.

CLI
Command Line Interpreter (AOS/VS and Commodore Amiga).

CP
Code page, a character set used on PCs or IBM mainframes.

CPS
Characters per second, usually equivalent to 10 bits per second in asynchronous trans-
mission, 8 bits per second in synchronous or network transmission.

CPU
Central processing unit. The ‘‘brain’’ of a computer.

CR
Carriage return (ASCII 13, Control-M).

CRC
Cyclic redundancy check, an error-checking mechanism, the remainder after dividing a
message, viewed as a base-2 polynomial, by another base-2 polynomial.

CRLF
Carriage return and linefeed, the sequence of ASCII characters (codes 13 and 10) used
by MS-DOS, OS/2, and other file systems to delimit lines in a text file.

CRT
Cathode ray tube. Commonly used to mean a video terminal.

620 Acronyms and Abbreviations

csh
The C-Shell, the command interpreter supplied with Berkeley UNIX.

CTERM
The DECnet virtual terminal protocol used by the DECnet SET HOST command.

Ctrl
Control. The key you hold down while pressing another key (a letter or certain others)
to produce a control character. For example, Ctrl-C is produced by holding down Ctrl
and pressing C.

CTS
Clear To Send. The RS-232 signal that indicates the DCE’s readiness to accept data
from the DTE.

DC
(informal) data compression.

DCC
Data Country Code (part of an X.121 address).

DCD
Data Carrier Detect. Same as CD, q.v.

DCE
Data Communications Equipment, such as a modem.

DCL
DIGITAL Command Language. A command interpreter as well as a language for writ-
ing command procedures on Digital Equipment Corporation computers.

DCM
Data Communications Module (Rolm).

DG
Data General Corporation.

DGI
Data General International (character set).

DEC
Digital Equipment Corporation.

DMA
Direct Memory Access.

DNIC
Data Network Identification Code (part of an X.121 address).

Acronyms and Abbreviations 621

DOS
Disk Operating System. A computer operating system that uses a magnetic disk as its
principal medium of permanent storage. Also, short for MS-DOS or PC-DOS.

DSR
Data Set Ready. A signal from a DCE to a DTE that says the DCE is turned on and in
data mode.

DTE
Data Terminal Equipment, such as a computer or a terminal.

DTMF
Dual Tone Multi Frequency (touch tone).

DTR
Data Terminal Ready. A signal from a DTE to a DCE that says the DTE is turned on
and ready to communicate.

EBCDIC
Extended Binary Coded Decimal Interchange Code. The 8-bit character code used on
IBM mainframes. Many variations exist, described in reference [40].

EC
(informal) error correction.

ECMA
European Computer Manufacturers Association.

e.g.
[L] exempli gratia (for example).

EIA
The Electronic Industries Association, sponsor of RS-232.

EISA
Extended Industry Standard Architecture, a 32-bit extension to the 16-bit ISA bus ar-
chitecture used by the IBM PC/AT and compatibles.

EOF
End Of File.

ESC
Escape, ASCII character 27, Control–[.

EU
European Union.

622 Acronyms and Abbreviations

EUC
Extended UNIX Code.

FAQ
Frequently Asked Question.

FAT
File Allocation Table. The MS-DOS file system that is also supported by OS/2 and
Windows, in which file names are limited to 8.3 format (eight characters before the dot,
three after).

FTP
File Transfer Protocol. As a proper name, the file transfer protocol of the Internet, and
the program of the same name that implements it.

G0
(G Zero) A set of 94 graphic characters, normally the graphic characters of ASCII (ISO
646 International Reference Version).

G1
(G One) A set of 94 or 96 graphic characters.

G2
(G Two) A set of 94 or 96 graphic characters.

G3
(G Three) A set of 94 or 96 graphic characters.

GL
Graphics Left. The set of graphic characters selected by a 7-bit character whose encod-
ing is in the range 33–126.

GNU
GNU is Not UNIX. An effort to develop, collect, and distribute free software, mostly
for UNIX, by the Free Software Foundation.

GOST
The (former) USSR State Committee on Standards. Now GOSSTANDART RF in Russia,
UZGOST in Uzbekistan, SARM in Armenia, etc.

GR
Graphics Right. The set of graphic characters selected by an 8-bit character whose en-
coding is in the range 160–255 (96-character sets) or 161–254 (94-character sets).

GUI
Graphical User Interface.

Acronyms and Abbreviations 623

HD
High Density, such as the recording format of a diskette.

HPFS
The OS/2 High Performance File System, which supports long filenames.

HST
US Robotics High Speed Technology, a proprietary modem-to-modem protocol.

IBM
International Business Machines Corporation.

i.e.
[L] id est (that is).

I/O
Input/Output.

IAC
Interpret As Command, the TELNET protocol negotiation lead-in byte, value 255
decimal.

ICSTI
International Centre for Scientific and Technical Information, Moscow (���������).

IETF
Internet Engineering Task Force, the standards body of the Internet.

IP
Internet Protocol. The routing protocol and addressing conventions used in the Internet.

IRV
International Reference Version (of ISO 646).

ISA
Industry Standard Architecture, referring to the 16-bit bus used by the IBM PC/AT and
compatibles.

ISDN
Integrated Services Data Network. The basis for a digital telephone network with com-
bined voice and data capability.

ISO
International Organization for Standardization. A voluntary international group of
national standards organizations that issues standards in a number of areas, including
computers, information processing, and character sets.

624 Acronyms and Abbreviations

ISO 646
The ISO standard for country-specific 7-bit character sets.

ISO 8859
The ISO standard for international 8-bit character sets.

ISO 10646
The ISO universal character-set standard, covering potentially all of the world’s writing
systems.

ITU
International Telecommunications Union.

ITU-T
Telecommunications Standardization Sector of the ITU, formerly CCITT (q.v.).

JIS
Japan Industrial Standard.

JIS X 0201
The Japanese standard single-byte code for Roman and Katakana characters.

JIS X 0208
The Japanese standard two-byte code for Kanji characters, including also Katakana,
Roman, Cyrillic, Greek, and others.

K
Kilo, meaning either 1,000 or 1,024.

KDD
Kermit Dialing Directory.

KND
Kermit Network Directory.

KOI
(�����) Russian abbreviation for ��������	�
����������������������������� ����! — Kod dlia Ob-
miena Informaciyey (Code for Information Interchange).

KSC
Kermit Script. The recommended filetype for Kermit script files.

KSD
Kermit Services Directory.

ksh
The K-Shell, or Korn shell [5]. An alternative command interpreter supplied with some
versions of UNIX.

Acronyms and Abbreviations 625

LAN
Local area network.

LAPM
Link Access Procedure for Modems, specified in ITU-T V.42 [11].

LAT
Local Area Transport protocol, used by DEC Ethernet terminal servers.

LDM
Limited Distance Modem.

LF
Linefeed, ASCII character 10.

LU
Logical Unit.

LZW
Lempel, Ziv, Welch data compression. Used, for example, in V.42bis [12].

M
Mega, meaning either one million or 1,048,576.

MNP
Microcom Networking Protocol, used by modems for error correction and data
compression. Levels 1 through 4 provide error correction. Levels 5 and above also
provide compression.

MS-DOS
Microsoft’s Disk Operating System for microcomputers based on the Intel 8086 CPU
family.

NANP
North American Numbering Plan, the system used for telephone numbers in the USA,
Canada, and various Carribean and Pacific islands.

NAK
Negative Acknowledgement.

NFS
Network File System.

NIC
Network Information Center.

626 Acronyms and Abbreviations

NRC
National Replacement Character set. A 7-bit character set, usually, but not always, an
ISO 646 national version (DEC).

NTFS
The Microsoft Windows NT File System, which supports long filenames.

NTN
Network Terminal Number (part of an X.121 address).

NUL
ASCII character number 0, as distinct from the number 0 or the ASCII character digit 0
(ASCII 48). Also, the OS/2, Windows, and DOS null device [58].

NVT
Network Virtual Terminal, the base definition for a TELNET terminal.

OS
Operating system.

PAD
Packet Assembler and Disassembler, the terminal interface to an X.25 network,
specified in ITU-T X.3 [13].

PBX
Private Branch Exchange. A telephone system that serves the internal needs of an or-
ganization and provides connections to the external telephone network. Some PBX’s
can be used for data as well as voice transmission within the organization.

PC
Personal computer.

PCIA
Personal Communications Industry Association.

PDN
Public data network, usually using X.25 protocols.

PEP
Telebit’s Packet Ensemble Protocol, used between Telebit modems.

pid
Process identification number.

PM
Presentation Manager. The OS/2 graphical user interface.

Acronyms and Abbreviations 627

PRN
The DOS, Windows, and OS/2 default printer device.

PSN
Packet switched network.

q.v.
[L] quod vide (which see).

REXX
Procedures Language/2 for OS/2 and other operating systems such as VM/CMS and
AmigaDOS. A flexible language for writing system command procedures.

RFC
Request For Comments. Internet standards, maintained by the IETF, q.v.

RI
Ring Indicator, RS-232 signal with which the modem tells the computer that the
telephone is ringing.

RLSI
Received Line Signal Indicator. Same as CD, q.v.

RMS
Record Management System. The file system interface for (Open)VMS and other DEC
operating systems.

ROM
Read-Only Memory.

RPI
Rockwell Protocol Interface. Designation for a type of modem, which might be made or
marketed by any manufacturer at all under any brand, that requires external software or
drivers in order to perform error correction and data compression.

RS-232
An Electronic Industries Association (EIA) standard that gives the electrical and func-
tional specification for serial binary digital data transmission. The most commonly used
interface between DTEs and DCEs. The USA equivalent of ITU-T Recommendation
V.24 [9].

RTR
Ready to Receive. New name for Request To Send (RTS), q.v.

628 Acronyms and Abbreviations

RTS
Request To Send. A signal used by a DTE to regulate the flow of data from a DCE.
When the DTE turns RTS on, the DCE is not supposed to send data. When the DTE
turns RTS off, the DCE is allowed to send data.

RTS/CTS
A form of full-duplex flow control or half-duplex line access control that uses the RTS
and CTS signals. Works between the PC and the device it is directly connected to, such
as a high-speed modem. Also see RTS and CTS.

RTT
Round Trip Time.

sh
The standard UNIX shell, also known as the Bourne shell.

SLIP
Serial Line Internet Protocol.

SNA
Systems Network Architecture, an IBM mainframe networking method.

SO/SI
Shift-Out/Shift-In, a method for shifting between 7- and 8-bit characters on 7-bit con-
nections.

TAP
Telocator Alphanumeric Protocol, PCIA standard for alphanumeric pagers.

TAPI
The Microsoft Telephony Application Programming Interface.

tar
Tape archive (UNIX).

TCP
Transmission Control Protocol. The transport layer of the TCP/IP protocol.

TCP/IP
A network protocol in widespread use for both local and wide area networking. The
protocol of the worldwide Internet.

TDD
Telecommunication Devices for the Deaf. Usually a Teletype or other hardcopy ter-
minal with a built-in modem. Original TDDs communicate at a very slow speed using a
special modulation technique and a limited 5-bit character code called Baudot; ASCII
TDDs are compatible with modern modems and character sets.

Acronyms and Abbreviations 629

ter
[L] ‘‘thrice’’ (used with ITU-T standards).

TIES
Time Independent Escape Sequence. A trick used on Hayes compatible modems made
by some manufacturers to avoid the Hayes-patented one-second guard time around the
escape sequence.

TTY
Teletype, an abbreviation used to designate a terminal or a computer terminal port.

UART
Universal Asynchronous Receiver/Transmitter. An asynchronous communication port.

UNIX
A popular operating system originally developed at AT&T Bell Laboratories and noted
for its portability.

URL
Uniform Resource Locator.

UUCP
UNIX-to-UNIX Copy Program.

V.22
ITU-T standard for 1200 bps full-duplex modems.

V.22bis
ITU-T standard for 2400 bps full-duplex modems.

V.23
ITU-T standard for 600 and 1200 bps half-duplex modems with 75 bps back channel
(split-speed modems).

V.24
ITU-T standard that gives the electrical and functional specification for serial binary
digital data transmission; the European equivalent of RS-232.

V.25bis
ITU-T standard modem dialing language.

V.32
ITU-T standard for 9600 bps modem connection.

V.32bis
ITU-T standard for 14400 bps modem connection.

630 Acronyms and Abbreviations

V.34
ITU-T standard for 28800 bps modem connection.

V.42
ITU-T standard error correction for modems, also called LAPM.

V.42bis
The ITU-T data compression standard.

VAX
Virtual Address Extended. The Digital Equipment Corporation 32-bit computer
architecture.

VMS
Virtual Memory System, the operating system for DEC VAX computers. Renamed to
OpenVMS in later releases for both VAX and Alpha architectures.

WWW
The World Wide Web, a graphical / hypertext way of accessing the Internet.

X.3
The protocol specifying the interface between a terminal and an X.25 network, specified
by ITU-T Recommendation X.3, used on public data networks.

X.25
A networking method, specified by ITU-T Recommendation X.25, used on public data
networks.

X.121
An addressing method used on X.25 networks.

Xon/Xoff
The most common full-duplex flow control method, in which the receiver sends an Xoff
character when its input buffer is close to filling up and an Xon when it has made room
for more data to arrive. Also called software flow control, to distinguish it from
hardware flow control methods such as RTS/CTS.

631

References

[1] ANSI X3.4-1986, Code for Information Interchange
American National Standards Institute, 1986.
The ASCII character-set specification; the US version of ISO 646.

[2] ANSI X3.15-1976, Bit Sequencing of ASCII in Serial-By-Bit Data Transmission
American National Standards Institute, 1976.
The standard that specifies how characters are transmitted on a serial connection.

[3] ANSI 3.16-1976, Character Structure and Character Parity Sense for
Serial-By-Bit Data Communication in ASCII
American National Standards Institute, 1976.
The standard that specifies the transmission format for ASCII characters.

[4] ANSI X3.64-1979, Additional Controls for Use with the American National Stan-
dard Code for Information Interchange
American National Standards Institute, 1979.
Control sequences for video terminals and peripherals.

[5] Bolsky, Morris I., and David G. Korn.
The Kornshell.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[6] Bryabin, V.M., et al.���������
	��	����������������������������! �	"���#�$������%#��&('*)�+(,
.,-��./���$0����"1�	������"�$��&$	2�3��	��4�����5�6�7�����/�/	��8&

(4), 1986.
The article in which the ‘‘Alternative Cyrillic’’ character set for PCs was first

proposed, which became the basis for CP866.

632 References

[7] British Standard BS 4730, The Set of Graphic Characters of the United Kingdom
7-Bit Data Code
British Standards Institution, 1975.

[8] CCITT Recommendation E.123, Notation for National and International
Telephone Numbers
CCITT, Geneva, 1988.

[9] CCITT V.24, List of Definitions for Interchange Circuits between Data Terminal
Equipment and Data Circuit-Terminating Equipment
CCITT, Geneva, 1984.
The European equivalent of RS-232.

[10] CCITT V.25bis, Automatic Calling and/or Answering Equipment on the General
Switched Telephone Network (GSTN) Using the 100-Series Interchange Circuits
CCITT, Geneva, 1984, 1988.

[11] CCITT Recommendation V.42, Error-Correcting Procedures for DCEs Using
Asynchronous-to-Synchronous Conversion
CCITT, Geneva, 1988.

[12] CCITT Recommendation V.42 bis, Data Compression Procedures for Data Circuit
Terminating Equipment (DCE) Using Error Correcting Procedures
CCITT, Geneva, 1990.

[13] CCITT Recommendation X.3, Packet Assembly Disassembly Facility (PAD) in a
Public Data Network
CCITT, Geneva, 1988.

[14] CCITT Recommendation X.25, Interface between Data Terminal Equipment (DTE)
and Data Circuit-Terminating Equipment (DCE) for Terminals Operating in the
Packet Mode and Connected to Public Data Networks by Dedicated Circuit
CCITT, Geneva, 1989.

[15] CCITT X.28, DTE/DCE Interface for a Start-Stop Mode Data Terminal Equipment
Accessing the Packet Assembly/Disassembly Facility (PAD) in a Public Data Net-
work Situated in the Same Country
CCITT, Geneva, 1977.

[16] CCITT X.29, Procedures for the Exchange of Control Information and User Data
Between a Packet Mode DTE and a Packet Assembly/Disassembly Facility (PAD)
CCITT, Geneva, 1977.

[17] CCITT Recommendation X.121, International Numbering Plan for Public Data
Networks
CCITT, Geneva, 1988.

[18] Chandler, John.
Dynamic Packet Size Control.
Kermit News 3(1), June, 1988.

References 633

[19] Chandler, John.
IBM System/370 Kermit User’s Guide
Columbia University Academic Information Systems, 1993.

[20] Comer, Douglas and David L. Stevens.
Internetworking with TCP/IP.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[21] da Cruz, Frank.
Kermit, A File Transfer Protocol.
Digital Press, Newton, MA, 1987.

[22] da Cruz, Frank, and Christine Gianone.
How Efficient Is Kermit?
Kermit News (4), June, 1990.

[23] Data General.
Learning to Use Your AOS/VS System
Data General, Westboro, MA, 1986.
093-000031-02.

[24] Data General.
AOS/VS System Concepts
Data General, Westboro, MA, 1986.
093-000335-01.

[25] Data General.
Programming the Display Terminal: Models D217, D413, and D463
Data General, Westboro, MA, 1991.
014-002111-00.

[26] Data General.
Using the CLI (AOS/VS and AOS/VS II)
Data General, Westboro, MA, 1991.
093-000646-01.

[27] Digital Equipment Corporation.
VT102 Video Terminal User Guide
Digital Equipment Corporation, Maynard, MA, 1982.
EK-VT102-UG-003.

[28] Digital Equipment Corporation.
VT330/340 Programmer Reference Manual, Volume 1: Text Programming
Digital Equipment Corporation, Maynard, MA, 1987.
EK-VT3XX-GP-001.

[29] Dijkstra, Edsgar W.
Go To Statement Considered Harmful.
Communications of the ACM 11(3), March, 1968.

634 References

[30] ECMA.
Standard ECMA-113, 8-Bit Single-Byte Coded Graphic Character Sets,

Latin/Cyrillic Alphabet
1st edition, European Computer Manufacturers Association, 1974.
KOI-8, equivalent to GOST 19768-1974.

[31] ECMA.
Standard ECMA-113, 8-Bit Single-Byte Coded Graphic Character Sets,

Latin/Cyrillic Alphabet
2nd edition, European Computer Manufacturers Association, 1988.
Equivalent to ISO 8859-5 Latin/Cyrillic and GOST 19768-1987.

[32] ECMA.
Standard ECMA-121, 8-Bit Single-Byte Coded Graphic Character Sets,

Latin/Hebrew Alphabet
European Computer Manufacturers Association, July 1987.
Equivalent to ISO 8859-8 Latin/Hebrew.

[33] EIA Standard RS-232-C, Interface Between Data Terminal Equipment and Data
Communication Equipment Employing Serial Binary Data Interchange
Electronic Industries Association, 2001 Eye Street N.W., Washington, DC 20006,

1969 (Reaffirmed 1981).
Recently supplanted by RS-232-D, which defined several of RS-232-C’s unused

circuits, and changed some terminology.

[34] EIA Standard RS-423-A, Electrical Characteristics of Unbalanced Voltage Digital
Interface Circuits
Electronic Industries Association, 2001 Eye Street N.W., Washington, DC 20006,

1979.

[35] Gianone, Christine M., and Frank da Cruz.
A Kermit Protocol Extension for International Character Sets.
Technical Report, Columbia University, 1990.

[36] Gianone, Christine M. and Frank da Cruz.
A Locking Shift Mechanism for the Kermit File Transfer Protocol.
Technical Report, Columbia University, 1991.

[37] Hayes Smartmodem 2400 User’s Guide
Hayes Microcomputer Products, Inc., 1986.

[38] Hemenway, Kathy, and Helene Armitage.
Proposed Syntax Standards for UNIX System Commands.
UNIX/WORLD 1(3), 1984.

[39] IBM National Language Support Reference Manual
IBM Canada Ltd., National Language Technical Centre, Ontario, 1990.
SE09-8002-01.

References 635

[40] IBM Character Data Representation Architecture, Level 1 Registry
IBM Canada Ltd., National Language Technical Centre, Ontario, 1990.
SC09-1391-00.

[41] ISO Standard 646, 7-Bit Coded Character Set for Information Processing
Interchange
Second edition, International Organization for Standardization, 1983.
Also available as ECMA-6, and similar to CCITT T.50.

[42] ISO International Standard 2022, Information processing — ISO 7-bit and 8-bit
coded character sets — Code extension techniques
Third edition, International Organization for Standardization, 1986.
Also available as ECMA-35.

[43] ISO International Standard 4873, Information processing — ISO 8-bit code for
information interchange — Structure and rules for implementation
Second edition, International Organization for Standardization, 1986.
Also available as ECMA-43.

[44] ISO International Standard 8859 Parts 1 through 10, Information
Processing—8-Bit Single-Byte Coded Graphic Character Sets
International Organization for Standardization, 1987–1995.

[45] ISO/IEC 10646-1, International Standard 10646, Information
Processing—Multiple-Octet Coded Character Set
ISO/IEC JTC1, 2000.

[46] ISO International Standard 6429, Information processing — C1 Control Charac-
ter Set of ISO 6429
International Organization for Standardization, 1983.

[47] ISO International Register of Coded Characters to Be Used with Escape
Sequences
European Computer Manufacturers Association (ECMA), 1990, updated

periodically.

[48] JIS X 0201, The Japanese Katakana and Roman Set of Characters
Japan Industrial Standards Committee, 1969.

[49] JIS X 0208, The Japanese Graphic Character Set for Information Interchange
Japan Industrial Standards Committee, 1983, revised 1995.

[50] JIS X 0212, Supplementary Japanese Graphic Character Set for Information
Interchange
Japan National Committee on ISO/IEC JTC1/SC2, 1991.

[51] B. Kantor.
RFC 1282: BSD Rlogin.
Technical Report, Network Working Group, December, 1991.

636 References

[52] Kernighan, Brian W., and Dennis M. Ritchie.
Prentice-Hall Software Series: The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[53] Kientzle, Tim.
The Working Programmer’s Guide to Serial Protocols.
Coriolis Group Books, Scottsdale, AZ, 1995.

[54] Kientzle, Tim.
Improving Kermit Performance.
Dr. Dobbs Journal :28–38, February, 1996.

[55] McNamara, John E.
Technical Aspects of Data Communication.
Digital Press, Newton, MA, 1988.

[56] Microsoft MS-DOS Version 4.01 in Russian, Product Description
Microsoft Corporation, Unterschleißheim, Germany, 1989–1990.

[57] ���������
	����������������	����������������� ����������!"���
!����#�%$'&�������	����#�)(*$�������+�,-(
International Center for Scientific and Technical Information (ICSTI), Moscow,

1987.
A Russian Kermit User Guide, including character tables for several Cyrillic

character sets.

[58] Postel, J., and Reynolds, J.
RFC 854: TELNET Protocol Specification.
Technical Report, Network Working Group, May, 1983.

[59] Snedecor, George W. and William G. Cochran.
Statistical Methods.
Iowa State University Press, Ames, 1989.

[60] Todino, Grace, and Dale Dougherty.
Nutshell Handbook: Using UUCP and Usenet.
O’Reilly & Associates, Inc., Newton, MA, 1987.

[61] The Unicode Consortium.
The Unicode Standard, Version 2.0.
Addison-Wesley Developers Press, July 1996.

637

Trademarks and Copyrights

The Telnet Song by Guy Steele on pages 191–192 appeared in Communications of the
ACM, Volume 27, Number 4, April 1984, Copyright 1984 by the Association for Com-
puting Machinery, Inc, and is reprinted with permission of the author and of the Associa-
tion for Computing Machinery, who asked us to say, ‘‘Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from Publica-
tions Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.’’

The products and services that are referred to in this book, including but not limited to the
ones that follow, may be either trademarks and/or registered trademarks of their respective
owners. The publisher and authors make no claim to these trademarks.

Adobe Systems Incorporated, Mountain View, CA: PostScript
Alliant: Alliant, Concentrix
Altos Computer Systems: Altos
Amdahl: UTS
Apollo: Aegis, Domain, SR10
Apple Computer, Cupertino, CA: Apple, Apple II, Macintosh, Lisa, LaserWriter, A/UX
AT&T, New York, NY: Touch-Tone
AT&T Information Systems, Morristown, NJ: StarLAN, StarGROUP, AT&T 6300, AT&T 6300 PLUS,

UNIX PC, 3B2, 3B20

638 Trademarks and Copyrights

Atari, Sunnyvale, CA: Atari, ST, GEM, GEMDOS
Berkeley Software Design, Inc., Falls Church, VA: BSDI/386
Charles River Data Systems, Inc., Framingham, MA: UNOS
Chrysler Corporation: Jeep
Cisco Systems, Inc., Menlo Park, CA: cisco, Cisco, AGS, AGS+
Commodore Business Machines, West Chester, PA: Amiga, AmigaDOS, Amiga Workbench, Amiga

2000, Amiga 3000, Amiga 3000UX, Commodore 64, Commodore 128, Intuition
CompuServe, Inc. (an H&R Block Company), Columbus, OH: CompuServe
Concept Omega Corporation, Somerset, NJ: Thoroughbred BASIC
Concurrent, Oceanport, NJ: Concurrent, MASSCOMP, RTU, Xelos
Consensys Corporation, Universal City, TX: Consensys
Control Data Corporation: CDC, Cyber
Convergent Technologies, Inc., Santa Clara, CA: Convergent Technologies, Convergent, MegaFrame

Computer System, MiniFrame Computer System, CTIX, CTOS
Convex: Convex, ConvexOS
Cray Research, Eagen, MN: Cray X/MP, Y/MP, C90, UNICOS
Data General Corporation, Westboro, MA: AOS/VS, AViiON, CEO, DASHER, DG/UX, ECLIPSE MV,

MV/UX, RDOS, DESKTOP GENERATION
Dell Computer Corporation: Dell, Dell System
Diab Data AB, a Bull company, Tdby, Sweden: DIAB, DNIX
Dialog Information Services, Inc., Palo Alto, CA: DIALOG
Digital Equipment Corporation, Maynard, MA: The Digital logo, DEC, PDP-8, OS/8, OS/278, PDP-11,

RSTS/E, RSX-11, RT-11, IAX, PDP-12, OS/12, VAX, AXP, Alpha, VMS, OpenVMS, VT52,
VT100, VT102, VT220, VT320, Rainbow, VAXmate, DECmate, DECserver, DECstation, DEC-
SYSTEM, DECsystem, TOPS-10, TOPS-20, VAXstation, MicroVAX, PATHWORKS, ULTRIX

Digital Equipment Corporation, Intel Corporation, Xerox Corporation: Ethernet
Digitel S/A Indústria Eletrônica, Porto Alegre, Brazil: Digitel DT-22
Dow Jones and Company, Princeton, NJ: Dow-Jones News/Retrieval Service
Encore Computer: Multimax, Umax
ESIX Computer, Inc., Santa Ana, CA: ESIX
EXABYTE Corporation, Boulder, CO: EXABYTE, EXATAPE
Fortune Systems, Redwood City, CA: For:Pro
Fujitsu, Japan: Fujitsu
Groupe Bull, France: Honeywell, VIP
Harris Corporation, Fort Lauderdale, FL: Night Hawk, CX/UX
Hayes Microcomputer Products, Inc., Atlanta, GA: Hayes Smartmodem 1200 and 2400
Heath Company, Benton Harbor, MI: Heath-19
Henson Associates, Inc., New York, NY: Kermit. The Kermit protocol was named after Kermit the Frog,

star of THE MUPPET SHOW television series. The name ‘‘Kermit’’ is used by permission of
Henson Associates, Inc., New York.

Hewlett-Packard Co., Palo Alto, CA: HP-9000, HP-UX
Insignia Solutions, Inc., Mountain View, CA: SoftPC
Integrated Computer Solutions, Cambridge, MA: ICS, ISI, VS8
Intel Corp., Santa Clara, CA: Intel 8080, 8086, 8088, 80286, 80386, 80486, i286, i386, i486, OpenNET
INTERACTIVE Systems Corporation, Division of SunSoft, Santa Monica, CA: INTERACTIVE UNIX
International Business Machines Corp., Armonk, NY: IBM, Series/1, VM/CMS, MVS/TSO, PC-DOS,

Operating System/2, OS/2, Presentation Manager, 3270, 3705, 3725, System/370, IBM PC, IBM
PC/XT, IBM PC/AT, IBM PCjr, IBM RT PC, PS/1, PS/2, IBM 7171, Token Ring, NETBIOS, CGA,
MCGA, EGA, VGA, XGA, RS/6000, RISC System/6000, AIX, AIX Windows, ACIS, Micro
Channel, REXX, Procedures Language/2

Trademarks and Copyrights 639

Linotype AG: Times
Lotus Development Corporation, Cambridge, MA: Lotus 1-2-3
Mark Williams Company, Chicago, IL: COHERENT
Massachusetts General Hospital: MUMPS
Massachusetts Institute of Technology: X-Window System
Masscomp, Framingham, MA: RTU
MCI Communication Corporation, Piscataway, NJ: MCI Mail
Meridian Technology Corporation, Chesterfield, MO: SuperLAT
Microcom, Inc., Norwood, MA: Microcom Networking Protocol, MNP, Universal Link Negotiation,

Statistical Duplexing
Microport: Microport
Microsoft Corporation, Redmond, WA: Microsoft, MS, MS-DOS, Win32, Win32s, Windows, Windows

NT
Microware Systems Corporation, Des Moines, IA: OS-9, OS-9000, OS-9/68000
MIPS Computer Systems, Inc., Sunnyvale, CA: MIPS, RISC/OS, UMIPS
Modular Computer Systems, Inc., Fort Lauderdale, FL: Modcomp: REAL/IX
Motorola, Inc., Tempe, AZ: Motorola, System V/68, System V/88, Motorola Delta Series
Motorola Semiconductors, Inc., Austin, TX: Motorola, 68000, 68010, 68020, 68030, 68040
MT XINU, Inc., Berkeley, CA: Mach386

NCR Corporation, Dayton, OH: NCR, Tower
NeXT Computer, Inc, Redwood City, CA: NeXT, NeXTstep, NeXTcube, NeXTstation
Nippon Electric Corporation, Japan: NEC, NEC PC9801
Novell, Inc., Provo, UT: Novell, NetWare, NetWare 286, NetWare 386, LAN Workplace for DOS,

Excelan
Ing. C. Olivetti & C., S.p.A., Ivrea, Italy: Olivetti, LSX, X/OS
Open Software Foundation, Cambridge, MA: Motif, OSF, OSF/1
Penril DataComm, Ltd, Hampshire, UK: Penril, Alliance
PKWARE, Inc., Brown Deer, WI: PKZIP
Plexus, San Jose, CA: Plexus
Prime Computer, Natick, MA: PRIME, PRIMOS, PRIMIX
Pyramid Technology Corp., Mountain View, CA: Pyramid
Racal-Vadic, Milpitas, CA: Vadic, VA3400
Regents of the University of California: Berkeley Software Distribution, BSD
Ridge Computers: Ridge 32
Santa Cruz Operation, Santa Cruz, CA: SCO Xenix, SCO UNIX, Open Desktop, ODT
Sequent Computer Systems, Inc., Beaverton, OR: Sequent, Balance, Symmetry, DYNIX, ptx,

DYNIX/ptx
Silicon Graphics, Inc., Mountain View, CA: Silicon Graphics, IRIS, IRIS Indigo, IRIX
Solbourne Computer, Longmont, CO: Solbourne, OS/MP
Sony, Japan: Sony NEWS
SPARC International, Inc.: SPARC, SPARCstation
Sun Microsystems, Inc., Mountain View, CA: Sun Microsystems, Sun Workstation, Sun, Sun-3, Sun-4,

SunOS, NFS, SunLink, SunSoft, SunView, Solaris
Tandy Corporation, Fort Worth, TX: Radio Shack, Tandy 16/6000
Andrew S. Tanenbaum: MINIX
Tektronix, Inc., Wilsonville, OR: Tektronix, UTek
Telebit Corporation, Sunnyvale, CA: Telebit, TrailBlazer, QBlazer, WorldBlazer, PEP
Telecom Canada, Ottawa, ON, Canada: Datapac

640 Trademarks and Copyrights

Teletype Corporation, Skokie, IL: Teletype
TGV, Inc., Santa Cruz, CA: MultiNet
3Com Corporation, Santa Clara, CA: 3Com, Bridge Applications Programmer Interface (BAPI)
Tri Star: Flash Cache
TYMNET, Inc., San Jose, CA: TYMNET
UNISYS Corporation, Blue Bell, PA: Unisys, PW2, PC/IT, Uniservo, CustomCare, Sperry, Burroughs,

U6000/65, MightyFrame, S/Series, CTIX, BTOS
UNIX System Laboratories, Inc., Summit, NJ: UNIX, System III, System V, OPEN LOOK
US Robotics: Courier
US Sprint Communications Company Limited Partnership, Shawnee Mission, KS: US Sprint, SprintNet,

Telenet
The Wollongong Group, Inc., Palo Alto, CA: WIN/TCP, WIN/ROUTE
WordPerfect Corporation, Orem, UT: WordPerfect
Xerox Corporation, Stamford, CT: Ethernet
Zenith Data Systems, Glenview, IL: Zenith-19 Terminal
Zilog, Campbell, CA: Zilog, ZEUS

Other brands or product names are trademarks or registered trademarks of their respective holders.

Colophon
The text of this book was entered using MS-DOS Kermit, Kermit 95, and/or Kermit/2 on PCs and
C-Kermit 6.0 on NeXTstations into GNU EMACS on a SunOS UNIX system. The text was formatted
for PostScript using the Scribe document preparation system on the Sun and set in Times Roman
augmented by the Cyrillic Gothic font designed by Jay Sekora of Princeton University and the Jerusalem
font from Hebrew University in Jerusalem, with much time-saving assistance from Trey Matteson’s
PostScript File Previewer on the NeXTSCRIBE TEXT FORMATTER.

MS-DOS Kermit, Kermit 95, Kermit/2, and C-Kermit are products of the Kermit Project, Columbia
University, 612 West 115th Street, New York, NY 10025-7799, USA. GNU EMACS is a product of the
Free Software Foundation, 675 Massachusetts Avenue, Cambridge, MA 02139, USA. Scribe is a
commercial product of Cygnet Publishing Technologies, Inc., 355 Fifth Avenue, Suite 1515, Pittsburgh,
PA 15222-2407, USA.

Index 641

Index
+ sign in dialing directory 118
+++ modem escape sequence 95, 275, 516, 629

! command 43
as comment introducer 25
* as wildcard character 550
- as command continuation character 25, 357
- as command-line option introducer 493
; as comment introducer 25
< comparison operator 392
= comparison operator 392
> comparison operator 393
? as command help request 14
? as wildcard character 20, 550
@ command 43
: label introducer 403
\ as command quote character 19, 54
~ notation for home directory 550

\$() environment variables 382
\%0-9 macro arguments 363
\%a-z letter variables 371
\&@[] program argument array 377
\&a-z[] arrays 375
\&_[] macro argument array 377
\F() built-in functions 414–426
\Fbasename() function 423
\Fcharacter() function 415
\Fcode() function 415
\Fcontents() function 414
\Fdate() function 423
\Fdefinition() function 414
\Feval() function 420
\Ffiles() function 423
\Findex() function 416
\Fipaddress() function 425, 450
\Flength() function 417
\Fliteral() function 414
\Flower() function 417
\Flpad() function 417
\Fmax() function 420
\Fmin() function 420
\Fmod() function 420
\Fnextfile() function 423, 424
\Fpathname() function 423
\Frepeat() function 417
\Freverse() function 418
\Fright() function 418
\Frindex() function
\Frpad() function 418
\Fsize() function 423
\Fsubstring() function 419
\Ftrim() function 419
\Funhexify() function 419
\Fupper() function 419

\Fverify() function 419
\m() macro definition value 373, 414
\v() built-in variables 377–381
\v(argc) variable 378, 400
\v(args) variable 378
\v(cmdfile) variable 378
\v(cmdlevel) variable 378
\v(cmdsource) variable 378
\v(cols) variable 182
\v(connection) variable 380
\v(count) variable 398, 406
\v(cps) variable 293, 381
\v(d$xxx) variables 124
\v(dialstatus) variable 136
\v(directory) variable 379
\v(download) variable 381
\v(evaluate) variable 422
\v(exitstatus) variable 378, 403
\v(filespec) variable 381
\v(fsize) variable 381
\v(ftype) variable 304, 381
\v(home) variable 379
\v(host) variable 379
\v(inchar) variable 448
\v(incount) variable 448
\v(input) variable 449
\v(instatus) variable 449
\v(line) variable 380
\v(local) variable 380
\v(modem) variable 380
\v(ndate) variable 379
\v(nday) variable 380
\v(newline) variable 435
\v(ntime) variable 380
\v(packetlen) variable 293, 381
\v(parity) variable 380
\v(platform) variable 379
\v(program) variable 379
\v(protocol) variable 304, 381
\v(return) variable 425
\v(rows) variable 182
\v(speed) variable 380
\v(status) variable 396
\v(fsize) variable 381
\v(time) variable 380
\v(tmpdir) variable 379
\v(ttyfd) variable 381, 492, 498
\v(user) variable 497
\v(version) variable 378, 399
\v(window) variable 294, 381

3270 protocol converter 243
login scripts for 465
nontransparent 244
transparent 243

642 Index

8th-bit prefixing 232, 273, 282

ACCESS macro 165
ACK (acknowledgement) packet 268
ADD SEND-LIST command 214
Address, IP 140
AIX 60

Also see IBM 1
Alarms, setting and checking 397
Aliases for invoking C-Kermit 299
Alpha. See UNIX, VMS, Windows NT
Alphanumeric pagers 481
Alternative Cyrillic character set 336, 602
Amiga C-Kermit 585
ANSWER command 78
Answer mode 516
AOS/VS 579–584

and C-Kermit 580
and international characters 581
and TCP/IP TELNET 579
and VT100 terminals 580
templates (wildcards) 583

APC command 301
APC escape sequence 187, 300, 432
APPEND, file collision option 218
Apple Macintosh. See Macintosh
Apple Quickdraw character set 596
Application file 51, 490, 495
Application Program Command. See APC
Aramaic 332, 338
Are You There, TELNET command 146
Area codes 122
Argument vector

C-Kermit command-line 377
macro 377

Arguments
command-line, listing 409
function 412
macro, array of 377
macro, count of 378
macro, explained 363
macro, listing 409

Arithmetic functions 420
Arrays 375, 408, 424, 437, 471
ASCII

and C-Kermit commands 317
language-specific transliteration to 341
table of 593
text file format 211
transfer character-set 211, 332

‘‘ASCII protocol’’ 307
ASG. See ASSIGN
Ash, letter 320
ASK command 427
ASKQ command 427
ASSIGN command 373, 383
Asynchronous serial communication 509–527

AT commands, Hayes. See Hayes modem
Attribute packets 218, 222

and Amiga C-Kermit 587
and character sets 347
and transfer mode 258
and VMS C-Kermit 563, 565, 570, 575

Autodial modem 516
Autodownload 186, 295
Automatic command execution 300
Automatic file transfer 295–301
Autoupload 296

BACK Command 42
Background file transfer 549
BACKGROUND, IF condition 398
Backslash

and OUTPUT command 447
as C-Kermit command quote character 19, 25
as directory separator 20, 54
as function introducer 412
as variable-name introducer 364, 375, 377
codes in CONNECT mode 178
codes, table of 55
notation for numbers 28
treating as ordinary character 54

BACKUP, file collision option 218
BACKUP saveset, VMS 567
Batch, VMS 560
Baud 511
BeBox 60
Bidirectional terminal devices 530
Binary files 503

and the TRANSMIT command 311
automatic recognition of in VMS 563
definition of 212
transfer of 212, 258

Binary, TELNET option 148
Blank-Free-2 block check 244
Block check 237, 244
Block structure for macros 358, 407
Boilerplate e-mail example 437
‘‘Bong’’ dialing signal 121, 133
BPS (bits per second) 511
Braces

used for block structure 358
used for grouping words in commands 20

Braille 4, 207, 538
BREAK command 410
BREAK signal 177, 447
BREAK, TELNET command 146
Breakout box 527
British character set 329, 595
Bubble sort 409
Buffers, packet 281
Built-in variables 377–381
BYE command 255
Bytesize, command 53

Index 643

C-Kermit
aliases for invoking 299
and AOS/VS 579
and ASCII 317
and OS-9 588
and the Commodore Amiga 585
and UNIX 537
and VMS 555
argument vector 377
command files for 24, 352
description iii
exit status codes 491
how to start 12
in a GUI environment 541, 557
in the middle 184, 298
initialization file 49
interactive commands, how to enter 14
starting in AOS/VS 581
starting in UNIX 537
starting in VMS 555

Cables 522
CALL macro 164, 443
Call stack 365, 375, 395, 401

and GOTO command 403
and recursive functions 426

Calling card numbers, and dialing 132
Canada 122
Capturing remote files 308
Carrier signal 62
Case of letters

and the INPUT command 448, 485
changing 417
in C-Kermit commands 14
in character-string functions 415
in directory names 31
in environment variable names 382
in filenames 30
in GOTO labels 404
in macro names 356
in string comparisons 395
in SWITCH labels 411
in system commands 32
in transferred filenames 195
in variable names 371

CAUTIOUS command 293, 358
CCITT. See ITU-T
CD (carrier detect). See Carrier signal
CD command 41
CD modem signal 514
Character, asynchronous transmission format 509
Character functions 415
Character set tables

ASCII 593
Cyrillic 602
East European Languages 600
Hebrew 606
ISO 646 593, 595

West European Languages 596
Character sets 317–348

and ANSI escape sequences 324
and AOS/VS 581
and Attribute packets 347
and C-Kermit commands 322
and customization file 347
and file transfer 328
and languages 341
and OS-9 589
and script programs 453
and string comparisons 395
and terminal connection 323
and the Amiga 587
and the TRANSMIT command 311, 347
and UNIX 540
and VMS 556
combinations of 318
Cyrillic 336
Cyrillic, file transfer examples 337, 343
Cyrillic, table of 602
European, file transfer examples 334, 343
file conversion 345
Hebrew 338
Hebrew, table of 606
Japanese 339
Japanese, file transfer examples 341
Kermit designator for 223
proprietary 318, 591
Roman alphabet, tables of 596, 600
standard 319, 591
terminal 308, 311, 324
unknown 334

Character-set
file 330
terminal 323
transfer 328, 331

Character-string functions 415
Characters used in phone numbers 121, 136
CHECK command 52, 331, 537
Checkpoint/Restart. See RESEND, REGET
Chinese Roman character set 595
CKVCVT program 573
CLEAR APC command 433
CLEAR DEVICE command 450
CLEAR DIAL-STATUS command 77, 368
CLEAR INPUT command 450
Client/server operations 249–266
CLOSE command 75, 436
CLOSE DEBUG command 247
CLOSE PACKETS command 247
CLOSE SESSION command 188
CLOSE TRANSACTIONS command 226
Closing

a CONNECT session 173
a file 436
a network connection 139

644 Index

a serial connection 75
CL_COMMANDS macro 496
Code page 437 329, 596
Code page 850 329, 596
Code page 852 329, 600
Code page 862 606
Code page 866 329, 336, 602
Collision of filenames 218
Colophon 640
Columbia University iii
Command files 24–26, 351–355, 264

as programs 496, 546
creation of 24, 352
getting names of 378
interruption of 24
nested 355, 402
search path 24
versus macros 363

Command level 378
Command-line options 489–506, 295, 377

for networks 158
Command-related variables 378
Commands

AOS/VS 41
OS-9 588
UNIX 41
VMS 41

Commands, C-Kermit
abbreviating 17
and screen dimensions 53
comments in 25, 357
completion feature 18
confirmation of 15
continuation of 25, 357
correcting mistakes in 17
default values in 19
executing from files 24, 351
for arithmetic 420
for local file management 41
for programming 391
for server mode 255
getting help in 14
grouping words in 20
how to enter 14
interrupting 22
keywords in 14
maximum length of 356, 363
mistakes in 16
numbers in 28
quoting special characters in 19
recalling 22, 53
redisplay of 18
retrying 15, 53
source of 378
special characters in, table of 22
success and failure of 396
syntax descriptions of 26

COMMENT command 25
Comments

in C-Kermit commands 25, 357
UNIX shell 546

Commodore Amiga. See Amiga
Communication device

hanging up 75, 139
network, selecting 139
serial, selecting 59, 498
speed of 60, 511
table of typical names 60

Comparison
of character strings 394
of numbers 392

Completion, automatic
of filenames 18
of keywords 18

Compressed files, transferring 288
Compression of data

by Kermit 274
by modem 82, 94, 291, 521

CompuServe
B+ protocol 304
login script 467

Confirmation of commands 15
CONNECT command 170–192, 295

and character sets 323
and key mapping 183
and locking shifts 181, 327
and script programs 445
and security 300
and transparency 184
and UNIX C-Kermit 547
closing the connection 173
command-line options for 500
debugging 188
escape character 171
escape commands 174
hanging up from 179
logging to a file 187
network functions 178
quitting Kermit from 179
returning from 172, 175
sending BREAK signals 177
sending special characters 178
settings for 179
shell escape 176
status inquiry 176

Connection establishment 57–85, 113–137
all serial connections 59, 164
automated 161, 442
dialed serial connections 69, 164
direct serial connections 68
network connections 137, 164

Connection log 78
Connection release

in CONNECT mode 173

Index 645

network connections 139
serial connections 75

Connectors 522, 525
Console driver 547
Continuation of C-Kermit commands 25, 357
CONTINUE command 410
Control characters

and file transfer 239, 285
how to type them 17
in UNIX 538
table of 594

COPY command 44
Copyright 12
Corruption of files 246
Costa Rica 122
COUNT, IF condition 406
Counted loops 405, 408
Country codes 609–611, 122
CP/M Kermit 200
CPS (characters per second) 511
Cray computers 241
CRC error detection 237, 381, 385
Credit card numbers, and dialing 132
Cron 543
CRT file transfer display 207
CTS modem signal 514
Customization file, C-Kermit 50

and character sets 347
CWD command 41
Cyrillic 319, 602

file character-sets 329
text 336, 343
transfer character-set 332

Danish
character set 329, 595
transliteration rules 342

Data bits versus parity 179, 230, 509
Data communications 509–527
Data compression 274, 521

by modem 94
Data General AOS/VS. See AOS/VS
Data General International character set 329, 596
Date variable, \v(date) 379
Date variable, \v(ndate) 379
Dates 29
Day-of-week variable, \v(day) 380
Day-of-week variable, \v(nday) 380
DB-25 connector 513, 525
DB-9 connector 513, 525
DCD modem signal 514
DCL. See DECLARE
Deaf, hints for 18, 538
Debug log 247, 435
Debugging a terminal session 188
DEC Alpha. See UNIX, VMS, NT
DEC Multinational Character Set 329

tables of 321, 596
DEC PDP-11. See PDP-11
DECLARE command 376
DECnet 148

and VMS C-Kermit 564
DECREMENT command 422
DECserver 148
DECSYSTEM-20 13
Default directory 41
DEFAULT label for SWITCH statement 411
Default values for command fields 19
DEFINE command 356, 371, 383
DEFINED, IF condition 398
DELETE command 45
Device, communication. See Communication device
DIAL command 72–85, 114, 116, 127, 131

order of dialing 119
result codes 136

Dialing 69–85, 513
area codes 122
automated 443, 449
by modem 516
category codes 119
confirmation of number 131
country codes 122
country codes, table of 609
declaring your location 122, 133
directory 113
directory, literal entries 117
directory, portable entries 118
directory, UNIX 542
directory, VMS 558
from a PBX 129
macros for 367
manually 75
multistage 76
repeatedly 74
solving problems 80
tone versus pulse 73
variables 124
via network modem server 146, 164, 369, 444
with calling/credit card numbers 132

Digital Equipment Corporation. See DEC, VMS
Digitel modems 89
Din8. See Mini-Din8
Direct serial connections 68
Directories, automatic creation of 216
Directory, default 41
Directory, dialing. See Dialing
DIRECTORY, VMS command 566
DIRECTORY command 46
Directory of services 470
DISABLE command 251
DISCARD, file collision option 218
Display, file transfer

selecting 205
DO command 359, 364

646 Index

Doublequotes
used for grouping words in commands 20

Dow Jones News/Retrieval login script 468
Downloading files 199, 200

automatically 295
from a Kermit server 257
without protocol 308

DSR modem signal 514
DTR modem signal 514
DTR/CD, DTR/CTS. See Flow control, hardware
Duplex 511

full 232, 512
half 235, 511

Dutch
character set 329, 595
transliteration rules 342

Dynamic packet length 277

E-PACKET command 210
Echo

and TELNET connections 144, 148
local 511
remote 512
terminal 180

ECHO command 42
EDIT macro 400
Editor, text

macro for using 400
using to create command files 24, 352

Efficiency of file transfer 267–294, 232
defined 270

Electronic mail
and MAIL command 263
script programming example 437

Eliminator, modem 524
ELSE command 393
EMACS text editor 400, 538, 540, 552, 640
Emulation, terminal

and Amiga C-Kermit 586
and AOS/VS C-Kermit 583
and OS-9 C-Kermit 589
and UNIX C-Kermit 547
and VMS C-Kermit 562

ENABLE command 251
END command 401
End-of-file condition 311, 436, 569
End-of-packet character 240
England 123
English 320
Environment variables 382, 550

dialing locale 124
Environment variables, table of 506
EQUAL comparison operator 394
Errno variable (system error number) 386
Error correction

by Kermit 237
by modem 82, 94, 519

Error, standard, writing to 436
Escape character

modem 95
Escape character, CONNECT mode 171

and multihop connections 184
how to change 171
in NeXT C-Kermit 171

Escape sequences
and C-Kermit macros 430
and ISO 646 terminal character sets 324
for transparent printing 432
VT100, table of 430

Escaping back, how to 172, 175
Eth, letter 320, 346
EUC (Extended UNIX Code). See Japanese
EVALUATE command 422
Evaluation functions 414
EXIST, IF condition 396
EXIT command 13, 491
Exit status 403

codes 491
in VMS 560
variable 378

External protocols 295–306

FAILURE, command status 396
FALSE, IF condition 399
FAST command 293, 358
FG modem signal 514
File character-sets 330

choosing 333
table of 329

File names
and version numbers 218, 564
collision of 218, 552, 584, 588, 590
treatment of by C-Kermit 195, 215, 548

File size
as basis of rejection 223
variables for 381

File transfer 193–316
and 8-bit text 283
and 8th-bit prefixing 232, 282
and AOS/VS 583
and attribute packets 222
and character sets 328
and communication speed 232
and control characters 239, 285
and data compression 274
and file names 196, 215
and filename collisions 218
and half duplex connections 235
and handshake 235
and IBM mainframes 241
and locking shifts 283, 344
and noise interference 236, 241
and packet length 276
and parity 230

Index 647

and server mode 256
and sliding windows 278
and TCP/IP networks 203, 204, 231
and the Amiga 587
and timeouts 238
and transparency problems 239
and UNIX 548
and VMS 562
and X.25 networks 245
background 549
basic commands for 194
binary files 212
commands 196, 197, 256
display of progress 205, 250
downloading with Kermit protocol 200
downloading without protocol 308
efficiency, improving 267
examples 199, 203, 241
examples, Cyrillic 337, 343
examples, European 334
examples, Hebrew 338
examples, Japanese 341
examples, language-specific 343
features, table of 294
in local mode 204
in remote mode 199
incomplete 219
interruption of 202, 208, 256, 582
interruption of, in UNIX 548
macros for 370
network 203, 205
of binary files 212
of text files 211
recording information about 226
resuming after interruption 218, 257
summaries of basic steps 7, 227
uploading with Kermit protocol 199
uploading without protocol 310
variables for 381
verifying with CRC-16 381, 385
VMS labeled mode 571

Filename, defined 30
Files

binary versus text 211, 212
checking existence of 396
corruption of 246
getting basename of 423
getting full pathname of 423
menus of 16
opening and closing 434
reading and writing 435
textual encoding of 315, 613
transferring 193, 229, 249, 267
translating 345

Files, command. See Command files
Filespec, defined 30
FINISH command 255

Finland 123
Finnish

character set 329, 595
transliteration rules 342

Flow control 65–67, 232–235, 512
and network connections 65
and Amiga C-Kermit 586
and CONNECT mode 172, 177, 186
and file transfer 232
and half duplex connections 235
and modems 94
and network connections 234
and serial connections 65
and UNIX 539
hardware 66, 233, 540
software 66, 233, 234, 539

FOR command 408
FOREGROUND, IF condition 398
FORWARD command 405
France 124
French

character set 329, 333, 595
transliteration rules 342

French-Canadian character set 595
Full duplex 232, 512
Fullscreen file transfer display 205
Functions 412–426, 439–440

for arithmetic 420, 423
for character processing 415
for character-string processing 415
for evaluating variables and expresssions 414
table of 439
that call themselves 426
user-defined 425

Gauss, Carl Friedrich 426
Gender of connectors 523
German 320

character set 329, 595
text 334, 343
transliteration rules 342

Germany 123
GET command 257, 296

command-line option for 503
search path for files 250

Global variables 371
GOTO command 403, 542

avoiding 406
Grouping words in commands 20
Groups of files. See Wildcard
GUI 541, 557
GZIP. See ZIP

Half duplex 235, 511
Handshake 235
Hanging up a modem 95
HANGUP command 75, 139

648 Index

Hardware flow control. See Flow control, hardware
Hayes modem 89, 516

commands, table of 516
Hebrew 332

character sets 338
file transfer 339
table of character sets 606
terminal emulation 324
transfer character-set 332
writing systems 338

Height, command screen 53
Height, terminal screen 182
Help

about a command 42
within a command 14

HELP command 42
Hewlett Packard computers 60
Hewlett Packard printers 345
Hexadecimal

encoding of files 315
file conversion program 613
string conversion functions 416

Hh:mm:ss notation 28
Hidden files, UNIX 550
Hiragana 339
Home directory

\v(home) variable for 379
tilde notation for 550

Honey DanBer UUCP 533
Hungarian character set 329, 595

IBM code page. See Code page
IBM mainframes

and autoupload commands 298
and file transfer 241
fullscreen communication 243
linemode communication 241
login scripts for 464

IBM RS/6000 60, 333
Icelandic

character set 595
text 346
transliteration rules 342

IF command 391–400
IF COUNT command 485
Incoming TCP/IP connections 147
Incomplete file transfers 219
INCREMENT command 422
Index, string function 416
Initialization file, C-Kermit 49

alternative 51
Amiga 49
AOS/VS 49, 582
Atari ST 49
command-line options for selecting 495
OS-9 49, 590
OS/2 49

standard 49
UNIX 49, 542
VMS 49, 557
VOS 49
Windows 95 and NT 49

Initialization string, modem 96, 101
INPUT buffer 449

changing the size of 452
INPUT command 448
Installation, C-Kermit

Amiga 586
AOS/VS 579
UNIX 529

International character sets. See Character sets
Internet. See TCP/IP
Interrupt Process, TELNET command 146
Interruption

INPUT command 448
of C-Kermit commands 22, 24, 543, 558
of file transfer 208, 256, 548, 582
of packet mode 202

IP address 140, 425, 450
IRV (International Reference Version). See ISO 646
ISO 646 character sets

and escape sequences 324
tables of 319, 593, 595

ISO 8859-1 596
ISO 8859-2 600
ISO 8859-5 602
ISO 8859-8 606
ISO Latin Alphabet. See Latin alphabet
Italian character set 329, 595
ITU-T telecommunications standards 118, 509–527
ITU-T V.25bis modems 89
ITU-T V.25vis modems 92

Japanese
character sets 340
Roman character set 595
transfer character-set 332, 340
writing systems 339

JIS (Japan Industrial Standard) 340
Job control 544, 547, 549

Kanji 339
and AOS/VS 581

Katakana 339
Keepalive, TCP parameter 142
Kermit

overview iii, 3, 5
Kermit protocol 193–301, 193

and 8-bit data 232
and character sets 328
and control characters 239
negotiation of features 268
packet types 207
summary of 268

Index 649

Kermit spoof 95
Key mapping 183

and international characters 328
and UNIX C-Kermit 547
and VMS C-Kermit 562

KOI-8 character set 329, 336, 602
KSC (Kermit Script) filetype 352

Label, GOTO 403
Label, SWITCH 411
Labeled file transfer, VMS 571–574
Ladino 332, 338
Language-specific character-set translation 341
LAT networks 148

network directory entries 156
Latin 320
Latin alphabet

as file character-set 329, 587
as transfer character-set 331
number 1, tables of 321, 596
number 2, table of 600
structure of 321, 591
supported languages, table of 321

Latin/Cyrillic alphabet 321, 332, 336, 602
Latin/Hebrew alphabet 321, 332, 339, 606
Length, string function 417
Letter variables 371
LGT comparison operator 395
License 12
Linger, TCP parameter 142
LIST macro 165
Literal dialing directory entries 115
LLT comparison operator 395
LOCAL command 374
Local computer 5
Local mode

and server operation 264
automation of 442
file transfer 204

Local variables 374
Lock file, UUCP 532
Locking shifts

and file transfer 283, 344
and terminal connection 181, 327
and the TRANSMIT command 312

Log
conection 78

LOG DEBUG command 247
Log files

closing 247
debug 247
packets 247, 299
session, terminal 187
transactions, file transfer 226

LOG PACKETS command 247
LOG SESSION command 187

for capturing files 308

LOG TRANSACTIONS command 226
Logical names, VMS

as environment variables 382
Login scripts 445–469

for commercial data services 467
for IBM mainframes 464
for UNIX 463
for VMS 454
how to write 445

Login, to server 250
Long BREAK signal 177
Long distance calls 132
Long packets 276
Long variable names 373
LOOKUP command 115, 131, 155
Loopback connector 527
Loops

altering execution of 410
counted 405, 408
FOR 408
SET COUNT / IF COUNT 405
WHILE 409

Lotus 1-2-3 570
Luxembourg 122
Lynx Web browser 570
LZH files, VMS 570

Macintosh Latin character set 596
Macintosh modem cables 526
Macro argument vector 377
Macros 356–370

arguments of 363
as user-defined functions 425
as variables with long names 373
block-structured notation for 358
defining 356
for alphanumeric paging 481
for dialing 133, 443, 449
for file transfer 474, 480
for network connection 442
for numeric paging 368
invocation of 359
sampler of 367
versus command files 363

Mail, electronic. See Electronic mail
MAIL command 263
MAN command 42
Maximum function 420
Menu. See Help
Microcom modems 89
Mini-Din8 523, 525
Miniature connectors 525
MINPUT command 451
MMOVE command 197, 256, 295
MNP 518, 520
Modem eliminator 524, 526
Modem server 146, 164, 444

650 Index

Modem signals 513
and dialing 62, 69
and direct connections 68
and the SET CARRIER-WATCH command 62
debugging 526
table of 514
waiting for 454

Modems 69–85, 87–110, 512–522
and data compression 82, 94, 521
and error correction 82, 94, 519
and file transfer failures 275
and hardware flow control 233
and speed buffering 233, 519
answering calls with 78
autodial 516
capability codes 92, 110
changing configuration 94
controllerless 521, 522
DECserver based, dialing 148
dial modifiers 121
dialing 72, 87, 113
escape character 95, 275
external 525
hanging up 95
Hayes, table of basic commands 516
Hayes-compatible 516
init string 96, 101
internal 525
modifying commands for 96
null 524
RPI 101, 521, 522
selecting type of 70, 499
speaker 98
table of error-correction techniques 520
table of modulation techniques 518
table of types known to C-Kermit 89
terminal-server based, dialing 146
tone and pulse dialing 73

Modulation 512, 518
More-prompting 53
Mouse 208
MOVE command 197, 256, 295

and XYZMODEM file transfer 305
MS-DOS Kermit

and printing 432
autodownload to 295
escape sequences 430

MSEND command 197, 256, 295
MSLEEP command 454
Multihop connections 184, 298

Nagle algorithm 143
NAK (negative acknowledgement) packet 268
Named pipes 153, 158
National character sets. See ISO 646
NAWS, TELNET option 148
Negotiation of Kermit features 268

NET macro 164, 442
NETBIOS networks 154, 158
Netscape 159
Network

directory, VMS 558
Network connections 137–159

and Amiga C-Kermit 586
and dialing 146
and file transfer 203
and flow control 234
and Kermit 95 138
and Kermit/2 138
and VOS C-Kermit 138
automated 442
Command-line options for 158, 499
CONNECT-mode escapes 178
directory of 155, 499
establishing 138
LAT 148
macros for 369
Named pipe 153
NETBIOS 154
TCP/IP 140
X.25 149

Newline-mode, TELNET parameter 144
NeXT computer

and key mapping 183
character set 329, 333, 596
Kermit escape character 171

Nodelay, TCP parameter 143
Noise interference

and file transfer 236, 241
North American Numbering Plan 122
Norwegian

character set 329, 595
transliteration rules 342

NOT, IF command modifier 391
Null modem 68, 524
Numbers, comparing 392
Numeric pager, how to dial 77, 78, 368
NUMERIC, IF condition 398, 412

Old KOI-8. See KOI-8
Omen Technology 305
ON_EXIT macro 432, 362, 430, 491
OPEN command 434
OpenVMS. See VMS
OS-9 C-Kermit 588
OUTPUT command 447
OVERWITE, file collision option 218

Packet
acknowledgement 268
attribute 218, 222
block check 237, 244
buffers 281
format of 268

Index 651

handshake 235
length 276
log file 247
mode, canceling 202
padding characters 240
retransmission 209, 238
start and end characters 239, 244
types, table of 207

Packet log file 299, 435
PAD. See X.25
PAD command 150
Padding characters 240
Pagers 76

macros for dialing 368, 481
Parity

and 8th-bit-prefixing 232
and file transfer 200, 230
and TELNET connections 231
and terminal connection 179
and X.25 connections 149
automatic detection of 232
explained 509
how to change 231

Pathname function 423
Pathnames 216
PATHWORKS 148, 570
PAUSE command 42, 453
PBX 129, 367
PDIAL command 76
PDP-11 245, 537
PEP (Telebit Packet Ensemble Protocol) 520
Performance. See Efficiency
PING command 146
Pins, connector 523
Portable dialing directory entries 118–137, 115, 127
Portuguese character set 329, 595
Prefix

8th-bit 232, 282
control-character 239, 285
repeat-count 275

PRINT command 43
Printer, choosing 43
Printing

and server mode 261
PC, transparent 432
via autodownload 298
with C-Kermit’s PRINT command 43

Private Branch Exchange. See PBX
Problem solving

dialing 80
file transfer 229

Program variable 379
Programming commands 391–440

structured 406
Protection of files 196

in UNIX 552
PSEND command 221

Pulse dialing 73, 98
Pushkin 337
PWD command 43

Question mark
as command help request 14
as wildcard character 195, 550

QUIT command 13
Quoting

8-bit characters in Kermit packets 232
control character in Kermit packets 239
special characters in C-Kermit commands 19, 54

RD modem signal 514
READ command 435
Recall

of C-Kermit commands 22, 53
RECEIVE command 196

command-line options for 501
Recording a terminal session 187
Recovery, file transfer 219, 257, 480, 574
Recursion 373, 426
RECVBUF, TCP parameter 142
REDIAL command 72
Redialing automatically 74
Redirection of input and output 501

in UNIX C-Kermit 542
in VMS C-Kermit 559

REGET command 257, 296
REINPUT command 449
REMOTE ASSIGN command 264, 384
REMOTE CD command 259
Remote computer 5
REMOTE COPY command 259
REMOTE DELETE command 260
REMOTE DIRECTORY command 260
REMOTE HELP command 260
REMOTE HOST command 262
REMOTE KERMIT command 260
REMOTE LOGIN command 260
REMOTE LOGOUT command 261
REMOTE PRINT command 261
REMOTE QUERY command 264, 383
REMOTE RENAME command 261
REMOTE SET command 263
REMOTE SPACE command 261
REMOTE TYPE command 261
RENAME, file collision option 218
RENAME command 44
Repeating a string 417
Replacing characters in a string 417
RESEND command 219, 295, 480
Resize, UNIX command 182
Resuming an interrupted file transfer 218
Retransmission of packets 238, 281
RETRIEVE command 257, 296
Retry

652 Index

of C-Kermit commands 15, 53
of packet transmission 238

Return code. See Exit status
RETURN command 425
Reverse slash. See Backslash
Reversing a string 418
RI modem signal 514
RLOGIN command 143, 499

and screen dimensions 143
RLSI modem signal 514
RM command 45
ROBUST command 293, 358
Rolm 244PC 89
Rolm CBX 89, 367
Roman alphabet, tables of 319, 321
Round Trip Time (RTT) 238
RPI modems 101, 521, 522
RS-232, EIA Recommended Standard 510

explained 513
table of signals and pins 514

RS-423, EIA Recommended Standard 525
RS/6000. See IBM
RTS modem signal 514
RTS/CTS. See Flow control, hardware
RTT. See Round trip time
RUN command 43, 44
Russia 332
Russian text 336, 343
Rz program 304

SCO UNIX, Xenix, ODT, Open Server 333, 532
Screen

dimensions and command window 53
dimensions and Rlogin 143, 182
dimensions and Telnet 148, 182
dimensions and terminal window 182
scraping 446
special effects for 430

SCRIPT command 486
Script programming 441–488
Security

and UNIX C-Kermit 534
in CONNECT mode 300
of Kermit server 251, 260

Selective retransmission 281
SEND command 194, 197, 256, 295

and XYZMODEM file transfer 305
command-line options for 501

SEND list 213
SENDBUF, TCP parameter 142
Serial communication explained 509–527
Serial connections 59

macros for 367
Serial file transfer display 207
SERIAL macro 164, 442
SERVER command 253

command-line options for 502

Server mode 249–266
access to host services 262
and electronic mail 263
and file transfer 256
and local operation 264
and printing 261
and settings 263
commands for 255
entering 253
file management services 259
interruption of 256
security of 251
terminating 255

Services directory 161–167
Connection details 164
Login macros 162
sample 165

Services directory file 470
UNIX 542
VMS 558

Session log 187, 308, 436, 449
SET KEY command 183
SET ALARM command 397
SET BLOCK-CHECK command 237, 244
SET BUFFERS command 281
SET CARRIER-WATCH command 62
SET CASE command 395, 452, 485
SET COMMAND BYTESIZE command 326, 53, 179,

322, 498
SET COMMAND HEIGHT command 53
SET COMMAND QUOTING command 54
SET COMMAND RECALL-BUFFER-SIZE command

22
SET COMMAND RETRY command 53
SET COMMAND WIDTH command 53
SET CONTROL-CHARACTER command 286
SET COUNT command 405, 485
SET DEFAULT command 41
SET DELAY command 202
SET DIAL AREA-CODE command 123
SET DIAL CONFIRMATION command 131
SET DIAL COUNTRY-CODE command 122
SET DIAL DIRECTORY command 114
SET DIAL INTL-PREFIX command 123
SET DIAL LD-PREFIX command 123, 132
SET DIAL LD-SUFFIX command 132
SET DIAL PBX-EXCHANGE command 129
SET DIAL PBX-INSIDE-PREFIX command 129
SET DIAL PBX-OUTSIDE-PREFIX command 129
SET DIAL TOLL-FREE-AREA-CODE command 127
SET DIAL TOLL-FREE-PREFIX command 127
SET DUPLEX command 235
SET ESCAPE command 171
SET EXIT command 492
SET FILE BYTESIZE command 225
SET FILE CHARACTER-SET command 330

for Cyrillic character sets 337

Index 653

for Hebrew character sets 338
for Japanese character sets 340
for Roman character sets 334

SET FILE COLLISION command 218
SET FILE command, summaries 227, 294
SET FILE DESTINATION command 225
SET FILE DOWNLOAD-DIRECTORY command 225
SET FILE END-OF-LINE command 225
SET FILE INCOMPLETE command 219
SET FILE LABEL command 572
SET FILE NAMES command 215, 258
SET FILE RECORD-LENGTH command 567
SET FILE TYPE command 212, 246, 258

and the TRANSMIT command 310
command-line options for 503
in VMS 569, 570, 571

SET FLOW command 234
SET HANDSHAKE command 235
SET HOST command 139
SET INPUT BUFFER-LENGTH command 452
SET INPUT CASE command 452, 485
SET INPUT ECHO command 452

and escape sequences 461
SET INPUT SILENCE command 452
SET INPUT TIMEOUT command 453, 485
SET KEY command

and international characters 328
and UNIX 547

SET LANGUAGE command 341, 345
and the TRANSMIT command 347

SET LINE command 59, 498
SET LOCAL-ECHO command 235
SET LOGIN PROMPT command 163
SET LOGIN USERID command 143, 158
SET MACRO command 360, 375, 485
SET MODEM command 87–110
SET MODEM COMMAND command 96
SET MODEM COMPRESSION command 94
SET MODEM ERROR-CORRECTION command 94
SET MODEM ESCAPE-CHARACTER command 95
SET MODEM FLOW-CONTROL command 94
SET MODEM HANGUP-METHOD command 95
SET MODEM KERMIT-SPOOF command 95
SET MODEM SPEED-MATCHING command 94
SET MODEM TYPE command 70, 88

command-line option for 499
SET NETWORK TYPE command 139
SET PAD command 150, 245
SET PARITY command 498

and file transfer 282
and locking shifts 283, 326
and terminal connection 179
command-line option for 498

SET PORT command 59
SET PREFIXING command 286
SET PRINTER command 42, 225
SET PROMPT command 13, 52, 205, 379

SET PROTOCOL command 297, 303
SET RECEIVE CONTROL-PREFIX command 286
SET RECEIVE END-OF-PACKET command 240
SET RECEIVE PACKET-LENGTH command 276

command-line option for 503
SET RECEIVE PAD commands 240
SET RECEIVE PAUSE command 236
SET RECEIVE START-OF-PACKET command 240
SET RECEIVE TIMEOUT command 239
SET RETRY command 238
SET SCRIPT ECHO command 487
SET SEND CONTROL-PREFIX command 286
SET SEND END-OF-PACKET command 240
SET SEND PACKET-LENGTH command 277
SET SEND PAD commands 240
SET SEND PAUSE command 236
SET SEND START-OF-PACKET command 240
SET SEND TIMEOUT command 239
SET SERVER DISPLAY command 250
SET SERVER GET-PATH command 250
SET SERVER IDLE-TIMEOUT command 250
SET SERVER LOGIN command 250
SET SERVER TIMEOUT command 251
SET SESSION-LOG command 188

for capturing files 308
SET SPEED command 60

command-line option for 498
SET SUSPEND command 52, 544
SET TAKE command 52, 353, 485
SET TAKE ERROR command 353
SET TCP command 142
SET TELNET command 144
SET TERMINAL /INQUIRE, VMS command 182
SET TERMINAL command 179–181

APC 300
AUTODOWNLOAD 187, 202, 295, 305
BYTESIZE 179, 326, 498
CHARACTER-SET 180, 323
CHARACTER-SET, and TRANSMIT 308, 311
CR-DISPLAY 181
DEBUG 188, 456
ECHO 181
ECHO, and the TRANSMIT command 310
ESCAPE 173, 185
HEIGHT 182
LOCKING-SHIFT 181, 327
NEWLINE-MODE 181
WIDTH 182

SET TERMINAL DEBUG command 188
SET TRANSFER BELL command 206
SET TRANSFER CANCELLATION command 203
SET TRANSFER CHARACTER-SET command 331

for Cyrillic text 336
for Hebrew character sets 338
for Japanese text 340
for Roman character sets 334

SET TRANSFER DISPLAY command 205

654 Index

SET TRANSFER MODE command 574
SET TRANSFER SLOW-START command 278
SET TRANSMIT command 311
SET UNKNOWN-CHAR-SET command 334
SET WILDCARD-EXPANSION command 549
SET WINDOW command 279
SET X.25 command 150
SET XFER. See SET TRANSFER
SET XMIT. See SET TRANSMIT
Setuid/setgid installation of UNIX C-Kermit 534
SG modem signal 514
SGA, TELNET option 148
Shift-JIS. See Japanese
Shift-out/shift-in. See Locking shifts
Short KOI character set 336, 344, 602
SHOW MODEM command 91
SHOW ALARM command 397
SHOW ARGUMENTS command 365
SHOW ARRAYS command 376
SHOW ATTRIBUTES command 224
SHOW CHARACTER-SETS command 342
SHOW COMMAND command 54
SHOW DEFAULT command 43
SHOW ESCAPE command 172
SHOW EXIT command 492
SHOW FEATURES command viii, 537
SHOW FILE command 228
SHOW FUNCTIONS command 413
SHOW GLOBALS command 371
SHOW KEY command 183
SHOW LANGUAGE command 342
SHOW MACRO command 358
SHOW MODEM command 93
SHOW NETWORK command 139
SHOW PROTOCOL command 294
SHOW SERVER command 252
SHOW STATUS command 396
SHOW TERMINAL command 181
SHOW TRANSMIT command 313
SHOW VARIABLES command 377
Simplex 511
Singapore 122, 123
Single shift 282
Sliding windows 278
SLIP server, getting IP address from 425
Software flow control. See Flow control, software
Sorting of DIAL numbers 119
Sorting, script program for 409
Spanish character set 329, 595
Speaking devices 538
Speed, communication 511

and efficiency 270
and file transfer 232
and modem speed buffering feature 94, 519
of SET LINE device 60

Speed-buffering modems 94, 519
and file transfer 233

Spoof, Kermit 95
SprintNet 245, 468
Stack, call 365, 375, 395, 401, 403, 426
Start and stop bits 510, 511
Start-of-packet character 239, 244
Starting C-Kermit 12, 489

in AOS/VS 581
in OS-9 590
in UNIX 541
in VMS 557
on the Amiga 586

STATISTICS command 271
STATUS command 15
STOP command 401
Stream_LF files, VMS 570
String comparison 394

case of letters in 395, 448, 485
String functions 415
Substring function 419
SUCCESS, command status 396
SUCCESS, IF condition 396
Sun computers 60, 139
SuperLAT 148
SUSPEND command 544
Suspending C-Kermit 544, 547, 549
Swedish 345

character set 329, 595
text 345
transliteration rules 342

Swiss character set 329, 595
SWITCH command 411
Sz program 304

Tab character
in command files 22
in SCRIPT command 487
in services directory 470
used for command completion 18

TAKE command 24, 352
TAP alpha pager protocol 481
TCP/IP networks 140–148

and incoming connections 147
and TELNET command 144
command-line options for 499
network directory entries 156
port numbers, table of 141
ports and services 141

TCPCALL macro 444
TD modem signal 514
TDD (Telecommunication Device for the Deaf) 538,

556
TELNET command 144

and echoing 144
and screen dimensions 148
and SET TELNET command 144
and terminal type 144
command-line options for 500

Index 655

CONNECT-mode escapes 178
TELNET protocol 147, 178, 180

and XYZMODEM file transfer 306
options, debugging 188
options, forcing 147
options, suggesting 144

TELOPT command 147
Temporary files 379
Ten-digit dialing 126
Terminal

device, UNIX 530
modes, UNIX 545

Terminal connection 169–192
and character sets 323
and key mapping 183
and locking shifts 327
and script programs 445
debugging 188
establishing 170
hanging up 179
logging 187
returning from 171
settings 179
shell escape from 176
status of 176
TCP/IP TELNET 178

Terminal emulation
and AOS/VS C-Kermit 583
and UNIX C-Kermit 547
and VMS C-Kermit 562
in Kermit 95 and Kermit/2 169

Terminal servers
and flow control 539
LAT 148
reverse 146, 164, 369, 444

Terminal type
and Amiga C-Kermit 587
and AOS/VS 580
and FULLSCREEN file transfer display 206
and OS-9 C-Kermit 589
and RLOGIN command 143
and speaking devices 538
and TELNET connections 144
and UNIX 537
and VMS 555
TELNET option 148

Text files
and the TRANSMIT command 311
and word processors 211
automatic recognition of in VMS 563
definition of 211
reading lines from 434
transfer of 211, 258

Thorn, letter 320, 346
Thoroughbred BASIC 569
Time-of-day variable, \v(ntime) 380
Time-of-day variable, \v(time) 380

Timeouts
and file transfer 238
and server command wait 251
and SET LINE command 63
and the INPUT command 448

Toll-free dialing 127
Tone dialing 73, 98
Toronto 126
Trademarks, list of 637
Trailing comments 25, 357
Transaction log 226, 436
Transfer character-set 331

for Cyrillic text 336
for Hebrew text 338
for Japanese text 340
for Roman text 334

Transfer mode, text/binary 212, 246
and client/server file transfer 258
as cause of file corruption 246

Transfer of files. See File transfer
TRANSLATE command 345
TRANSMIT command 310–315

and character sets 347
Transparency

and file transfer problems 239
of 3270 connections 243
of CONNECT mode 184, 298

TRANSPARENT
terminal character-set 323
transfer character-set 332

Transparent printing 432
TRUE, IF condition 399, 410, 429, 436, 437
Tty. See Terminal
Ttype, TELNET option 148
TYPE command 47

UNDEFINE command 356
Undefined record format, VMS 569
UNIX 529–553

aliases for invoking C-Kermit 299
and character sets 540
and flow control 539
control characters 538
login script for 463
terminal type 537

UNIX C-Kermit 529–553
and cron 543
and UUCP lock files 531
background operation of 543, 549
file transfer 548
initialization file 542
installation of 529
interruption of 543, 548
starting 541
suspending 544, 547
terminal connection 547
wildcard options 549

656 Index

Unknown character-set 334
Unprefixing of control characters 285
UPDATE, file collision option 218
Uploading files 199

automatically 296
to a Kermit server 256
without protocol 310

User-defined functions 425
UUCP lock file 532
Uuencode encoding of files 315

V.22, ITU-T Recommendation 518
V.22bis, ITU-T Recommendation 518
V.23, ITU-T Recommendation 519
V.24, ITU-T Recommendation 510
V.24, table of signals and pins 514
V.32, ITU-T Recommendation 518
V.32bis, ITU-T Recommendation 518
V.34 modems 270, 285
V.34, ITU-T Recommendation 518
V.42, ITU-T Recommendation 520
V.42bis, ITU-T Recommendation 520
Variable names, format of 377
Variables 371–389

array 375
built-in 377
defining 371, 373, 427
displaying values of 371, 376
environment 382
global 371
letter 371
local 374
macro arguments 363
macros used as 373
with long names 373

VAX. See UNIX, VMS
VERSION, IF condition 398
VMS 555–577

aliases for invoking C-Kermit 299
and character sets 556
login script for 454
wildcard characters 562

VMS C-Kermit 555–577
and DCL command procedures 559
and DECnet 564
and file transfer 562
and filename collisions 218
and PATHWORKS 570
and terminal connection 562
and terminal type 555
and ZIP/LZH/Lynx files 570
exit status 560, 561
starting 557

VT100 escape sequences. See Escape sequences
VTPRINT macro 432

WAIT Command 454

Web browsers 3, 159, 494, 570
WHATAMI, Kermit protocol feature 258
WHILE command 409
WHOAMI, Kermit protocol feature 258
Width, command screen 53
Width, terminal screen 182
Wildcard characters

and -s command-line option 501
and MSEND command 197
and SEND command 194
C-Kermit functions for 423
definition of 30
in AOS/VS C-Kermit 583
in UNIX C-Kermit 549
in VMS C-Kermit 562
quoting in C-Kermit 19, 550

Windows 95 and NT 2, 49
Windows, sliding. See Sliding windows
Winmodems 101
Word processor

and text files 211
macro for using 400
using to create command files 24, 352

WRITE command 42, 435
WRITELN / WRITE-LINE command 435

X.25
networks, using 149
Pad parameters, table of 156

X.25 networks 500
and file transfer 245
network directory entries 157

XECHO command 429
Xenix 333, 532
XFER. See Transfer
XIF command 406
XLATE. See Translate
XMIT. See TRANSMIT
XMODEM protocol 295–306

and CONNECT mode 185
XON/XOFF. See Flow control, software
‘‘Xon/Xoff protocol’’ 307

Yiddish 332, 338, 606
YMODEM protocol 295–306
Yogh, letter 320

ZIP files 285, 288, 316
VMS, how to transfer 570

ZMODEM protocol 295–306, 187, 292

_ASSIGN command 484
_DEFINE command 484
_FORWARD command 484
_GETARGS command 484
_PUTARGS command 484

Table of Contents i

Table of Contents
Foreword 2016 i

Preface iii

Chapter 1 Introduction 1
Why Kermit? 3
How Kermit Works 5

Chapter 2 Running C-Kermit 11
Starting C-Kermit 12
Exiting from C-Kermit 13
Entering Interactive Commands 14
Command Files 24
Describing Kermit’s Commands 26
Pattern Syntax 33
Command Switches 35
Some Basic C-Kermit Commands 41
More C-Kermit Commands 44
The C-Kermit Initialization File 49
Commands for Controlling Commands 52
Summary Tables 55

Chapter 3 Making Serial-Port and Modem Connections 57
Opening the Serial Port 59
Direct Serial Connections 68
Dialed Serial Connections 69
The Connection Log 78
Troubleshooting Dialed Connections 80
Command Summary 84

Chapter 4 Configuring Modems 87
Choosing a Specific Modem Type 88
Important Settings 93
Changing Things 94
Modifying Modem Commands 96
Adapting a New Modem to Kermit 99
Adapting Kermit to a New Modem 100
Modem Command List 109
Modem-Related Variables 110

ii Table of Contents

Chapter 5 The Dialing Directory 113
Dialing Directory Files 114
Dialing Directory Format 115
Looking up and Dialing Numbers 115
Literal Entries 117
Portable Entries 118
Using Portable Entries 122
Command Summary 135

Chapter 6 Network Connections 137
Making Network Connections 138
TCP/IP Networks 140
Making LAT Connections 148
X.25 Networks 149
Named Pipes 153
NETBIOS 154
Using the Network Directory 155
Command-Line Options for Network Connections 158
Command Summary 159

Chapter 7 The Services Directory 161
Login Macros 162
Connection Details 164
Sample Services Directory 165

Chapter 8 Terminal Connection 169
The CONNECT Command 170
Closing the Connection 173
CONNECT-Mode Keyboard Escape Commands 174
Setting Terminal Parameters 179
Coordinating Screen Dimensions 182
Key Mapping 183
C-Kermit in the Middle 184
Automatic Actions While in CONNECT Mode 186
Logging and Debugging Your Terminal Session 187
Command Summary 190

Chapter 9 The Basics of File Transfer 193
Getting Started 193
Basic File Transfer Commands 194
Easy File Transfer Examples 199
Local-Mode File Transfer 204
Interrupting a File Transfer 208

Table of Contents iii

Transferring Text Files 211
Transferring Binary Files 212
Building a Send List 213
File Names 215
Transferring Files between Similar Systems 216
Directory Names 216
Filename Collisions 218
Incomplete File Transfers 219
Recovering from Interrupted File Transfers 219
File Attributes 222
Odds and Ends 225
Keeping a Record of Your File Transfers 226
Summary 227

Chapter 10 Solving File Transfer Problems 229
Parity 230
Speed and Flow Control in the Full Duplex Environment 232
Half Duplex Communication 235
The Pause that Refreshes 236
Noise and Interference 236
Timeouts 238
Transparency Problems 239
IBM Mainframe Linemode Communication 241
IBM Mainframe Full-Screen Communication 243
For X.25 Users Only 245
If Files Are Corrupt after Transfer 246
Collecting the Evidence 247

Chapter 11 Using a Kermit Server 249
Configuring the Server 250
Starting the Server 253
Sending Commands to Kermit Servers 255
Transmission of Variables 264
Turning the Tables 264
Command Summary 265

Chapter 12 High-Speed Kermit File Transfer 267
Overview of the Kermit Protocol 268
A Word about Efficiency 270
Analyzing Kermit’s Performance 271
Data Compression 274
Long Packets 276
Sliding Windows 278

iv Table of Contents

Single and Locking Shifts 282
Control Character (Un)Prefixing 285
Case Study: Achieving the Best Transfer Rate 288
Summary and Conclusion 292

Chapter 13 Automatic File Transfer and Command Execution 295
Remote-Control File Transfer 295
Automatic Uploading 296
Automatic Uploading, Part Deux 297
Automatic Command Execution 300

Chapter 14 External Protocols 303
Sending Files 305
Receiving Files 305
Things to Watch Out for 306
Command Summary 306

Chapter 15 Transferring Files without a Protocol 307
Downloading to C-Kermit 308
Uploading from C-Kermit 310
Encoding 8-Bit Data Files for Transmission 315
Command Summary 316

Chapter 16 International Character Sets 317
Proprietary Character Sets 318
Standard Character Sets 319
International Characters in Commands 322
International Characters in Terminal Emulation 323
Transferring International Text Files 328
Translating without Transferring 345
One-Sided Translation 346
Labor-Saving Devices 347
Command Summary 348

Chapter 17 Command Files, Macros, and Variables 351
Command Files Revisited 352
Macros 356
Macro Arguments 363
A Macro Sampler 367
Variables 371

Table of Contents v

Chapter 18 Programming Commands 391
The IF Command 391
The STOP and END Commands 401
The GOTO Command 403
Structured Programming 406
Built-in Functions 412
Can We Talk? 427
Using Escape Sequences 430
Reading and Writing Files and Commands 434
Programming Considerations 437
Summary of Built-in Functions 439

Chapter 19 Script Programming 441
Automated Connection Establishment 442
Synchronization Commands 445
Constructing a Login Script for VMS 454
A UNIX Login Script 463
An IBM Mainframe Linemode Login Script 464
An IBM Mainframe Fullscreen Login Script 465
Login Scripts for Commercial Data Services 467
A Directory of Services 470
Unattended File Transfer 474
Passwords and Security versus Automation 476
Automatic File Transfer Recovery 480
Calling an Alphanumeric Pager 481
Some Things We Didn’t Tell You 484
The SCRIPT Command 486

Appendix I Starting and Stopping C-Kermit 489
Program Termination 491
Command-Line Options 493
Command-Line Examples 504
Environment Variables 506

Appendix II A Condensed Guide to Serial Data Communications 509
Character Format and Parity 509
Modems 512
Cables and Connectors 522
Summary 526

vi Table of Contents

Appendix III UNIX C-Kermit 529
Installation 529
Using UNIX C-Kermit 537
Command Summary 553

Appendix IV VMS C-Kermit 555
Preparing Your VMS Session for C-Kermit 555
Using VMS C-Kermit 557
Command Summary 577

Appendix V AOS/VS C-Kermit 579
Using C-Kermit in AOS/VS 580

Appendix VI Other C-Kermit Versions 585
Amiga C-Kermit 585
OS-9 C-Kermit 588
Others 590

Appendix VII Character Set Tables 591
The ASCII and ISO 646 IRV Character Set 593
7-Bit Control Characters 594
7-Bit Roman Character Sets 595
West European Character Sets 596
East European Character Sets 600
Cyrillic Character Sets 602
Hebrew Character Sets 606

Appendix VIII Country Codes 609

Appendix IX Hexification Programs 613

Appendix X Shift-Out/Shift-In Filter 615

Acronyms and Abbreviations 617

References 631

Trademarks and Copyrights 637

Table of Contents vii

Index 641

viii List of Figures

List of Figures ix

List of Figures
Figure 1-1 Remote and Local Computers 4
Figure 1-2 Connecting the Local and Remote Computers 5
Figure 1-3 Logging in to the Remote Computer 6
Figure 1-4 Transferring a File 7
Figure 3-1 A Direct Connection 68
Figure 3-2 A Dialed Connection 70
Figure 8-1 Terminal Connection 170
Figure 8-2 Command and Terminal Bytesize 180
Figure 9-1 Upload and Download 198
Figure 9-2 Uploading a File 198
Figure 9-3 Downloading a File 201
Figure 9-4 C-Kermit’s Fullscreen File Transfer Display 206
Figure 9-5 Kermit Text File Conversion 211
Figure 10-1 Character Formats 230
Figure 10-2 Hardware Flow Control 233
Figure 10-3 IBM Mainframe Linemode Example 242
Figure 12-1 Kermit Packet Format 268
Figure 12-2 Stop-and-Wait Packet Exchange 269
Figure 12-3 Sliding Windows 280
Figure 16-1 Structure of an 8-Bit Latin Alphabet 321
Figure 16-2 Terminal Character Set Translation 326
Figure 16-3 International Text File Transfer 329
Figure 16-4 Linguini Transfer 333
Figure 18-1 Returning from Nested Command Files 402
Figure 18-2 Mass Mailing Script 438
Figure 19-1 The VMSLOGIN Macro 460
Figure 19-2 Sample IBM 3270 Login Screen 466
Figure 19-3 The TAPMSG Macro 483
Figure II-1 Character Formats 510
Figure II-2 Asynchronous Character Transmission Format 510
Figure II-3 Computers Connected by Modems 513
Figure II-4 Asynchronous Modem Cable Schematic 522
Figure II-5 Data Connectors 523
Figure II-6 Asynchronous Null Modem Schematics 524
Figure VII-1 Structure of a Standard 8-Bit Character Set 592

x List of Tables

List of Tables xi

List of Tables
Table 2-1 Special Characters in C-Kermit Commands 23
Table 2-2 C-Kermit Initialization File Name 50
Table 2-3 Basic C-Kermit Commands 55
Table 2-4 Summary of Backslash Codes 55
Table 3-1 Sample Dialout Device Names 61
Table 4-1 Some of C-Kermit’s Built-in Modem Types 90
Table 4-2 Modem Capabilities 92
Table 4-3 LASAT Modem Command Set 102
Table 4-4 Variations in AT Commands 107
Table 4-5 Modem Variables 111
Table 5-1 Dialing Category Codes 119
Table 5-2 Telephone Number Modifiers for Hayes Modems 121
Table 5-3 C-Kermit Dial Status Codes 136
Table 6-1 Commonly Used Assigned TCP Port Numbers 141
Table 6-2 X.3 Numeric PAD Parameters and Values 157
Table 8-1 C-Kermit CONNECT-Mode Escapes 174
Table 9-1 Special Characters in C-Kermit File Specifications 195
Table 9-2 Kermit Packet Types 208
Table 12-1 Dangerous Control Characters 287
Table 12-2 V.34 ZIP-File Transfer Performance 290
Table 12-3 Kermit File Transfer Feature Summary 294
Table 14-1 SET PROTOCOL Command Defaults 304
Table 16-1 Decimal Character Codes for Accented Capital Letter A 318
Table 16-2 7-Bit National Character Sets, Differences from ASCII 320
Table 16-3 The ISO Latin Alphabets 321
Table 16-4 Right Half of Latin Alphabet 1 322
Table 16-5 DEC Multinational Character Set 322
Table 16-6 ANSI Escape Sequence Formats 325
Table 16-7 C-Kermit File Character Sets 329
Table 16-8 Language-Specific Transliteration Rules 342
Table 17-1 Built-in Variables 386
Table 18-1 \Feval() Operators 421
Table 18-2 Selected VT100 Escape Sequences 431
Table 18-3 Built-in Functions 439
Table 19-1 Notation for SCRIPT Command 487
Table I-1 C-Kermit Return Codes 491
Table I-2 C-Kermit Command-Line Options 505
Table I-3 Environment Variables Meaningful to C-Kermit 507
Table II-1 RS-232 / V.24 Modem Signals and Pins 514
Table II-2 Selected Hayes Smartmodem 2400 Commands 517
Table II-3 Modem Modulation Techniques 518
Table II-4 Modem Error Correction and Compression Techniques 520

xii List of Tables

Table III-1 Setting Your Terminal Type in UNIX 538
Table III-2 UNIX Terminal Control Characters 539
Table IV-1 VMS Kermit SET FILE Commands 575
Table IV-2 PC – VMS File Transfer 576
Table V-1 AOS/VS Template Characters 584
Table VII-1 Character Codes of ASCII and ISO 646 IRV 593
Table VII-2 7-Bit C0 Control Characters 594
Table VII-3 7-Bit National Character Sets, Differences from ASCII 595
Table VII-4 West European Character Sets 596
Table VII-5 East European Character Sets 600
Table VII-6 Cyrillic Character Sets 602
Table VII-7 Hebrew Character Sets 606
Table VIII-1 Country Codes 609

